ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Journal of Systems Architecture 54 (2008) 607-618

JOURNAL OF
SYSTEMS

ARCHITECTURE

www.elsevier.com/locate/sysarc

Authentication in stealth distributed hash tables

Andrew MacQuire *, Andrew Brampton, Idris A. Rai, Nicholas J.P. Race, Laurent Mathy

Computing Department, Lancaster University, InfoLab 21, Lancaster, Lancashire LAl 4WA, United Kingdom

Received 18 February 2007; received in revised form 20 January 2008; accepted 28 January 2008
Available online 2 February 2008

Abstract

Most existing DHT algorithms assume that all nodes have equal capabilities. This assumption has previously been shown to be untrue
in real deployments, where the heterogeneity of nodes can actually have a detrimental effect upon performance. We now acknowledge
that nodes on the same overlay may also differ in terms of their trustworthiness. However, implementing and enforcing security policies
in a network where all nodes are treated equally is a non-trivial task. We therefore extend our previous work on Stealth DHTs to con-
sider the differentiation of nodes based on their trustworthiness rather than their capabilities alone.

© 2008 Elsevier B.V. All rights reserved.

Keywords: Distributed hash table; Peer-to-peer; Security; Public key infrastructure; Stealth DHT

1. Introduction

Distributed Hash Tables (DHTs) have been shown to be
a useful form of decentralised, structured peer-to-peer
overlay [27,34,36,23,18]. They allow for the provision of
simple hash table functionality — that is, the ability to put
and get pieces of data indexed via hash codes — across mul-
tiple nodes in a scalable and resilient fashion. Primarily,
DHTs have been used as lookup substrates for many varied
applications, such as large-scale file storage [11,8,14] and
multicast [28,39], amongst others.

Theoretically, most DHTs consist of numerous nodes
which organise themselves and behave in a well defined
manner. Each node is associated with a unique identifier
(ID), randomly selected from a large, sparsely-populated
address space. When an object is put into a DHT, its con-
tents are hashed in some way as to produce an identifier
which also maps into this address space. The originating
node then routes the object to the local node that it knows

* Corresponding author.

E-mail addresses: macquire@comp.lancs.ac.uk (A. MacQuire), bramp-
ton@comp.lancs.ac.uk (A. Brampton), rai@comp.lancs.ac.uk (I.A. Rai),
race@comp.lancs.ac.uk (N.J.P. Race), laurent@comp.lancs.ac.uk (L.
Mathy).

1383-7621/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysarc.2008.01.004

to have the closest-matching identifier. If the recipient
knows of an even closer node, it then forwards the data
on. Eventually, the object reaches a node which does not
know of any closer match. This node is considered the final
destination, and must then take responsibility for the stor-
age and/or any other handling of the object. Any individ-
ual who then wishes to get the same object at a later date
can then do so based on the knowledge of the object’s hash
alone, as any message routed to the same hash should
arrive at the same final node that the object originally
reached. Of course, this can only occur if all nodes follow
the DHT protocol correctly.

Unfortunately, in a real-world deployment it would be
naive to assume that all nodes can be relied upon to con-
form to any prescribed behaviour. Without appropriate
security policies in place, numerous problems may exist
for public DHTs. For instance, a malicious node may exam-
ine, alter or deliberately drop messages passed through it
(i.e., attacks on confidentiality, integrity or availability
respectively). Using the simulation platform described in
Section 5 we can demonstrate how a relatively small num-
ber of untrustworthy nodes can have a large impact on a
generic DHT. Fig. 1 shows the percentage of messages
which would be affected as the corresponding percentage
of malicious nodes increases. Observe that when a quarter


mailto:macquire@comp.lancs.ac.uk
mailto:brampton@comp.lancs.ac.uk
mailto:brampton@comp.lancs.ac.uk
mailto:rai@comp.lancs.ac.uk
mailto:race@comp.lancs.ac.uk
mailto:laurent@comp.lancs.ac.uk

608 A. MacQuire et al. | Journal of Systems Architecture 54 (2008) 607-618

100 —
» PR
@ _ -0
g Praat
@ 80f et
[} L
IS ”c'\‘\

o LR
2 gof e
(o] s
2 /
© ,gf"
S 40} "
] 0 L
(o)) ¢
s A
5
S 20r /o ——1000 nodes 1
K A = = =250 nodes
““““ 100 nodes
0 . . . .
0 20 40 60 80 100

Percentage of malicious nodes

Fig. 1. The effect of malicious nodes forwarding messages.

of a 1000 node DHT’s population is malicious, over half of
the messages sent are subject to attack.

The ability to inject unsolicited messages into the DHT,
or to alter those in transit, also allows untrustworthy nodes
to corrupt the routing tables of others. Possible conse-
quences of such actions could be legitimate nodes being
denied service, or malicious nodes improving their standing
on the network at the expense of others. In terms of con-
tent in the DHT, if all nodes are allowed to perform put
operations, then the pollution of the system with unwanted
or illegal data may become an issue. Furthermore, this pro-
vides an ideal environment for users to infringe intellectual
property law or distribute illegal content. This is a major
factor that hinders commercial use of existing DHT archi-
tectures, especially now as peer-to-peer application/service
providers are increasingly liable for illegal activity carried
out on their networks [13].

To avoid these security problems, it is clear that some
method for handling untrustworthy nodes in DHTs is
required, especially if DHTs are to be used commercially.
Sadly, most traditional DHTs make the assumption of
homogeneity amongst peers, treating them all as equal.
This means that untrustworthy nodes are regrettably
granted exactly the same privileges and responsibilities as
the trustworthy. A common approach to solving this prob-
lem is to make use of an authentication mechanism to
ensure that only trustworthy nodes are allowed to join
the DHT. However, determining the veracity of a node
can be a difficult process, and simply alienating all those
who cannot prove themselves trustworthy may be unwise.
Instead, such nodes should still be allowed to make use
of the DHT, but in a limited capacity.

To this end, a means of separating sets of nodes on the
same DHT proves necessary. We therefore demonstrate
how our recently proposed Stealth DHT concept [3] can
be used to provide this precise functionality with almost
any existing DHT algorithm, following minor modifica-
tions to nodes’ announcement and/or state-gathering pro-
tocols. Our original evaluation covered the benefits of
this approach from a performance standpoint, where
excluding potentially slow or unreliable nodes from DHT

forwarding paths was shown to be beneficial. Such an
approach is particularly useful for users with poorly provi-
sioned hardware (e.g. mobile devices), where access can still
be granted to the DHT without degrading the overlay’s
overall forwarding performance. We now, however, con-
sider the advantages gained in terms of security.

The separation between nodes that a Stealth DHT pro-
vides can be exploited to enable secure content distribution,
as when coupled with a suitable authentication mechanism,
it aids in returning network control to the service provider.
To clarify, the ability to create fine-grained permissions for
nodes on the DHT means that security policies are much
easier to enforce. For example, by allowing only authorised
nodes to perform certain operations, Stealth DHTSs can
ensure that only legitimate and useful content is served,
thus providing a platform for Digital Rights Management
(DRM) in peer-to-peer networks, as well as aiding in the
prevention of pollution attacks.

The remainder of this paper is structured as follows:
Section 2 gives a brief overview of the differences between
traditional and Stealth DHTs. Section 3 discusses the struc-
ture of a typical Public Key Infrastructure (PKI). Section 4
then explains how a Stealth DHT and a PKI may interop-
erate. Section 5 then highlights and evaluates a number of
implementation concerns for such a system, with further
discussion of optional functionality in Section 6. Section
7 goes on to examine related work in the field of DHT
authentication, and finally Section 8 concludes the paper.

2. Overview of a stealth DHT

The join process for most DHT implementations involves
anode first gathering state. Usually, this is achieved by rout-
ing a join message addressed to its own ID into the DHT via
a bootstrap node (an already-connected node discovered
through some alternate mechanism). Nodes along the mes-
sage’s path then reply directly with relevant routing informa-
tion, as to allow the joining node to construct its routing
tables. Once the joining node receives notification that its
message has reached its destination, it announces its pres-
ence on the network so that other nodes may route messages
through it.

Stealth DHTs, as originally proposed in [3], modify this
procedure slightly to create two types of nodes on the net-
work: Service and Stealth. Service nodes provide the rout-
ing infrastructure for the overlay, whereas stealth nodes
communicate with and through service nodes only. This
separation is achieved by halting the join procedure for
stealth nodes after they have gathered state, but before they
announce their presence on the DHT. In the case of DHT
implementations which passively gather routing state from
forwarded messages, a flag within the sender’s certificate
can indicate whether the sender is suitable for routing.
The resultant effect of such modifications is that stealth
nodes do not appear in any routing tables, and thus are
not used to forward any messages or store any keys. There-
fore, they are incapable of interfering with message delivery



A. MacQuire et al. | Journal of Systems Architecture 54 (2008) 607-618 609

or object storage in any direct manner. The routing table
built by stealth nodes is used only for selecting the
locally-optimal node to forward each of their own requests
to, thus maintaining routing performance while removing
the possibility of a single point of failure that many similar
DHT super-peer schemes suffer from [19,38]. In the case of
the locally-optimal node for a given message failing, a
stealth node can select the next-best alternative from its
table. Further detail on how a stealth node can also keep
its routing table from becoming stale can be found in our
previous work [3].

It is important to note that the assignment of the stealth
and service node roles is application-dependent, and is not
prescribed or constrained by the Stealth DHT itself. How-
ever, a Stealth DHT provides an individual or a service
provider with the control to command such assignment.
Therefore since service nodes are responsible for handling
all messages, they should consist of verifiably trustworthy
machines. Conversely, any nodes which are potentially
untrustworthy should be forced to join as stealth nodes,
prohibiting them from interfering with DHT operations
to any extent.

In contrast with traditional DHTSs, the distinction
between trustworthy and untrustworthy nodes provided by
a Stealth DHT results in an architecture where the imple-
mentation of security policies is more straightforward. In
addition, as service nodes never retain any knowledge of
stealth nodes, Stealth DHTSs are poised to offer significant
advantages from a security perspective.

For example, when a stealth node joins or leaves the net-
work, no service nodes need to update their routing tables,
which prevents them from being affected by stealth nodes
churning. This is especially important from a security
standpoint, as the effects of heavy churn have been identi-
fied as being particularly harmful to many DHT implemen-
tations [24,15]. Malicious individuals have accordingly
used this knowledge as a means of facilitating Distributed
Denial of Service (DDoS) attacks. By making numerous
nodes under their control rapidly rejoin DHTSs, an attacker
can cause floods of maintenance messages as nodes struggle
to keep their routing tables up to date, resulting in incon-
sistent routing and overloaded nodes. If, however, a Stealth
DHT is used where the potentially untrustworthy are
forced to join as stealth nodes, no routing table updates
occur and so no maintenance messages are required. The
inevitable cost of such an advantage comes in the form
of increased stress upon the service nodes, although these
are assumed to be relatively powerful machines capable
of handling such load. These properties of a Stealth DHT
are examined in greater detail in [3].

Of course, in a system such as this there still must be a
means of ensuring that stealth nodes cannot masquerade
as service nodes ( e.g. by simply announcing their presence
to other service nodes). This can be achieved in a Stealth
DHT through the use of an appropriate authentication
scheme to effectively enforce the separation between node
types. Accordingly, this is the focus of this work, wherein

we discuss how an authentication scheme based on a Public
Key Infrastructure can be implemented in a Stealth DHT.

3. Overview of a public key infrastructure

A Public Key Infrastructure (PKI) is a security platform
which allows multiple users who have not previously
exchanged any information to validate each other’s identi-
ties, be sure of message integrity and even set up confiden-
tial communication. This is usually achieved via digital
certification signed by mutually trusted third parties, where
the certificates themselves are used to verify the identity of
their owner through public/private key cryptography.

A typical PKI is composed of several logically separate
entities, although the functionality offered by each may be
contained within a single physical machine:

A Registration Authority (RA) is a trusted entity which
acts as the first point of contact for an individual request-
ing certification. The RA is used to check the requestor’s
supplied credentials and, if deemed valid, pass them on
to the Certification Authority.

A Certification Authority (CA) is a trusted entity respon-
sible for the creation and, if supported, revocation of certif-
icates. As it is a mutually trusted third party, individuals
may authenticate each other with confidence if they sign
their messages using a certificate verifiably issued by a CA.

A Certificate Repository (CR) simply acts as a database
of existing certificates. A CR need not be a trusted entity as
the certificates it holds are immutable; if any attempt is
made to alter an existing certificate, the digital signature
will no longer match the contents. Note that if nodes are
made responsible for the storage and dissemination of their
own certificates, a dedicated CR may be redundant.

If supported, the CR also contains the Certificate Revo-
cation List (CRL), indicating which certificates in the data-
base have been forcibly revoked. Certificate revocation,
however, is often an unsupported feature in actual PKIs
due to implementation difficulties; an issue discussed fur-
ther in Section 5.5.

Many PKI implementations use certificates which con-
form to the ITU-T X.509 standard [1], a simplified version
of which can be seen in Fig. 2. Each certificate contains a
version record for compatibility reasons, as well as a serial

[ Version|[ Serial Number|
[ Period of Validity |
[ Issued By ]

Identity
Public Key

Extensions
Subject Permissions

Subject

[ Signature |

Fig. 2. Certificate format.



610 A. MacQuire et al. | Journal of Systems Architecture 54 (2008) 607-618

number to aid in certificate management. The certificate
should also have two discrete dates associated with it, indi-
cating its period of validity.

The most important element of any digital certificate,
however, is the subject. That is, the individual or organisa-
tion whose identity the certificate may be used to authenti-
cate. Typically this information is comprised of the owner’s
name and any other pertinent information (address, orga-
nisation name etc.). The owners public key is also included
in this section of the certificate. This key is cryptographi-
cally paired with a corresponding private key that each
individual must keep secret, as it serves as their means of
creating digital signatures, as well as decrypting any mes-
sages encrypted with their public key.

Finally, the certificate must indicate the authority which
issued it, and must also contain the signature of that
authority. The key point here is that once the certificate
has been signed in this manner, the data contained within
cannot change without invalidating the signature. Note
that certificates may also contain optional extension fields,
allowing for application-specific additions.

It is also notable that as any individual who owns a
signed certificate from a higher authority may also sign cer-
tificates themselves, lengthy certification hierarchies often
exist. As requesting and verifying each level of certification
separately may prove to be time-consuming, many PKIs
allow for the chaining of certificates. That is, all certificates
up to the initial, self-signed certificate (created by some
intrinsically trustworthy entity) are included in a single col-
lection. While such a certificate-chain will obviously be lar-
ger than any single certificate, it intuitively reduces
overhead if verification up to the highest level is known
to be required. Furthermore, if the PKI supports revoca-
tion, an approach similar to those discussed in Section
5.5 would have to be performed for each certificate in the
chain.

4. Authentication in a stealth DHT

A straightforward approach to implementing a PKI on
a Stealth DHT is to require each service node to be issued
with a certificate, as to prove its authority. In the simplest
case, stealth nodes would not require certification. If, how-
ever, restrictions were placed on any of the operations that
stealth nodes could perform, certification would be
required to prove that a given stealth node is authorised
to perform a particular operation.

The certificate extension fields may therefore contain a
list of authorised operations that its owner may carry out
(see Fig. 2). Simple examples could be the right to join as
a service node, or the right to put content into the network.
It would then be mandatory for the relevant DHT mes-
sages to contain a field which identifies the node’s certifi-
cate in some way, as well as a digital signature to prove
that the same node was indeed the message’s creator. The
node’s certificate or certificate-chain could also be attached
to the message to aid in the authentication process.

4.1. PKI composition

There are two broad approaches to supplying the PKI’s
constituent elements for the Stealth DHT: external and
internal. In the former, the RA, CA and CR all exist
entirely separately to any part of the Stealth DHT itself,
whereas in the latter the functionality is provided by a set
of operations on the DHT, supported by some subset of
the Stealth DHTs service nodes. This subset may simply
be a single, well-known service node (centralised PKI) pro-
viding the entire PKI functionality for the Stealth DHT, or
in contrast it may consist of several or all the existing ser-
vice nodes (distributed PKI).

Exactly how the PKI elements are organised is entirely
application-specific, and internal/external elements may
be mixed. For example, as the RA and CA must be trusted
entities, they may consist of a small number of highly-
trusted service nodes with well-known identifiers. The
CR, on the other hand, does not require a high level of
trust due to the immutability of digital certificates. As a
result, it could consist of several or all service nodes on
the DHT, with certificates being hashed and stored as if
they were normal DHT keys. As such, creating a distrib-
uted PKI of this type would involve exactly the same pro-
cedures as setting up the DHT normally.

4.2. Joining the DHT

The first step for a new user to take will typically be
certificate acquisition. The user must therefore generate
a public/private key pair, and then securely pass his or
her public key along with any requested proof of identity
to the Registration Authority. Secure delivery to the RA
is required here as to avoid confidentiality issues, and
can be achieved through the use of a well-known and
implicitly trusted global key. Following successful verifica-
tion by the RA, the details can then be passed to the Cer-
tification Authority. The CA then creates the certificate,
signs it, and passes it back to the user via the RA. It
may also be passed to a Certificate Repository, if
necessary.

In a Stealth DHT with an external PKI that requires
authenticated join operations, the user can simply send a
join message containing his or her certificate to a suitable
DHT bootstrap node, with the separate PKI server(s)
being contacted as required. The same process is required
for a Stealth DHT with an internal PKI, although the
components of the PKI system are contained within the
DHT instead. Note that in the latter case a new, uncerti-
fied user could also simply pass all his or her relevant
details to a bootstrap node as their join message, with
no need for any further action on their part. As all ele-
ments of the PKI are contained within the DHT, a certif-
icate can automatically be returned to them whilst an
appropriate DHT join message with the newly created cer-
tificate attached is simultaneously forwarded, thus mini-
mising join delay.



A. MacQuire et al. | Journal of Systems Architecture 54 (2008) 607-618 611

4.3. Sending messages

Following a successful join, nodes may then communi-
cate as normal over the Stealth DHT, authenticating each
other as necessary. As an example of this, assume we have
two users, Alice and Bob, a stealth node and a service node
respectively who have joined a Stealth DHT with an inter-
nal PKI. Alice wishes to send a message to Bob, who
requires that messages be authenticated. The correct proce-
dure (as shown in Fig. 3) would therefore be as follows:

Alice first creates a message, signs it, and delivers it to
Bob via the DHT. Bob can then verify the signature, and
thus the message integrity, using Alice’s certificate. He
may have acquired Alice’s certificate from his certificate
cache, a Certificate Repository, or from within the message
itself. Bob can then recursively verify the issuers within the
certificate chain, starting with Alice’s certificate. This pro-
cess continues until Bob reaches a certificate that he intrin-
sically trusts. At this point, the authentication is complete,
and Bob can continue to handle Alice’s message appropri-
ately. Naturally, if the certificate chain does not eventually
lead to an certificate that Bob trusts, his attempt to authen-
ticate Alice fails. Following any reply from Bob, Alice may
perform the same process on his message to authenticate
his identity, but only if mutual authentication is required.

Note that in an internal PKI, if the Certificate Reposi-
tory functionality is spread across many service nodes,
and certificate chains are not included in messages, users
performing get operations may experience longer retrieval
delays due to the need for the relevant certificates to also
be requested from the DHT. This increased overhead
should, however, be weighed against the cost of using a
centralised PKI, which potentially represents a single point
of failure for all nodes on the network. Many such trade-
offs may have to be made in implementing this sort of sys-
tem, as discussed further in Section 5.

Certificate Source
(e.g. certificate repository,
local cache, or message)

&

Recursive | 7= HI St
Venﬂcatlon

Fig. 3. Sequence of events for message authentication.

Further to this, if Alice and Bob wish to ensure that
their messages are kept confidential from even the service
nodes, they can simply use the public keys contained within
each other’s certificates to encrypt the messages’ contents.
To clarify, if Alice wants to send sensitive data to Bob, then
she first uses the CR to retrieve his certificate beforehand.
Following this, she uses his public key to encrypt the mes-
sage contents and her own private key to sign the message.
Only Bob’s private key can decrypt data encrypted in this
manner, so Alice can be sure that only Bob is able to
understand the message contents. Further to this, her sig-
nature ensures that Bob can be sure the message came from
Alice, and that it was not tampered with.

The observant reader may note that the order of opera-
tions is of importance here (i.e., encrypting the message
and then signing it, or vice versa) [9]. If the encrypt-then-
sign approach is taken, then a malicious intermediary could
replace the signature on the encrypted message, and thus
claim to be its original source. For this reason, the source
identifier should be included in the encrypted portion of
the message. If, upon decryption, the source identifier does
not correspond with the attached signature, the destination
can deduce that the message was tampered with.

5. Implementation considerations

As Stealth DHTs may be tailored to a wide range of
applications based on the assignment of roles to nodes, it
follows that there are numerous application-specific deci-
sions to be made regarding the implementation of any secu-
rity system, as discussed in the following sections.

For evaluation purposes, we used our own discrete-event
simulator based on a Stealth DHT implementation of Pas-
try [27] (validated in our previous work [3]). Packet-level
simulations were conducted to allow for detailed examina-
tion throughout our experimentation, although the metrics
shown in this paper are only at the DHT level. Each simu-
lation was performed several times on a GT-ITM [4] gener-
ated transit-stub topology of 1,000 routers, with 4% transit
nodes. Service, stealth and normal Pastry nodes were con-
nected to this topology in a random fashion.

Results from our real-world C++ implementation of
both Pastry and a Pastry Stealth DHT are also included
in the following sections. Experiments were run with a ran-
domly selected set of active PlanetLab nodes [21], which
were connected to the DHT in a random fashion. Multiple
iterations were run (at least 5 in all cases), with the network
being given suitable time to reach a steady-state in all cases.
Any obviously anomalous data due to instability on
PlanetLab was discarded before analysis. The algorithm
used in all authentication operations was the OpenSSL
0.9.8d implementation of RSA, with 1024 bit keys [12,25].

5.1. Certification hierarchy

Some thought should be placed into how the certifica-
tion structure is organised within the PKI. The simplest



612 A. MacQuire et al. | Journal of Systems Architecture 54 (2008) 607-618

approach for a Stealth DHT could be to have a single glob-
ally trusted key, used to sign certificates for service nodes
only. However, users may require a more complex hierar-
chy for economic, political or security reasons; again, this
is an entirely application-specific issue. A possible example
could be that each department within a typical commercial
organisation is granted a certificate signed by a single,
highly-trusted master key. It may be that the master key
needs to be kept physically secure and is therefore inconve-
nient to access. By introducing this extra level of hierarchy,
however, the need for it to be used to sign certificates on a
regular basis is negated. This approach also allows for a
finer level of control, as if the privileges of an entire depart-
ment needed to be revoked, for instance, it is simply a mat-
ter of invalidating the associated departmental certificate.

5.2. Asymmetry vs. symmetry

There are two obvious manners in which service and
stealth nodes may authenticate each other: asymmetric (ser-
vice or stealth node authentication only) or symmetric
(mutual authentication). To clarify, service node authenti-
cation may be required if a stealth node is placing sensitive
information into the network and wants to be sure of the
recipient. Conversely, stealth node authentication may be
required if a service node needs to verify if a stealth node
is authorised to retrieve sensitive information from it.
Finally, mutual authentication may be required if a combi-
nation of these factors arises. By taking this approach of
authenticating the nodes only as required, processing and
messaging overhead can therefore be minimised.

5.3. Authentication granularity

Exactly how authentication is performed on the DHT
presents an issue of balance between overhead and security.
A fine-grained approach would be to verify all messages on
a per-hop basis. For most DHTs, this results in all required
authentication operations (such as retrieving appropriate
certificates or checking revocation lists) being performed
on average logN times for each message, where N is the
number of service nodes in the network. However, it also
results in any invalid messages being dropped almost
immediately, making it difficult for unauthenticated mali-
cious nodes to get service nodes to pass invalid messages
around; a tactic often used in DHT denial of service
attacks, typically resulting in the network becoming over-
loaded with useless traffic. Regardless, studies such as
[29] have shown how there may be large numbers of legit-
imate, small flows in peer-to-peer systems, making per-mes-
sage authentication for all messages an expensive choice in
terms of overhead.

Considering a slightly coarser approach, if service nodes
were to simply validate each message (or even a particular
type of message) upon receipt at its final destination, then
all associated authentication operations need only be per-
formed once. Obviously this means that any messages from

unauthorised nodes may be unnecessarily routed by multi-
ple service nodes on their journey, consuming bandwidth
and processing time. However, it also means that the num-
ber of authentication operations performed may be signif-
icantly reduced. A possible solution to this issue would be
for service nodes to check any message received from a
node with which they do not have an established secure
connection. By doing so, any messages from unauthorised
nodes would be dropped upon insertion to the DHT,
whereas relatively few authentication operations would be
required once common routes between service nodes
become established. Of course, the benefits of such an
approach are offset by the overhead of maintaining the
connections in the first place.

Beyond per-message authentication, service nodes may
make use of the coarse concept of ‘“‘sessions”. In other
words, a typical stealth node may be permitted to consume
a certain amount of resources, make use of a given service
or be active on the DHT for a pre-determined length of
time. Examples here could include a node being permitted
to send or receive a set number of messages on the network,
being given the ability to download a particular number of
pieces of content or being provided with a “day-pass” to
use the DHT, respectively.

Session-based authentication therefore requires that
some state be stored and validated for stealth nodes. If
the session is based on a length of time, then this can be
as simple as issuing a certificate with a corresponding per-
iod of validity. Otherwise, it is likely that a more complex
system is required, such as an accounting mechanism, as
discussed in Section 6.1 or a session authentication proto-
col such as Kerberos [20]. Of course, whether or not such
schemes would be feasible to use in terms of overhead
would likely be an application-dependent issue.

To measure the effects of the different authentication
schemes we ran simulations with a fixed number of 1000
service nodes, where the number of stealth nodes was var-
ied between 10 and 2500. These values were used as to
strike a balance between simulation size and the processing
resources available to us — the simulation platform used is
described in greater detail at the beginning of Section 5.
Every service node in the DHT initially held its own certif-
icate as well as several content keys. During the simulation
itself, stealth nodes performed 100 random get requests for
these keys at regular intervals. Authentication operations
were performed at the source and destination in the per-
message results and also performed at each intermediate
node in the per-hop results. For both cases, simulations
were run with and without certificate chains contained
within messages. Each simulation was repeated nine times,
as by this point the 95% confidence interval of the results
was suitably small, as can be observed from the figures.

Fig. 4a shows that both the per-hop and per-message
authentication schemes result in no increase in the overall
number of messages when certificate chaining is used. This
is because all the certificates required to fully authenticate a
message’s sender are included within the message itself,



A. MacQuire et al. | Journal of Systems Architecture 54 (2008) 607-618 613

140 T T
—— Per hop
<> - - - Per message
& 120 Per hop with certificate chain
g - - Per message with certificate chain
& 100f
»
7]
0]
E sof
o o
3 e
€ 601 TTeee-— ]
=
c
£ 40t
0]
7]
©
o 20t
o
£
O —— i e ]
0 500 1000 1500 2000 2500
Number of stealth nodes
(a) Increase in the number of messages
250 T T
—— Per hop
- - - Per message
. Per hop with certificate chain
X 200} ---Per message with certificate chain
>
3)
c
e
8 150}
Bl TE---xo
2 TEeeooo
k] TEo----l E
< 100
03
7]
©
<
2 sof
[t - — - — e R S Emmim @ e
0 R s s .
0 500 1000 1500 2000 2500

Number of stealth nodes
(b) Increase in lookup latency

Fig. 4. Stealth DHT with 1000 services nodes using an internal, fully
distributed PKI relative to a Stealth DHT with no authentication. Note
that the certificate-chain simulations are overlaid in these figures. Error
bars are used to show the 95% confidence intervals.

thus increasing the average message size, but resulting in no
further requests to the CR. Note that in this case, the larger
the certificate hierarchy required for authentication, the
greater the average message size.

On the other hand, an increase in the number of mes-
sages does exist when certificate chains are not used. This
increase is due to the distributed nature of the Certificate
Repository in an internal PKI; to acquire a certificate in
order to perform authentication, a node must retrieve it
from the service nodes through further DHT queries.
Expectedly, per-hop authentication results in markedly
more messages than per-message authentication. Also, as
the number of stealth nodes increases, the percentage
increase in the number of messages relative to a system
without authentication falls. The reason for this is that
the increased number of stealth nodes results in an accord-
ingly increased number of requests for certificates. As all
nodes cache certificates upon receipt, there is no need for
certificates to be re-acquired.

Fig. 4b shows how lookup latency (the time elapsed
between a node requesting, receiving and fully verifying a

1 ==
’ - . ]
08r [
g
0.6f
[T
[a)]
o
04t
0.2 —— Without Authentication
: - - = With Authentication (no requests)
R With Authentication (requests)
ok . n 1 n
0 5 10 15 20 25 30

Lookup latency (seconds)

Fig. 5. Impact of per-hop authentication upon lookup latency with/
without certificate requests.

key from the DHT) is affected by these factors. As
expected, the cases which involved querying the network
(i.e. those without certificate chains) result in increased
lookup latencies. Note, however, that the cases with certif-
icate chains also incur increased lookup latencies despite
the lack of extra authentication messages. This is attributed
to the larger average message size that occurs as a result of
including certificate chains within messages.

The same conclusions can be drawn from Fig. 5, which
shows the CDF of lookup latencies for our implementation
running on PlanetLab. Simple certification hierarchies of
two and three levels were used. In the two level case all cer-
tificates were signed by a global key, whereas the three lev-
els had a intermediate certificate which had to be requested
if it was not already cached. This is plotted on the figure as
“no requests” and ‘“‘requests” respectively. We again wit-
ness that when requests for certificates are required, lookup
latency is increased relative to a system without authentica-
tion. The larger message size required for authenticating
messages also results in the “no request” scenario exhibit-
ing slower lookups, although the difference is minor for
the majority of cases.

As seen in Fig. 4a, the relative increase in the number of
required authentication messages decreases with larger
numbers of stealth nodes. Fig. 4b therefore displays a cor-
related reduction in lookup latency. As the cases with cer-
tificate chains do not generate extra authentication
message, they remain unaffected by the number of stealth
nodes in the DHT.

5.4. Processing overhead

An inevitable overhead involved with providing a PKI-
based authentication system is the increase in processing
time required for signing and verifying certificates. The
effect this might have on a DHT is difficult to realistically
quantify through simulation alone, and so we investigated
the impact of using authentication on the performance of
our real-world implementation.

As noted in Section 5.3, Fig. 5 shows the CDF of lookup
latencies for our implementation running on PlanetLab,



614 A. MacQuire et al. | Journal of Systems Architecture 54 (2008) 607-618

with and without authentication. Approximately 300 nodes
were used, where each node would send 10 requests overall,
delivered at exponentially distributed times around a mean
of 6 seconds. The requests were made for a set of 1000 keys,
with a Zipf popularity distribution using an o parameter of
1.2 (thus providing a realistic popularity function as com-
monly observed in peer-to-peer networks [32]).

From the figure, it is clear that approximately a quarter
of the lookups made were noticeably slower when per-hop
authentication (without requests) was used, relative to a
DHT with no authentication mechanism. However, upon
varying the authentication granularity to per-message
(not shown), no improvement was witnessed. This implies
that processing overhead may not be a major factor in
the performance decrease, as the amount of processing in
per-message authentication would be greatly decreased rel-
ative to per-hop.

Further investigation involved repeatedly benchmarking
the authentication code on the PlanetLab nodes used. In all
benchmarks, timing precision was ensured by recording the
aggregate elapsed times over many iterations. It was found
that over 90% of nodes were able to sign or verify a 512
byte message with a 1024 bit RSA key in less than
100 ms (and 70% less than 50 milliseconds). In comparison
with network latency, it therefore seems unlikely that pro-
cessing overhead played an significant role in the perfor-
mance decrease observed. Even though encryption was
not used in the implementation, benchmarks reveal that a
PlanetLab node on average can encrypt 30,000 512 byte
messages per second using AES, and is thus not a major
bottleneck. The huge difference in speed between signing
and encrypting is attributed to the symmetric and asym-
metric algorithms in use.

Also, note that many of the values in this section are
somewhat indicative of the high load on PlanetLab: the
same test performed on a typical unloaded PC signed mes-
sages in less than 3 milliseconds and encrypted 50,000 mes-
sages a second.

It appears the actual reason for the longer lookup laten-
cies is simply the delay involved in delivering the extra
authentication data. Without authentication, messages
were around 256 bytes in length; with authentication, mes-
sages were around 512 bytes larger. It is clear therefore,
that a lack of processing power is not a major problem;
instead, minimising the need to transmit certificates (e.g.
by using suitable certification hierarchies) and ensuring
network links are suitably provisioned are more important
issues.

5.5. Certificate revocation

Invalidating a given certificate at an arbitrary point in
time within a PKI structure (i.e., revoking it) is tradition-
ally a difficult problem, especially in distributed environ-
ments. However, the need for the ability to revoke
certificate often outweighs the cost of any associated over-
head. In other words, being able to remove a node from a

network before it can do any lasting damage may be worth
the extra associated costs. There are a number of possible
methods for certificate revocation, each with advantages
and disadvantages [37].

An obvious solution is for stealth nodes to be simply
issued with certificates with short expiration times, result-
ing in a quasi-revocation scheme in which a CA can simply
refuse to re-issue a given certificate if it wishes to remove a
given entity’s privileges within the system. Such an
approach would use the credentials supplied by the individ-
ual as a unique identifer, and so they would have to be suit-
ably difficult to counterfeit as to avoid attackers simply
rejoining under, for example, a different name. Further-
more, this approach intuitively has a high maintenance
overhead, as every individual that continues to exist on
the network will require a new certificate to be generated
and issued at a regular interval.

Another common approach is to use a CRL, or Certifi-
cate Revocation List. Any node verifying a certificate must
then check the list as part of its normal authentication pro-
cess. The list itself may be stored in one of a number of
ways. For instance, and as with many of the other issues
considered so far, a centralised server could be used. Again,
the problems common to this sort of approach are that it
creates a central point of failure, and could potentially
result in the overloading of the server if many requests are
regularly made. A distributed approach amongst service
nodes could potentially be used to alleviate the load placed
upon any one node, but this results in increased messaging
overhead due to the added complexity of maintaining and
retrieving the list. It is important to note that the list could
also be kept in its entirety on multiple nodes instead of split
between them (i.e., replication vs. division, respectively).

There also exist several approaches for the manner in
which nodes access such lists. In general terms, these fall
into the pull and push distribution models. As an example
of the pull model, nodes may poll the holder(s) of the
CRL at regular intervals, or even for every transaction,
depending on the level of granularity required. An example
of the push model would be the Certificate Revocation List
being broadcast to all nodes upon any update, or at a reg-
ular interval. Obviously, such an approach may result in a
great deal of initialisation overhead if a large number of
nodes which require the CRL exist; multicast overlays
may have to be built, and ideally with some method of
guaranteeing delivery. For small numbers of nodes, how-
ever, the cost of broadcasting updates and/or occasionally
broadcasting the full list may be lower than having nodes
repeatedly request it unnecessarily. The scalability of such
a system would depend entirely on the number of nodes
that require the CRL (which equally depends on how
restrictive the DHT is). DHT-based application-level mul-
ticast systems such as SCRIBE [6] and Bayeux [39] have
been demonstrated as scalable (given they leverage the sca-
lability properties of the DHT on which they are con-
structed), so a broadcast approach may be beneficial even
in some large-scale circumstances.



A. MacQuire et al. | Journal of Systems Architecture 54 (2008) 607-618 615

6. Optional considerations

Beyond the mandatory decisions regarding the structure
of the Stealth DHT PKI, there are also a number of addi-
tional considerations that may be required for certain
applications, as discussed in the following sections.

6.1. Permissions management

Allowing a node to have elevated permissions on the
DHT requires some knowledge of how trustworthy it is.
Indeed, the importance of having a good trust metric is pro-
portional to the level of damage that a restricted operation
could inflict. For instance, if a node is required to store sen-
sitive data, it should probably be hand-picked by the service
provider. Conversely, if a node is only required to store
publicly available data an automatic measure of trust may
be used. Something as simple as a record how of successful
the node has been at serving requests previously could be
useful here; the system would then begin to trust successful
nodes more, and unsuccessful or increasingly malicious
nodes less. Of course, more complex approaches may also
be suitable in various scenarios. For instance, many systems
rely on a graph-theoretic “web-of-trust” approach, where
trustworthiness is inferred through trust relationships
between known and unknown nodes. Choosing exactly
what approach to take is, of course, another application-
dependent issue, and would be based on the level of security
required by any given application on the Stealth DHT.

Actually managing the permissions of nodes on the net-
work is yet another issue with multiple solutions. One pos-
sibility is to simply place them within each node’s
corresponding certificate, but this has two notable associ-
ated issues. Firstly, certificates are immutable after they
are signed, so altering the permissions for a node to either
grant or restrict its current access level would require a cer-
tificate to be re-issued, and the original invalidated. Sec-
ondly, the average DHT message size would have to
increase to accommodate the larger certificates; exactly
how large they are depends on the volume of data required
to represent all the relevant details. However, such an
approach does mean that the relevant permissions are
immediately available to any node receiving a message con-
taining the originating node’s certificate.

An alternative approach would be to store permissions
data within the network somehow, thereby avoiding the
lack of flexibility and larger message sizes associated with
storing them within certificates. The inevitable cost, how-
ever, arises in the form of extra messaging overhead; every
time a node needs to check an unknown individual’s per-
missions, they would have to look up and also validate
the relevant data. This cost could be offset somewhat by
using a number of techniques, such as permission tokens
that remain valid for a day or so.

The permissions for a given node in a system such as
those discussed may require that some state is maintained
for each individual. For instance, this may be based on a

record of how much network resources the node has con-
sumed. To provide such functionality, an accounting mech-
anism of some sort is therefore required.

As with most of the issues discussed so far, there are
numerous possible approaches to the problem of providing
an accounting mechanism for nodes in a Stealth DHT, each
with advantages and disadvantages. Nevertheless, the com-
mon goal of each is identical: to provide a system which
offers ACID properties. These are Atomicity (an action is
either performed completely or not at all), Consistency (an
action cannot place the data in an invalid state), Isolation
(actions cannot interfere with each other’s intermediate
states) and Durability (the result of an action will persist).

The most straightforward approach is to have a simple
centralised server handle all transactions. This means mes-
saging overhead is minimal, although it also means that a
single point of failure exists for the system. Furthermore,
dependent on the number of nodes considered, the server
may be placed under load beyond its capabilities.

Another possibility would be to improve load-balancing
by distributing the transaction processing across multiple
nodes. For instance, this could be achieved by mapping a
given node’s state to a key in the DHT. However, it is
important to note that without replication, such a system
would be prone to losing data from time to time. With rep-
lication, however, the management overhead required to
maintain the aforementioned ACID properties will intui-
tively increase due to the need for agreement amongst the
replicated nodes.

The classical approaches for distributed accounting are
divided into a few main categories, local accounting, quo-
rum-based [7] and token-based [17,35,26]. Local accounting
refers to the case when nodes do not collaboratively main-
tain a count, but only keep values locally instead. In con-
trast, quorum-based systems require a group of nodes to
maintain the count in a cooperative fashion. Before the
count is modified the quorum must reach a consensus on
its old and new value. The more nodes that exist in the quo-
rum the more robust the system is to malicious nodes and
network failures.

Token based systems may also use similar approaches,
but the key difference is that each count is represented by
many immutable tokens. Each token represents a currency
that nodes can exchange for service. These tokens are cryp-
tographically signed to restrict who can use them. Nodes
acting as “banks” may be used to store and certify the
tokens to ensure that double spending does not take place.
Tokens have the benefit that they can either be self-issued
[35], or can be issued by the system [26].

Variations on mechanisms such as these may also be
used to provide logging functionality in the DHT, thus
making users accountable for their actions.

6.2. Node promotion

A key function of a Stealth DHT with authentication
support is the strong separation between stealth and service



616 A. MacQuire et al. | Journal of Systems Architecture 54 (2008) 607-618

nodes. Sometimes, however, it may be useful to allow
nodes to alter their roles. For instance, if a Stealth DHT
with a small number of service nodes is heavily loaded,
the ability to ‘promote’ stealth nodes to a service role for
offloading purposes could be advantageous.

In most cases, it would perhaps be unwise to offer a
stealth node full privileges outright; without a careful selec-
tion process and suitable permissions management, the
potential for abuse would be high. Determining suitable
stealth nodes would most likely be a two stage process:
first, discovering which nodes have the required resources
available, and secondly, ascertaining which nodes within
that set can be classed as trustworthy.

Finding stealth nodes with spare resources would not
necessarily be difficult. On a heavily loaded DHT, service
and stealth nodes would be communicating often, and so
service nodes could simply attach a request for support
to any replies they send. A suitable stealth node could then
reply to this request, offering its spare capacity in whatever
form it may take. Stealth nodes may also offer their ser-
vices, either due to purely altruistic reasons, or for incen-
tives placed by the service provider (which may take the
form of access to exclusive resources, monetary compensa-
tion or similar rewards).

Exactly what resources are being offered has an impor-
tant bearing on how rigourous the service node’s subse-
quent examination of the stealth node should be. As a
simple example, storing replicated certificates requires little
to no trust at all; the certificates cannot be maliciously
altered without it being obvious, and should the stealth
node disappear, the original certificate is not lost. In con-
trast, if a stealth node were to be enlisted to store the only
copy of a piece of unprotected content, it would have to be
trusted not to alter it, or to disconnect without replicating
it. Note that neither of these examples actually require the
stealth node to be part of the DHTs routing, as the stealth
node could simply register with a service node as auxiliary
storage space.

In the case of a former stealth node becoming involved
in forwarding messages for the DHT, even greater care is
required when validating the node’s trustworthiness. For
instance, if a malicious node is only used for storing pro-
tected data, the worst it can do is deny service for that data
alone. If, however, the same malicious node is involved in
DHT routing, it could supply legitimate service nodes with
false routing data, potentially damaging the entire DHT.

Compromises are therefore required, and thus the con-
cept of promotion is inextricably linked with the previous
discussion on managing node permissions (see Section
6.1). Furthermore, it is important that any new privileges
given to a stealth node can be revoked easily, an issue dis-
cussed in Section 5.5.

6.3. Digital rights management

As has been previously noted, a Stealth DHT with
authentication support may prove to be a useful platform

for content distribution. However, while a Stealth DHT
as discussed thus far can ensure the content is delivered
safely, commercial services may also require that the data
be placed under certain restrictions. A typical example
would be copy protection, where users are prevented from
accessing content they are not licensed to use.

A common, generalised approach to this problem
involves the use of licensing servers. All content is
encrypted during the delivery process, and the licenses
granted to users via the servers act as decryption keys. In
some cases, every time the content is played back, a license
has to be acquired. Naturally, this means that the license
servers have to be reliable to ensure user satisfaction.

A natural extension for a Stealth DHT serving such con-
tent could therefore be to distribute licensing servers across
the DHT. Many of the issues discussed thus far regarding
Public Key Infrastructures also apply to DRM systems,
as PKIs are often used within them. A Stealth DHT could
therefore offer both user authentication and content pro-
tection within a single system.

7. Related work

Previous works have discussed the varied problems asso-
ciated with untrustworthy nodes in DHTs, noting that
security is an issue commonly overlooked in algorithm pro-
posals. Sit and Morris broadly define three types of mali-
cious behaviour: routing, storage and other miscellaneous
attacks [31].

A commonly encountered technique often used in all
three categories is the ‘“Sybil” attack, as originally
described by Douceur [10]. This refers to the situation
when a single malicious node is able to masquerade as mul-
tiple distinct entities within the network in order to gain
control of a substantial fraction of it. The conclusion is
drawn that a suitable defense against such an attack is to
have a logically centralised authority which is capable of
certifying the identity of nodes in the network. Such a solu-
tion is effective because certificates are associated with indi-
vidual nodes; a single compromised node cannot assume
the identity of many without having the extra associated
certificates. Therefore, this paper can be said to support
our approach of implementing a PKI in conjunction with
a Stealth DHT.

Routing attacks in a DHT may refer to nodes deliber-
ately providing incorrect lookups or producing incorrect
routing updates. More specifically, an example could be
the “Eclipse” strategy, as discussed in detail by Singh
et al. [30]. This involves multiple malicious nodes deliber-
ately attempting to partition peer-to-peer overlays in a
form of Distributed Denial of Service (DDoS) attack.
Again, the suggestion is made of a certification scheme as
a straightforward solution, as with our approach to such
a problem. Beyond this, the authors propose defenses such
as constraining the entries placed in routing tables [5] or
periodically auditing the connectivity of other nodes to



A. MacQuire et al. | Journal of Systems Architecture 54 (2008) 607-618 617

detect anomalies which are symptomatic of those conduct-
ing such an attack.

Storage attacks may involve behaviour such as nodes
refusing to store objects, corrupting them or simply deny-
ing their existence. More resourceful attackers may also
use multiple malicious nodes to attempt to take control
of specific pieces of content. Some may even try to make
it impossible to access useful content by flooding the net-
work with useless data [16]. Srivatsa and Liu suggested
the approach to obfuscate the location on the DHT of spe-
cific keys from those not authorised to access them [33]
Similarly, a Stealth DHT can ensure that potentially
untrustworthy nodes are never even part of the DHT which
is responsible for storing keys, although they may still
access them if authorised to do so.

Of course, DHT-based storage systems have often con-
sidered security in their own right. PAST, for instance, uses
the concept of “smartcards”, with which users hold associ-
ated public/private keys [11]. These smartcards are man-
aged by brokers (trusted third parties). In other words,
PAST is yet another system that takes the approach of
using a Public Key Infrastructure for security purposes;
again, the concept we have suggested and expanded upon
in this work.

In terms of miscellaneous attacks, Sit and Morris also
noted that an attacker may attempt to conduct a DDoS
attack by causing multiple nodes under their control to rap-
idly join and leave the network, resulting in degradation of
DHT performance [24,15]. Possible solutions to this prob-
lem are suggested in [5], such as forcing nodes to solve
crypto-puzzles before they may join as a means of slowing
down attackers attempting to run multiple logical nodes
on a single physical machine. In contrast, our Stealth DHT
approach means that stealth node churn has a significantly
reduced effect on DHT performance relative to nodes churn-
ing in traditional DHTs. Exactly how churn affects a Stealth
DHT is studied in detail in our original proposal [3].

Several works have also considered how such authenti-
cation systems may be implemented in a physically distrib-
uted fashion over peer-to-peer networks. For example,
Aberer et al. discussed how a completely decentralised
PKI based on a statistical approach could be deployed
on many traditional DHTs (although they specifically use
P-Grid [22]) [2]. The key difference in comparison with
our work is that in this case, the authors consider a method
that can function with a network consisting entirely of
potentially untrustworthy nodes. However, they note that
their system breaks down if more than 25% of nodes are
actually malicious, and that it may not function with sev-
eral DHTs, such as CAN or Chord [23,34]. We, however,
believe that our system is implementable on almost any
existing DHT, and should function regardless of the per-
centage of malicious stealth nodes. Note, however, that
the same can be said of a simple server cluster - indeed, a
small Stealth DHT is effectively just that, albeit with the
beneficial self-organising, load-balancing and reliability
properties of the DHT on which it is based.

8. Conclusion

The original goal of our Stealth DHT proposal was to
provide a distinction between nodes of greater and lesser
capabilities as a means of improving routing performance.
Powerful nodes were responsible for handling message for-
warding within the DHT, whereas the remaining, weaker
nodes simply requested services from them. We have demon-
strated that this separation can be extended to incorporate
both verifiably trustworthy and potentially untrustworthy
nodes. By selectively limiting the privileges of untrustworthy
nodes on the network, on an individual basis if required, we
can accordingly limit the numerous security problems asso-
ciated with supplying service to them. By further augment-
ing our approach with a suitable Public Key Infrastructure
to enforce the separation between node types, we have
shown how a Stealth DHT can be used to supply a secure,
resilient overlay that caters to both trustworthy and untrust-
worthy nodes simultaneously. Stealth DHTs do not neces-
sarily need to deny access to potentially untrustworthy
nodes as opposed to previous approaches that addressed
security issues in DHTs. Instead, the operations that such
nodes can perform need only be selectively limited. A Stealth
DHT coupled with the authentication mechanisms
described could therefore form an ideal secure location sub-
strate for the numerous varied applications that DHTSs can
support.

References

[11ITU-T Recommendation X.509, Information Technology Open
Systems Interconnection — The Directory: Authentication Framework
(August 1997).

[2] K. Aberer, A. Datta, M. Hauswirth, A decentralized public key
infrastructure for customer-to-customer e-commerce, International
Journal of Business Process Integration and Management 1 (1) (2005)
26-33.

[3] A. Brampton, A. MacQuire, I.A. Rai, N.J.P. Race, L. Mathy, Stealth
distributed hash table: a robust and flexible super-peered DHT, in:
Proceedings of the 2nd Conference on Future Networking Technol-
ogies (CoNEXT), Lisbon, Portugal, 2006.

[4] K.L. Calvert, M.B. Doar, E.W. Zegura, Modeling Internet topology,
IEEE Communications Magazine 35 (6) (1997) 160-163.

[5] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, D.S. Wallach,
Secure routing for structured peer-to-peer overlay networks, in:
Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[6] M. Castro, P. Druschel, A.-M. Kermarrec, A. Rowstron, Scribe: a
large-scale and decentralized application-level multicast infrastructure,
IEEE Journal on Selected Areas in Communication (JSAC) 20 (8).

[71 M. Castro, B. Liskov, Practical byzantine fault-tolerance, in:
Proceedings of the 3rd Symposium on Operating Systems Design
and Implementation (OSDI), 1999.

[8] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, 1. Stoica, Wide-
area cooperative storage with CFS, in: Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP), 2001.

[9] D. Davis, Defective sign & encrypt in s/mime, pkcs#7, moss, pem,
pgp, and xml, in: Proceedings of the General Track: 2002 USENIX
Annual Technical Conference, USENIX Association, Berkeley, CA,
USA, 2001.

[10] J.R. Douceur, The Sybil attack, in: Proceedings of the 1st Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS), 2002.



618 A. MacQuire et al. | Journal of Systems Architecture 54 (2008) 607-618

[11] P. Druschel, A. Rowstron, PAST: A large-scale, persistent peer-to-
peer storage utility, in: Proceedings of the 8th Workshop on Hot
Topics in Operating Systems (HotOS), 2001.

[12] <http://www.openssl.org>, OpenSSL: The open source toolkit for
SSL/TLS.

[13] <http://www.supremecourtus.gov/opinions/04pdf/04-480.pdf>,
Supreme Court of the United States, no. 04.480. Argued March 29,
2005. Decided June 27, 2005.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.
Wells, B. Zhao, OceanStore: an architecture for global-scale persis-
tent storage, in: Proceedings of ACM ASPLOS, 2000.

[15]J. Li, J. Stribling, T.M. Gil, R. Morris, M.F. Kaashoek, Comparing
the performance of distributed hash tables under churn, in: Proceed-
ings of the 3rd International Workshop on Peer-to-Peer Systems
(IPTPS), 2004.

[16] J. Liang, N. Naoumov, K.W. Ross, The index poisoning attack in
P2P file sharing systems, in: Proceedings of IEEE INFOCOM, 2006.

[17] N. Liebau, V. Darlagiannis, A. Mauthe, R. Steinmetz, A token-based
accounting scheme for p2p-systems, Tech. Rep. TR-2004-05, Tech-
nische UniversitSt Darmstadt (January 2004).

[18] P. Maymounkov, D. Maziéres, Kademlia: A peer-to-peer information
system based on the XOR metric, in: Proceedings of the Ist
International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[19] A.T. Mizrak, Y. Cheng, V. Kumar, S. Savage, Structured superpeers:
Leveraging heterogeneity to provide constant-time lookup, in: Pro-
ceedings of the 3rd IEEE Workshop on Internet Applications
(WIAPP), 2003.

[20] B.C. Neuman, T. Ts’o, Kerberos: an authentication service for
computer networks, IEEE Communications 32 (9) (1994) 33-38.
[21] L. Peterson, D. Culler, T. Anderson, T. Roscoe, A blueprint for
introducing disruptive technology into the Internet, in: Proceedings of

the Ist Workshop on Hot Topics in Networks (HotNets-I), 2002.

[22] C.G. Plaxton, R. Rajaraman, A.W. Richa, Accessing nearby copies of
replicated objects in a distributed environment, in: Proceedings of the
9th Annual ACM Symposium on Parallel Algorithms and Architec-
tures, 1997.

[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A
scalable content-addressable network, in: Proceedings of ACM
SIGCOMM, 2001.

[24] S. Rhea, D. Geels, T. Roscoe, J. Kubiatowicz, Handling churn in a
DHT, in: Proceedings of the USENIX Annual Technical Conference,
2004.

[25] R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communications of the
ACM 21 (2) (1978) 120-126.

[26] R.L. Rivest, A. Shamir, PayWord and MicroMint: Two simple
micropayment schemes, in: Security Protocols Workshop, 1996.

[27] A. Rowstron, P. Druschel, Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems, in: Pro-
ceedings of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), 2001.

[28] A. Rowstron, A.-M. Kermarrec, M. Castro, P. Druschel, SCRIBE:
The design of a large-scale event notification infrastructure, in:
Proceedings of the 3rd International Workshop on Networked Group
Communication (NGC), 2001.

[29] S. Saroiu, P.K. Gummadi, S.D. Gribble, A measurement study of
peer-to-peer file sharing systems, in: Proceedings of Multimedia
Computing and Networking, 2002.

[30] A. Singh, T. Ngan, P. Druschel, D. Wallach, Eclipse attacks on
overlay networks: threats and defenses, in: Proceedings of IEEE
INFOCOM, 2006.

[31] E. Sit, R. Morris, Security considerations for peer-to-peer distributed
hash tables, in: Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS), 2002.

[32] K. Sripanidkulchai, The popularity of gnutella queries and its
implications on scalability, in: OReillys, 2001. <http://www.openp2p.
com>.

[33] M. Srivatsa, L. Liu, Countering targeted file attacks using location
keys, in: Proceedings of the 14th USENIX Security Symposium, 2005.

[34] L. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan,
Chord: A scalable peer-to-peer lookup service for Internet applica-
tions, in: Proceedings of ACM SIGCOMM, 2001.

[35] W. Thigpen, T.J. Hacker, L.F. McGinnis, B.D. Athey, Distributed
accounting on the grid, in: Proceedings of the 6th Joint Conference on
Information Sciences, 2002.

[36] B.Y. Zhao, J.D. Kubiatowicz, A.D. Joseph, Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing, Tech. Rep.
UCB/CSD-01-1141, University of California, Berkeley, USA (April
2001).

[37] P. Zheng, Tradeoffs in certificate revocation schemes, ACM SIG-
COMM Computer Communication Review 33 (2) (2003) 103-112.

[38] Y. Zhu, H. Wang, Y. Hu, A super-peer based lookup in structured
peer-to-peer systems, in: Proceedings of the 16th International
Conference on Parallel and Distributed Computing Systems (PDCS),
2003.

[39] S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R.H. Katz, J. Kubiatowicz,
Bayeux: an architecture for scalable and fault-tolerant wide-area data
ddissemination, in: Proceedings of the 11th International Workshop
on Network and Operating Systems Support for Digital Audio and
Video (NOSSDAYV), 2001.


http://www.openssl.org
http://www.supremecourtus.gov/opinions/04pdf/04-480.pdf
http://www.openp2p.com
http://www.openp2p.com

	Authentication in stealth distributed hash tables
	Introduction
	Overview of a stealth DHT
	Overview of a public key infrastructure
	Authentication in a stealth DHT
	PKI composition
	Joining the DHT
	Sending messages

	Implementation considerations
	Certification hierarchy
	Asymmetry vs. symmetry
	Authentication granularity
	Processing overhead
	Certificate revocation

	Optional considerations
	Permissions management
	Node promotion
	Digital rights management

	Related work
	Conclusion
	References


