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Quantum noise and mode nonorthogonality in non-Hermitian PT -symmetric optical resonators
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PT -symmetric optical resonators combine absorbing regions with active, amplifying regions. The latter are
the source of radiation generated via spontaneous and stimulated emission, which embodies quantum noise and
can result in lasing. We calculate the frequency-resolved output radiation intensity of such systems and relate it
to a suitable measure of excess noise and mode nonorthogonality. The line shape differs depending on whether
the emission lines are isolated (as for weakly amplifying, almost-Hermitian systems) or overlapping (as for the
almost-degenerate resonances in the vicinity of exceptional points associated with spontaneous PT -symmetry
breaking). The calculations are carried out in the scattering input-output formalism, and are illustrated for a
quasi-one-dimensional resonator setup. In our derivations, we also consider the more general case of a resonator
in which the amplifying and absorbing regions are not related by symmetry.
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I. INTRODUCTION

Recent theoretical and experimental advances in optics
[1–13] have raised the prospect to realize non-Hermitian sys-
tems with a real spectrum but nonorthogonal wave functions.
These efforts are based on the concept of PT symmetry,
originally formulated as a variant of quantum mechanics
in which potentials can be complex [14–19]. In the optical
context, such potentials can be realized via absorbing and
amplifying regions. In a PT -symmetric situation, a discrete
unitary operation (such as a reflection or inversion) maps the
absorbing onto the amplifying parts, with matching absorption
and amplification rates. On the level of classical optics,
absorption and amplification are related by an antiunitary time-
reversal operation. If the absorption and amplification rates are
low enough, the spectrum of the composed system is real, but
beyond a threshold, pairs of complex-conjugate eigenvalues
appear [14–21]. This transition (known as spontaneous PT -
symmetry breaking) can be exploited to realize a number
of exotic optical effects, such as unidirectional transmis-
sion [3,8,10], absorption-enhanced transmission [6], power
oscillations [3,5], nonlinear switching [9], and the coexistence
of lasing and perfect absorption [12,13]. At the transition
point, eigenvalues coalesce, resulting in an exceptional point
where the two eigenmodes become degenerate, not only in
frequency but also share the same wave function [22–25].
This singular scenario receives considerable attention also for
optical systems without PT symmetry [26–31].

In this paper, we investigate how the unavoidable con-
sequences of leakage, instability, and quantum noise affect
the characteristics of realistic PT -symmetric resonators. In
combination, we find that these effects offer a window to
directly access the signatures of non-Hermiticity. In particular,
these effects are sensitive to mode nonorthogonality, which
discriminates these systems from ordinary Hermitian systems
that possess a real spectrum but feature mutually orthogonal
eigenmodes.

In realistic devices, additional losses arise due to leakage,
as radiation needs to be coupled out of the system. Even
though these losses break exact PT symmetry, signatures of
the associated peculiar spectral characteristics are still present

in the complex resonance frequencies of the open system. The
coalescence of eigenvalues at the spontaneous PT -symmetry
breaking transition then translates to situations where two
resonance frequencies approach each other very closely in
the complex plane.

In actively amplifying optical systems, the appearance of
real eigenfrequencies indicates an instability, i.e., the onset
of lasing. The consequences for PT -symmetric systems have
been explored only very recently. In these systems, the lasing
threshold is either reached in the limit of the closed system (if
the spectrum in this limit is real) [11], or at finite leakiness (if
PT symmetry in the closed system is spontaneously broken,
i.e., beyond an exceptional point) [12,13]. In both cases, the
system is, in practice, stabilized by saturation in the amplifying
parts, thereby assuring that the output intensity remains finite.
This saturation provides a physical mechanism that breaks
the balance of amplification and absorption required for PT
symmetry.

An ordinary laser emits coherent radiation with a narrow
emission line that can be well approximated by a Lorentzian.
According to general laser theory [32,33], the width �ω of the
Lorentzian arises due to noise, of which a certain amount,
i.e., quantum noise, is an unavoidable consequence of the
quantum nature of microscopic emission events. Investigations
of purely amplifying (not PT -symmetric) systems established
a direct link between non-Hermiticity and an enhanced line
broadening (known as excess noise), which are both captured
by a measure of mode nonorthogonality, that is, the Petermann
factor K [34–39]. At an exceptional point, K diverges because
of the coalescence of resonance wave functions [22–25].
PT -symmetric systems offer an ideal venue where the
consequences for the radiated intensity in this singular case
can be explored. More generally, one should expect for such
systems that the excess noise provides a probe of the level of
non-Hermiticity also away from an exceptional point.

The preceding observations capture our principal motiva-
tion for this work. It is the purpose of this paper to formulate
a theory of the quantum noise and radiation of leaky PT -
symmetric optical systems in the full range of situations far
below, near, and beyond the reconfiguration of the spectrum at
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an exceptional point, up to the point where the lasing threshold
is reached. This requires a quantum-optical treatment, which
we base on the scattering input-output formalism [40–42],
as previously applied to purely amplifying systems [38,39].
Taking the absorbing parts of the system into account, we
establish general relations for the output intensity, as for
the previously studied case of a homogeneously amplifying
resonator, but find that this involves a nontrivial combination
of aspects from mode nonorthogonality and excess noise. As
one approaches an exceptional point, the partial intensities
of the two near-degenerate resonances still diverge, but the
combined amplitude remains finite, which signals a change
in the line shape from a Lorentzian to a squared Lorentzian
(as also observed at exceptional points in passive scattering
theory [43–45]).

We illustrate these general results on quantum noise for
a specific quasi-one-dimensional PT -symmetric resonator,
which displays the generic spectral properties of previously
studied resonators [13,15] and offers additional control via
a variable leakage to the exterior. This application extends
the investigation in Ref. [11], which used the input-output
formalism to study a PT -symmetric resonator with well-
isolated resonances and did not address the relation to
mode nonorthogonality. Throughout our derivations, we also
present general expressions that apply to systems with am-
plifying and absorbing regions, even when these are not
related by PT symmetry (as recently investigated, e.g.,
in Refs. [30,31,46,47]).

This work is organized as follows. Section II reviews
the spectral features of closed and open PT -symmetric
systems, as well as the signatures of excess quantum noise for
conventional, amplifying resonators, with the discussion based
in both cases on the common framework of (first- and second-
quantized) scattering theory. In Sec. III, we adapt the scattering
input-output formalism to resonators with absorbing parts and
derive general expressions for the output radiation intensity. In
the central Sec. IV, we analyze this radiation near resonance
and establish the link to mode nonorthogonality. Section V
sees our general results applied to a specific PT -symmetric
resonator setup. We first study the classical-wave problem and
determine the resonance frequencies and exceptional points.
We then analyze the output radiation in the vicinity of these
frequencies and verify the sensitivity to the nonorthogonality
of modes, as well as the emergence of a squared Lorentzian at
the exceptional points. Section VI contains our conclusions.

II. BACKGROUND AND OPEN ISSUES

In this section, we briefly review the (“first-quantized,”
classical-wave) scattering approach to the determination of
eigenfrequencies and resonances in closed and open non-
Hermitian PT -symmetric systems, as well as the application
of the (“second-quantized,” quantum-optical) scattering input-
output formalism to the problem of excess noise in purely
amplifying systems. Sections III and IV then extend the
latter to partially absorbing systems, including those with
PT symmetry. Throughout, we identify ω with the energy
of photons (effectively setting h̄ ≡ 1).

A. Scattering quantization and spectral properties of
PT -symmetric systems

While scattering appears most naturally in the context of
transport through open systems, the scattering framework can
also serve as a convenient technique to determine spectral
properties, such as the resonance eigenfrequencies of these
systems, or even the bound-state spectrum of closed sys-
tems [48,49]. In scattering theory, the eigenfrequencies are
determined efficiently using a small number of basis functions,
which are the on-shell (fixed energy or frequency) solutions
in various, artificially separated (and therefore open) parts
of the system, which then are coupled together using their
scattering matrices. The quantization condition follows from
the consistency requirement of the matching conditions. In the
present work, the use of scattering theory is further motivated
by the fact that it also can serve as a framework for introducing
quantum noise. Indeed, we will find that the steps in the
derivation of the quantization condition (given here) and in
the implementation of quantum noise in composed systems
(given in Sec. III) closely resemble each other. In this first
part of background material, we therefore review the general
ideas of spectral analysis in scattering theory, and also describe
the consequences for systems with PT symmetry [11,13]
(for other aspects of PT -symmetric scattering theory, see
Refs. [50–55]).

1. Scattering matrix

We start with the definition of the relevant scattering
matrix. Consider a classical-wave equation, e.g., the Helmholtz
equation

�ψ(r) + c−2ω2n2(r)ψ(r) = 0 (1)

for transverse magnetic (TM) polarized light in a two-
dimensional dielectric resonator, where scattering, absorption,
and amplification enter via the dielectric index n(r) (here c

is the speed of light in vacuum). Assuming Re n > 0, we
have Im n < 0 in amplifying regions, while in absorbing
regions, Im n > 0. The wave equation is then solved for given
amplitudes ain of incident propagating modes, which delivers
a linear relation

aout = S(ω)ain (2)

for the amplitudes aout of outgoing modes. Here S(ω) is the
scattering matrix, whose dimensions depend on the number
of incoming and outgoing propagating modes at the given
frequency ω. For a system where modes are coupled in from a
left or right entrance, the scattering amplitudes can be collected
into reflection blocks r and r ′, as well as transmission blocks
t and t ′ (where the prime discriminates whether the incident
radiation comes from the left or right, respectively), such that

S =
(

r t ′
t r ′

)
. (3)

In the special case that amplification and absorption are
absent (so that the refractive index n is real), and if the
frequency is real as well, then the scattering matrix is unitary,
S†(ω)S(ω) = 1. This relation embodies the conservation of
particle flux. For a complex refractive index, however, this
conservation law is in general violated.
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2. Spectral properties of closed systems

Consider a closed resonator that is split (if only artificially)
into two parts, L and R (“left” and “right”), which are described
by scattering matrices identical to the reflection blocks r ′

L(ω)
and rR(ω), respectively [see the central region in Fig. 1(a),
ignoring for the moment any leakage from the system]. At the
interface, amplitudes of modes traveling “to the right” (i.e.,
from L to R) are collected into a vector aR

0 , while those for
modes traveling in the opposite direction are collected into a
vector aL

0 . The matching conditions

aR
0 = r ′

L(ω)aL
0 , aL

0 = rR(ω)aR
0 (4)

are consistent if

det [r ′
L(ω)rR(ω) − 1] = 0. (5)

For a Hermitian system, where the scattering matrices are
unitary, this condition only admits real frequencies. In the
presence of absorption or amplification, however, where
the scattering matrices are nonunitary, the eigenfrequencies
generally are complex. In both cases, these solutions are
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FIG. 1. (Color online) Illustration of the wave-classical and
quantum-optical treatment of PT -symmetric systems, which are
composed of an absorbing and an amplifying region. Panel (a)
defines amplitudes used in the scattering approach to determine
the resonance frequencies in the wave-classical limit (see Sec.
II A). Panel (b) defines the field operators for the quantum-optical
input-output formalism of Sec. III. In panel (c), we sketch the
quasi-one-dimensional model resonator studied in Sec. V. This
system is terminated by semitransparent mirrors with transmission
probability T . In the interior, two regions of equal length L/2 are
equipped with a refractive index nL (left region) and nR (right region),
which is constant throughout each respective region. PT symmetry
is realized for nR = n∗

L. We write nL = n0(1 + iα), where α controls
the degree of non-Hermiticity.

identical to the eigenvalues of the (possibly non-Hermitian)
underlying Hamiltonian.

The interest in PT symmetry for non-Hermitian systems
arises because this provides a mechanism where at least part
of the spectrum can still be real. In the scattering formalism,
this is embodied by the relation [11,13]

rR(ω) = PT r ′
L(ω) = {[r ′

L(ω∗)]∗}−1 (6)

between the scattering matrices, where the labels L and R now
refer to the symmetry-related subsystems. The quantization
condition can then be written as

det {[r ′
L(ω)]∗ − r ′

L(ω∗)} = 0. (7)

On the real frequency axis, this reduces to the condition [11]

det Im r ′
L(ω) = 0, (8)

which can be generically fulfilled by varying a single real pa-
rameter (i.e., ω), as it involves the determinant of a manifestly
real matrix. However, the quantization condition can also have
complex solutions, which then occur in complex-conjugate
pairs.

The transition between both situations involves pairs of
frequencies that coalesce on the real axis, and then move into
the complex plane, where they remain related by complex
conjugation [14–21]. Typically, this transition is driven by
increasing the non-Hermiticity (the trend does not need to
be strict; sometimes pairs of resonance frequencies become
real when the non-Hermiticity is increased). However, the
transition also depends on the coupling of the absorbing and
amplifying regions, and indeed can be induced by reducing this
coupling [53,56,57]. (In the trivial limit where the two regions
are decoupled, they both possess a fully complex spectrum.)

WhilePT symmetry leaves wave functions of real eigenval-
ues invariant, it interchanges those of complex-conjugate pairs,
which are therefore not PT symmetric when taken each on
their own [14,18]. This entails that at the point of degeneracy,
the two wave functions have to collapse, thereby resulting in an
exceptional point, which is the generic degeneracy scenario in
non-Hermitian systems [22–25]. For the case of the Helmholtz
equation, this behavior can be quantified on the basis of the
biorthogonality relation∫

n2ψ1ψ2dr = 0, (9)

which holds for any two resonance modes ψ1, ψ2, even if the
refractive index is complex. As one approaches the exceptional
point, ψ2 → ψ1 ≡ ψ is shared between the two degenerate
eigenvalues, and the wave function becomes self-orthogonal,∫

n2ψ2dr = 0 (exceptional point). (10)

3. Spectral properties of open systems

For a leaky (geometrically open) system, such as a resonator
confined by semitransparent mirrors, the eigenfrequencies are
generally shifted into the complex plane, corresponding to
resonance frequencies of quasibound states with decay rate
−2Im ω. These quasibound states fulfill the wave equation
with purely outgoing boundary conditions. For a passive
system, their decay rates are positive. In the presence of
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amplification counteracting the leakage, individual resonances
can cross from the lower to the upper half of the complex plane.
This signifies an instability, which in optics corresponds to the
laser threshold [11–13,32].

The complex resonance spectrum can again be obtained
from scattering theory [48]. Including the leakage channels to
the outside, the scattering matrices of the left and right parts
assume a natural block structure

SL =
(

rL t ′L
tL r ′

L

)
, SR =

(
rR t ′R
tR r ′

R

)
, (11)

which now also contains scattering amplitudes related to
reflection and transmission from and to the exterior regions
[i.e., from the left and right entrances into these subsystems;
see Fig. 1(a)]. The internal matching conditions still only
involve the reflection blocks r ′

L of the left system and rR of
the right system, and thus remain of the form (4). Hence, the
quantization condition is still given by Eq. (5). However, for
the open system, this condition typically admits only complex
solutions, even if the underlying Hamiltonian is Hermitian or
PT symmetric.

From the perspective of the open system, the significance
of Eq. (5) becomes clear when considering the composed
scattering matrix S = SL ◦ SR of the total system, which is
formed according to the matrix composition rule,(

rL t ′L
tL r ′

L

)
◦

(
rR t ′R
tR r ′

R

)

=
(

rL + t ′L
1

1−rRr ′
L

rRtL t ′L
1

1−rRr ′
L

t ′R
tR

1
1−r ′

LrR
tL r ′

R + tR
1

1−r ′
LrR

r ′
Lt ′R

)
. (12)

These expressions contain the resonant denominators 1 −
r ′
LrR , and thus diverge when condition (5) is met.

In the PT -symmetric case, the scattering matrices in
Eq. (11) are furthermore related according to [11]

SR(ω)

= PT SL(ω) = σx[S∗
L(ω∗)]−1σx

=
⎡
⎣ 1

(r ′
L−tLr−1

L t ′L)∗

(
r ′−1
L tL

1
t ′Lr

′−1
L tL−rL

)∗

(
r−1
L t ′L

1
tLr−1

L t ′L−r ′
L

)∗
1

(rL−t ′Lr ′−1
L tL)∗

⎤
⎦

∣∣∣∣∣∣
ω∗

,

(13)

where σx in the first line is a Pauli matrix, and the second
line follows from block inversion formulas. The resonance
condition can then be written in the form

det {r ′
L(ω) − [r ′

L(ω∗) − tL(ω∗)r−1
L (ω∗)t ′L(ω∗)]∗} = 0. (14)

The quantization condition (8) in the closed system is
recovered for tL = t ′L = 0.

When the system is almost closed, the eigenfrequencies
are only slightly shifted downward into the complex plane.
The transition of the spectrum from real to complex is
then replaced by a spectral rearrangement in which complex
resonance frequencies approach each other very closely by
moving together roughly parallel to the real axis, and then
depart from each other into the direction of the imaginary
axis [6,12,13]. When two complex frequencies meet in an exact
degeneracy, one again reaches an exceptional point, where the

wave functions of two resonance modes collapse and become
self-orthogonal, in accordance with Eq. (10).

B. Excess noise for purely amplifying resonators

A practical method to probe the spectrum of a resonator
is to fill it with an active, amplifying medium and observe
the ensuing emitted radiation intensity. Far above the lasing
threshold, one then observes coherent radiation with a narrow
Lorentzian emission line [32],

I (ω) = 1

2π
Itotal

�ω

(ω − ω0)2 + �ω2/4
, (15)

where the line width �ω is dictated by noise. For the reference
point of an almost closed, purely amplifying resonator (the
prototypical good-cavity laser), the quantum limit of the
linewidth is given by the Schawlow-Townes relation [33]

�ω = �2/2Itotal, (16)

where Itotal = ∫
I (ω) dω, while � is the cold-cavity decay rate

in the passive resonator [corresponding to a real refractive
index in Eq. (1)]. This noise is due to spontaneous emission
events, which are incoherent and result in phase fluctuations,
while amplitude fluctuations are suppressed by the feedback
from the medium [32,36]. In the linear regime just below the
lasing threshold, on the other hand, where the emitted radiation
is incoherent, amplitude and phase fluctuations are both
present and equal each other, so that the Schawlow-Townes
relation reads

�ω = �2/Itotal. (17)

Both versions of the Schawlow-Townes relation require
an absence of absorption and assume orthogonal resonator
modes, so that crosstalk between photons emitted into different
modes can be ignored. In order to identify corrections due
to the violation of these assumptions, it is advantageous to
concentrate on the linear regime just below threshold, where
the emitted intensity can be calculated conveniently in the
scattering input-output formalism [40–42]. Results can be
translated to the lasing regime by the simple rule that there
the quantum-limited linewidth is still reduced by a factor
of two [36]. In the remainder of this section, we collect
results for the previously studied case of purely amplifying
systems [34–39], focusing only on some key points, as the
details of the derivation are encompassed by our more general
considerations in Secs. III and IV.

The formalism starts with the classical-wave equation, e.g.,
the Helmholtz equation (1). For a passive system (with a
real refractive index), the scattering matrix S(ω) is unitary,
SS† = 1, but in the presence of amplification, this condition
no longer holds. A physical consequence is the appearance of
quantum noise. When amplitudes are promoted to annihilation
operators âin,out, Eq. (2) with nonunitary S is not compatible
with the bosonic commutation relations for both sets of
operators. This problem can be fixed by introducing auxiliary
bosonic operators b̂, such that

âout = S(ω)âin + Q(ω)b̂†. (18)

The commutation relations for âin and âout are now compat-
ible if SS† − QQ† = 1. This constraint has the status of a
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fluctuation-dissipation theorem. It admits solutions when Q

is equipped with at least as many columns as rows, but does
not fix Q completely. However, subject to reasonable physical
assumptions, the constraint is sufficient to calculate the output
intensity of the system in terms of its classical-wave scattering
properties.

For illustration, we consider the case of total popula-
tion inversion (〈b̂†b̂〉 = 0) and no incoming radiation. The
frequency-resolved output intensity is then of the form [38]

I (ω) = 1

2π
〈âout†âout〉 = 1

2π
tr QQ† = 1

2π
tr (SS† − 1).

(19)

The final expression no longer contains the matrix Q and
therefore can be calculated purely based on the classical-wave
problem. In the vicinity of resonant emission frequencies,
where the scattering matrix diverges [see Eqs. (5) and (12)],
the radiated intensity is large. By linearizing in the deviation
from the resonance condition, one generally finds a Lorentzian
line shape

I (ω) = K

2π

�2

(ω − ω0)2 + �ω2/4
, (20)

which features an extra factor K so that the Schawlow-Townes
relation given by Eq. (17) is replaced by

�ω = K�2/Itotal. (21)

The factor K is known as the Petermann factor [34], and can
often be related to mode nonorthogonality [35–39]. For the
Helmholtz equation (1), this factor takes the explicit form [39]

K =
∣∣∣∣
∫ |ψ |2Im(n2) dr∫

ψ2Im(n2) dr

∣∣∣∣
2

, (22)

which holds also in the presence of inhomogeneity in the
refractive index and the gain. For a homogeneously amplifying
resonator, this reduces to Siegman’s original expression [35],

K = | ∫ |ψ |2dr|2
| ∫ ψ2dr|2 . (23)

The connection of the excess noise to mode nonorthogo-
nality becomes apparent when one considers the combination
(see also Sec. IV) [39]

K�2 ≈ ω2
0

∣∣∣∣
∫ |ψ |2Im(n2) dr∫

ψ2n2 dr

∣∣∣∣
2

, (24)

which appears in the numerator of Eq. (20). The self-
orthogonality condition (10) implies that this combination
diverges at an exceptional point. In general, the integral in
the denominator of Eq. (24) can be interpreted as a suitably
weighted overlap integral of the left eigenfunction ψ and the
right eigenfunction ψ∗, which represents the scalar product
between these two types of eigenfunctions (the stated simple
relation of left and right eigenfunctions holds because the
potential in the Helmholtz equation is scalar, but breaks
down in the presence of vector potentials [29]). Furthermore,
expressions (22) and (23) both imply K � 1, where K = 1
is only obtained in the limit of a passive, closed system, in
which the wave function is real. In more physical terms, on
the other hand, expression (22) signifies that the excess noise

is generated in the amplifying parts of the system, since the
passive parts (with real refractive index) do not contribute to
the integrals.

Clearly, this duality of interpretations of the Petermann
factor in terms of mode nonorthogonality and excess quantum
noise breaks down in the presence of the absorbing parts of
the system. The mode nonorthogonality is then also induced
by the absorbing regions with a positive imaginary part of
the refractive index, but these on their own do not create any
radiation. One of the main goals of the present work is to
identify the role of the Petermann factor in the presence of such
absorbing elements. We focus on PT -symmetric systems, as
their peculiar spectral properties imply that one can also easily
steer close to an exceptional point, and examine how the total
output intensity is regularized despite a divergent Petermann
factor. In the remainder of this paper, we therefore first set
up a theory of quantum noise in the simultaneous presence of
absorbing and amplifying regions, and then identify signatures
of non-Hermiticity, mode nonorthogonality, and exceptional
points in the output radiation intensity, followed by an
illustration for a specific PT -symmetric system.

III. INPUT-OUTPUT FORMALISM IN THE PRESENCE OF
ABSORBING REGIONS

In this section, we extend the scattering input-output
formalism described in Sec. II B to systems which combine
amplifying and absorbing regions.

In the simultaneous presence of gain by amplification and
loss by absorption, the input-output relations (18) modify
into [42]

âout = S(ω)âin + Q(l)(ω)b̂(l) + Q(g)(ω)b̂†
(g), (25)

where (l) refers to the absorbing (lossy) regions and (g) refers
to the amplifying regions (with gain). The commutation rela-
tions now deliver the constraint SS† + Q(l)Q

†
(l) − Q(g)Q

†
(g) =

1, which no longer uniquely relates the coupling strengths
(encoded in the combinations QQ†) to the deviation of the
scattering matrix from unitarity.

In order to circumvent this problem, we assume that the
absorbing and amplifying regions are spatially separated. For
PT -symmetric systems, this assumption is rather natural, as
the P symmetry is usually of a geometric nature, such as
a reflection x → −x about a plane perpendicular to the x

axis. To be specific, we assign absorption to the left part of
the system and amplification to the right part of the system
[see Fig. 1(b)]. This strategy, briefly sketched and applied
to a special case in Ref. [11], works whenever a similar
separation into different regions is present due to the physical
composition of the system, even in the absence of symmetries.
We therefore consider this slightly more general case, i.e.,
we first only assume that the absorbing and amplifying parts
can be separated, and only then impose symmetry relations
between them.

The classical-wave scattering from the right and left parts is
described by the scattering matrices SL and SR , whose natural
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block structure is given in Eq. (11). The corresponding input-
output relations read(

âout
L

âR
0

)
= SL

(
âin

L

âL
0

)
+

(
QL

Q′
L

)
b̂L, (26a)

(
âL

0

âout
R

)
= SR

(
âR

0

âin
R

)
+

(
QR

Q′
R

)
b̂†

R, (26b)

where the various vectors of operators are defined in
Fig. 1(b). Based on their commutation relations, the coupling
strengths to the medium,(

QL

Q′
L

)
(Q†

L,Q
′†
L) = 1 − SLS

†
L, (27a)

(
QR

Q′
R

)
(Q†

R,Q
′†
R) = SRS

†
R − 1, (27b)

are now again related to the scattering properties of the
purely absorbing or amplifying parts of the system. As in
the derivation of Eq. (19), the relations (27) are sufficient to
calculate the output radiation of the system in terms of the
classical scattering properties encoded in SL and SR .

Starting from the relations (26), we algebraically eliminate
the auxiliary operators âL

0 and âR
0 at the interface between the

two regions,

âL
0 = 1

1 − rRr ′
L

[
t ′R âin

R + rRtLâin
L + QRb̂†

R + rRQ′
Lb̂L

]
, (28a)

âR
0 = 1

1 − r ′
LrR

[
tLâin

L + r ′
Lt ′R âin

R + Q′
Lb̂L + r ′

LQRb̂†
R

]
. (28b)

The annihilation operators for outgoing radiation then
follow by substituting these expressions into

âout
L = rLâin

L + QLb̂L + t ′LâL
0 , (29a)

âout
R = r ′

R âin
R + Q′

Rb̂R + tR âR
0 . (29b)

We are interested in the radiation intensity that originates
from the system, i.e., in the absence of external incoming
radiation, and therefore demand that〈

âin†
nLâin

nL

〉 = 〈
âin†

nR âin
nR

〉 = 0 (30)

for all incoming modes n (expectation values of all cross terms
between different incoming modes also vanish). Within the
medium, we assume mode-independent expectation values

〈b̂†
nLb̂nL〉 = fL, 〈b̂nRb̂†

nR〉 = fR, (31)

which can be associated with the excited-state occupations
gL = fL/(1 + 2fL) in the absorbing and gR = fR/(2fR − 1)
in the population-inverted amplifying parts of the system,
respectively.

Under these conditions, the frequency-dependent output
intensity of the composed system, resolved depending on
whether it eventually emerges from the absorbing or the
amplifying part of the system, takes the form

IL(ω) = 1

2π

〈
âout†

L âout
L

〉
= fR

2π
tr

(
t ′L

1

1 − rRr ′
L

QR

)† (
t ′L

1

1 − rRr ′
L

QR

)

+ fL

2π
tr

(
QL + t ′L

1

1 − rRr ′
L

rRQ′
L

)†

×
(

QL + t ′L
1

1 − rRr ′
L

rRQ′
L

)
, (32)

IR(ω) = 1

2π

〈
âout†

R âout
R

〉
= fL

2π
tr

(
tR

1

1 − r ′
LrR

Q′
L

)† (
tR

1

1 − r ′
LrR

Q′
L

)

+ fR

2π
tr

(
Q′

R + tR
1

1 − r ′
LrR

r ′
LQR

)†

×
(

Q′
R + tR

1

1 − r ′
LrR

r ′
LQR

)
, (33)

where all combinations of Q matrices are completely deter-
mined via the relations (27). These expressions imply the
appearance of narrow emission lines for frequencies close to
resonance, which occurs whenever the denominator 1 − r ′

LrR

vanishes, in accordance with the classical-wave quantization
condition (5).

For a quasi-one-dimensional resonator, the transmission
and reflection matrices reduce to complex numbers. Equa-
tions (32) and (33) then yield the following more compact
expressions:

IL = 1

2π

|t ′L|2(|rR|2 + |t ′R|2 − 1)

|1 − rRr ′
L|2 , (34)

IR = 1

2π

[ |tRr ′
L|2(|rR|2 + |t ′R|2 − 1)

|1 − rRr ′
L|2 + |tR|2 + |r ′

R|2 − 1

+2 Re
tRr ′

L(rRt∗R + t ′Rr ′∗
R )

1 − r ′
LrR

]
, (35)

where we now made explicit use of Eq. (27) and assumed
idealized conditions with fL = 0 (ground-state population in
the absorbing parts) and fR = 1 (total population inversion
in the amplifying parts). For PT -symmetric resonators, the
amplitudes are again related by Eq. (13), and the resonance
condition is given by Eq. (14).

IV. NEAR-RESONANT RADIATION INTENSITY AND THE
ROLE OF THE PETERMANN FACTOR

Starting from Eqs. (34) and (35) for the emitted intensity
from a quasi-one-dimensional resonator, we now evaluate
the total intensity I = IL + IR close to resonance, ω ≈
ω0 ≡ Re ωm, where the complex resonance frequency ωm

fulfills r ′
L(ωm)rR(ωm) = 1 according to Eq. (5). Keeping only

resonant terms, we have

I (ω) = 1

2π

|tR|2(|t ′L|2 + |tRr ′
L|2)

|1 − r ′
LrR|2

|rR|2 + |tR|2 − 1

|tR|2 , (36)

where we grouped the terms for later convenience. Our goal
is to relate this expression to properties of the resonance wave
function ψm, which fulfills the one-dimensional Helmholtz
equation

ψ ′′
m + k2

mn2(x)ψm = 0 (37)
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(with km = ωm/c) subject to purely outgoing boundary condi-
tions. The derivation proceeds by a number of technical steps
which lead to a compact final result, given by Eq. (43) below.

A. Near-resonant radiation intensity

For convenience, we normalize the resonance wave function
such that in the free space (n = 1) to the right of the resonator,
ψm(x) = k

−1/2
m exp(ikmx). Furthermore, we also insert a zero-

width layer with n = 1 at the interface between the right and
the left region, where the wave function then takes the form

ψm = t−1
R exp(ikmx)k−1/2

m + rRt−1
R exp(−ikmx)k−1/2

m . (38)

Here we expressed the amplitudes by the elements of the
scattering matrix SR , given by Eq. (11). Furthermore, in terms
of elements of the scattering matrix SL, the outgoing compo-
nent in the free space to the left of the resonator is given by
ψm(x) = αk

−1/2
m exp(−ikmx), where α = t ′L/tRr ′

L = rRt ′L/tR
(the latter equality follows from the resonance quantization
condition).

We now evaluate a number of integrals using Eq. (37),
integration by parts, the condition Re ωm 
 |Im ωm|, and
boundary terms matching the stipulated outgoing wave am-
plitudes. Below, L denotes the left part of the resonator, and
R denotes the right part of the resonator. We then have

−
∫
R

Im
(
k2
mn2)|ψm|2 =

∫
R

Im (ψ∗
mψ ′′

m) = Im (ψ∗
mψ ′

m)
∣∣
∂R

= |rR|2 + |tR|2 − 1

|tR|2 . (39)

Analogously, upon extending the integral over the whole
resonator,

−
∫
R+L

Im k2
mn2|ψm|2 = |t ′L|2 + |tRr ′

L|2
|tRr ′

L|2 . (40)

Finally, we employ a similar integral to investigate the
behavior of the wave function close to resonance, ω =
kc ≈ ω0. Due to the detuning, the wave function then also
possesses incoming components, but as long as the detuning
is small, the outgoing components remain approximately
unchanged. Therefore, we can assume that to the left of the res-
onator, ψ(x) ≈ k

−1/2
m [α exp(−ikmx) + β exp(ikmx)] with α as

given before, while to the right, ψ(x) ≈ k
−1/2
m [exp(ikmx) +

γ exp(−ikmx)].
The incoming components of the wave function can now

be extracted via the following sequence of steps (which starts
by linearizing k2 around resonance):

2km(k − km)
∫
R+L

n2ψ2
m

≈
∫
R+L

(
k2 − k2

m

)
n2ψ2

m ≈
∫
R+L

(
k2 − k2

m

)
n2ψmψ

=
∫
R+L

(−ψ ′′ψm + ψ ′′
mψ) = (−ψ ′ψm + ψ ′

mψ)
∣∣
∂(R+L)

= 2i(αβ + γ ). (41)

Furthermore, in terms of the scattering matrix of the whole
system, we have rβ + t ′γ = α and tβ + r ′γ = 1, which
determines the coefficients β and γ . We can then employ

the scattering-matrix composition rules (12) to express these
coefficients in terms of the elements of SL and SR . Close to
resonance, this reduces to

(αβ + γ ) → −1/r ′ ≈ −(1 − r ′
LrR)

/(
r ′
Lt2

R

)
. (42)

Based on expressions (39), (40), and (41), the near-resonant
radiation intensity (36) can now be rewritten as

I (ω) = 1

2π

∫
R Im ω2

mn2|ψm|2 ∫
R+L Im ω2

mn2|ψm|2∣∣ ∫
R+L ω2

mn2ψ2
m

∣∣2

× ω2
0

(ω − ω0)2 + �ω2/4
. (43)

This is the central general result in this work. It applies to
systems with amplifying and absorbing regions, including
PT -symmetric and purely amplifying systems, as is discussed
in detail in Sec. IV B. The last factor is a Lorentzian of width
�ω = |2 Im ωm|, centered at ω0 = Re ωm. The remaining
combination of integrals resembles the expression (24) for a
purely amplifying system. However, one of the integrals in the
numerator extends over the whole system (where Hermiticity
is broken), while the other is restricted to the (amplifying)
right part of the resonator. Therefore, this expression presents
a mixture of the dual interpretations of the conventional
Petermann factor as a measure of mode nonorthogonality and
excess noise. Furthermore, as in Eq. (24), the denominator
involves the appropriate overlap integral, which diverges at an
exceptional point as a consequence of the self-orthogonality
relation (10).

B. Purely amplifying versus PT -symmetric systems

In order to grasp the general features encoded in the near-
resonant intensity (43), we first describe how one recovers,
from this expression, the Petermann factor (22) for a purely
amplifying resonator. In such a system, the breaking of
Hermiticity via the gain (encoded in Im n < 0) is constrained
because this systematically shifts the resonances upward in the
complex plane. Therefore, the system is driven to the lasing
threshold, which is reached when a resonance approaches
the real axis. For highly excited modes (with large ω0), this
happens very quickly, for |Im n| ∼ (�/ω0)Re n � Re n, where
� is the cold-cavity rate. One then can use perturbation theory
to relate the required gain to � via [58]

�

ω0
≈

∣∣∣∣∣
∫

Im
(
ω2

mn2
)
ψ2

mdr∫
ω2

mn2ψ2
mdr

∣∣∣∣∣ (44)

(with a purely amplifying resonator at threshold). Here, the
refractive index is no longer arbitrary but has to be chosen
such that the resonator is at threshold. With the help of this
relation, Eq. (43) turns into Eq. (20), recovering the Petermann
factor K as defined in (22).

For systems that are not purely amplifying, on the other
hand, the breaking of Hermiticity does not cause a systematic
shift of resonances, as the absorbing regions counteract the ef-
fect of the amplifying regions. In comparison to the Lorentzian
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(20), one could then define a generalized Petermann factor as

K =
∫
R Im

(
ω2

mn2
)|ψm|2 ∫

R+L Im
(
ω2

mn2
)|ψm|2∣∣ ∫

R+L ω2
mn2ψ2

m

∣∣2

ω2
0

�2
. (45)

The same perturbative treatment that leads to Eq. (44) entails
more generally that the cold-cavity decay rate � is related to
the (measurable) linewidth �ω = −2Im ω according to

�

ω0
= �ω

ω0
+

∣∣∣∣∣
∫

Im
(
ω2

mn2
)
ψ2

m∫
ω2

mn2ψ2
m

∣∣∣∣∣ (46)

(with an absorbing and amplifying resonator, not necessarily
at threshold). [Equation (44) follows by demanding �ω � �

close to threshold.]
For the specific case of a PT -symmetric resonator, the

validity of this perturbative treatment is limited to the regime
before the exceptional point, as such a point induces degen-
eracy, and the self-orthogonality property (10) implies that
the denominator in Eq. (46) diverges. Before one reaches the
exceptional point, however, the individual wave functions are
PT symmetric, so that the integral in the numerator of Eq. (46)
vanishes. Therefore, one can safely approximate

� = �ω (47)

(with PT -symmetric resonators), which in practice should
hold up to be very close to the exceptional point. Beyond
the exceptional point, it should initially be reasonable to
approximate � by the average width of the two involved
overlapping resonances. Typically (and as we will confirm be-
low), the regime far beyond the exceptional point is physically
inaccessible as one quickly reaches the laser threshold [13].
Based on these observations, Eq. (43) can be directly applied
to specific PT -symmetric systems, which we illustrate in
the next section for the example of a quasi-one-dimensional
resonator setup.

V. APPLICATION TO A PT -SYMMETRIC RESONATOR

A. Model system setup

We now consider a specific PT -symmetric resonator
[depicted in Fig. 1(c)], which is made of two regions of
equal length L/2 (i.e., the total resonator length is L). In the
left (absorbing) part of the system, the complex refractive
index nL = n0 + inI (nI > 0), while nR = n∗

L = n0 − inI

in the right (amplifying) part of the system. The resonator
is terminated by two identical semitransparent mirrors of
transmission probability T . This resonator can be interpreted
as an open version of the system studied in Ref. [15]. It is
also similar to the resonator studied in Ref. [11], but features
some backscattering at the interface between the regions due
to the step in Im n. Furthermore, apart from the additional
mirrors, it is like the resonator studied in Ref. [13]. These
slight modifications are motivated by specific requirements
for our investigation: The system must be open to study the
output radiation, the backscattering facilitates the appearance
of exceptional points, and the mirrors allow one to study the
limit T → 0 of an almost-closed resonator. Furthermore, the
degree of non-Hermiticity can be controlled by changing nI .

B. Resonance frequencies and exceptional points

In order to obtain the resonance frequencies, we apply the
scattering quantization formalism of Sec. II A. We compose
the scattering matrices SL and SR from the scattering matrix

ST =
(

−√
1 − T −i

√
T

−i
√

T −√
1 − T

)
(48)

of a semitransparent mirror with transmission probability T ,
the scattering matrix

Sn1,n2 = 1

n1 + n2

(
n1 − n2 2

√
n1n2

2
√

n1n2 n2 − n1

)
(49)

for a refractive index step from n1 to n2, and the scattering
matrix

Sn =
(

0 exp(iωnL/2c)

exp(iωnL/2c) 0

)
(50)

for ballistic propagation through a segment of refractive index
n and length L/2. Then [59],

SL = ST ◦ S1,nL
◦ SnL

◦ SnL,1, (51a)

SR = S1,nR
◦ SnR

◦ SnR,1 ◦ ST , (51b)

with matrix composition rule (12).
Following this prescription, we obtain the elements of SL

in the form

rL = − (nL + 1)A+
L + (nL − 1)A−

LX2
L

(nL + 1)A−
L + (nL − 1)A+

LX2
L

, (52a)

t ′L = tL = − 2inL

√
T XL

(nL + 1)A−
L + (nL − 1)A+

LX2
L

, (52b)

r ′
L = − (nL − 1)A−

L + (nL + 1)A+
LX2

L

(nL + 1)A−
L + (nL − 1)A+

LX2
L

, (52c)

where we introduced

Aσ
L = 1

2 [(1 + σnL)
√

1 − T + 1 − σnL], XL = eiωnLL/2c.

(53)
Analogously,

rR = − (nR − 1)A−
R + (nR + 1)A+

RX2
R

(nR + 1)A−
R + (nR − 1)A+

RX2
R

, (54a)

t ′R = tR = − 2inR

√
T XR

(nR + 1)A−
R + (nR − 1)A+

RX2
R

, (54b)

r ′
R = − (nR + 1)A+

R + (nR − 1)A−
RX2

R

(nR + 1)A−
R + (nR − 1)A+

RX2
R

, (54c)

where

Aσ
R = 1

2 [(1 + σnR)
√

1 − T + 1 − σnR], XR = eiωnRL/2c.

(55)
We now apply the quantization condition (5). This delivers

the equation

(nL + nR)
(
A−

LA−
R − A+

LA+
RX2

LX2
R

)
= (nL − nR)

(
A−

LA+
RX2

R − A+
LA−

RX2
L

)
, (56)

which has to be solved for the resonance frequencies entering
via XL and XR .
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Equation (56) holds irrespective of whether or not the
resonator is PT symmetric, but from now on we assume that
this symmetry holds and therefore we make use of nR = n∗

L =
n0 − inI and A±

R = (A±
L )∗. Moreover, we introduce the scaled

dimensionless frequency

� = ωn0L/c, (57)

and the dimensionless degree of non-Hermiticity,

α = nI /n0. (58)

In terms of these quantities, we can rewrite Eq. (56) as

|A+
L |2ei� − |A−

L |2e−i� + iα(A−
LA+

L

∗
eα� − A+

LA−
L

∗
e−α�)=0.

(59)

1. Closed system

In the limit T = 0 of a closed system, A±
L,R = 1. The

quantization condition (59) then takes the form

F(�) ≡ α sinh(α�) + sin(�) = 0, (60)

which requires us to find the roots of a real function. The
solutions are real, or occur in complex-conjugate pairs, as
required by PT symmetry. We denote these solutions as �̄m

(where m = 1,2,3, . . .), so that we can refer back to them when
we discuss the open system.

The transition from a real to a complex spectrum is driven
by the degree of non-Hermiticity α. This transition involves
exceptional points that occur when two real frequencies
coalesce, delivering the additional condition

F ′(�) = ∂F
∂�

= α2 cosh(α�) + cos(�) = 0. (61)

For an exceptional point, Eqs. (60) and (61) have to be fulfilled
simultaneously. We denote the corresponding value of α and
the value �̄ of the two coalescing frequencies as α

l and �̄
l ,

respectively, where l = 1,2,3, . . . enumerates the exceptional
points. Equations (60) and (61) then are equivalent to the
conditions

cos(�̄
l ) = −α

l , cosh(α
l �̄


l ) = 1/α

l . (62)

For illustration, we plot in Fig. 2 a set of quantized
frequencies as a function of α, for a frequency range covering
the 12 lowest-lying levels. The figure displays six exceptional
points at which pairs of real frequencies coalesce. Beyond
these points, the involved frequencies become complex, and
then are no longer plotted.

For α = 0, the mth resonance frequency is located at �̄m =
mπ (m = 1,2,3, . . .). At the exception points, two consecutive
frequencies �̄2l−1 and �̄2l approach the value �̄

l ≈ 2lπ −
π/2, an expression which becomes more and more accurate
as l increases. In the same limit, Eqs. (60) and (61) deliver the
approximate condition

α
l e

α
l �̄


l ≈ 2. (63)

With increasing l, α
l decreases steadily, while the product

α
l �̄


l increases very slowly.

0 0.1 0.2 0.3 0.4

10

20

30

40

α

Ω̄

FIG. 2. Illustration of spontaneousPT -symmetry breaking in the
model resonator of Fig. 1(c), for T = 0 (closed system). The plot
shows the dependence of the 12 lowest-lying dimensionless resonance
frequencies �̄ [see Eq. (57)] on the dimensionless Hermiticity-
breaking parameter α [see Eq. (58)], following their trajectory as
long as they are real. As α increases, adjacent resonance frequencies
approach each other pairwise, until they merge in an exceptional
point. Beyond the exceptional point, the involved frequencies become
a complex-conjugate pair, and then are no longer plotted. These results
are obtained by numerical solution of Eq. (60).

In order to investigate the behavior close to an exceptional
point, we expand

F(α,�) ≈ F ′′(α
l ,�


l )

2
(� − �

l )2 + Ḟ(α
l ,�


l )(α − α

l ),

(64)

where Ḟ = ∂F/∂α, and we only kept the leading nonvanish-
ing terms in this expansion. Slightly below the lth exceptional
point, the two resonance frequencies are therefore given by

�̄2l(α) ≈ �̄
l +

√
2Ḟ(α

l ,�

l )

F ′′(α
l ,�


l )

(α
l − α), (65a)

�̄2l−1(α) ≈ �̄
l −

√
2Ḟ(α

l ,�

l )

F ′′(α
l ,�


l )

(α
l − α). (65b)

Because of the square-root dependence, the spectral ar-
rangement near the exceptional point occurs over a very small
range of α. In the following, we will use the term “far below (or
above) the exceptional point” to indicate that the eigenvalues
are well separated, while the regime where they are close
together is called “slightly below (or above) the exceptional
point.” However, in terms of numerical values, α actually needs
to approach α

l very closely before the latter regime is entered.
For later convenience, we also note that by a similar expansion
as in Eq. (64), the resonance splitting

�̄2l(α) − �̄2l−1(α) ≈ 2F ′(α,�̄2l)/F ′′(α
l ,�̄


l ) (66)

can be related to the deviation of F ′ from the condition (61)
for an exceptional point.
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2. Slightly open system

When the resonator is opened, bound states turn into
quasibound states with complex resonance frequencies, which
are generally shifted by a mode-dependent amount downward
in the complex plane. For the system studied here, we find
for T � 1 that this shift ∝T is approximately rigid (i.e.,
mode independent), and is combined with a lifting ∼ T 3/2

of resonance coalescence close to the exceptional points (to
obtain exact coalescence in the complex plane, additional
parameters beside α would have to be varied). These features
follow by expanding the resonance condition (59) up to the
order of T 2, upon which it takes the form

F(�) + i
�0

2
F ′(�) − α(1 + α2)

�2
0

8
sinh(α�) = 0, (67)

where

�0 = n0T

1 − T/2
. (68)

To linear order in �0, Eq. (67) is solved by

�m = �̄m − i�0/2, (69)

where �̄m are the bound-state frequencies of the closed system,
determined by Eq. (60). Slightly opening up this resonator thus
does not change the real parts of the resonance frequencies,
and shifts the imaginary parts by a mode-independent amount.
In accordance with Eq. (47), this shift does not depend on
the degree of non-Hermiticity α, which identifies �0 as the
cold-cavity decay rate. Notably, �0 also determines the rigid
shift of complex-conjugate pairs ifPT symmetry in the closed
system is spontaneously broken.

For illustration, we plot in Fig. 3 the evolution of two res-
onance frequencies in the complex plane while the parameter
α passes through an exceptional point of the closed system.
The arrows indicate the evolution direction of the resonance
frequencies with increasing α. We set n0 = 2, such that the
expected shift �0/2 ≈ T/(1 − T/2) ≈ T for small T . For
the closed system [panel (a)], two real eigenvalues approach
each other horizontally until they merge at the exceptional
point, after which they become complex and move almost
vertically away from each other. In panels (b) and (c), where
the leakiness is small (T = 0.02) and moderate (T = 0.1),
respectively, the resonance frequencies are shifted downward
by the expected amounts [for T = 0.1, T/(1 − T/2) = 0.105,
which corresponds well to the shift in the asymptotic regions
to the left and right of the plotted range]. The exceptional
point is lifted only very slightly in panel (b), but much more
distinctively in panel (c), and upon varying T , we find that the
distance of closest approach in the complex plane is indeed of
the order of T 3/2.

C. Frequency-resolved output radiation intensity

We now turn to the frequency-resolved output radiation
intensities IL(ω) and IR(ω) from the left and right openings of
the resonator. These follow by substituting the reflection and
transmission amplitudes (V B) and (V B) into Eqs. (34) and
(35), respectively. Since these expressions contain the general
resonance quantization condition (5) in the denominator,
the resonance frequencies calculated in the previous section

10.76 10.8
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−1

0

1

2
(a) (b) (c)

Re Ω̄

Im
Ω̄

10.76 10.8

−4
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−1

0

10.76 10.8
−14

−12

−10

−8

x10−2

T=0.1T=0.02T=0
x10−2 x10−2

FIG. 3. Evolution of a pair of dimensionless resonance frequen-
cies in the complex plane, while sweeping the non-Hermiticity
parameter α of the PT -symmetric model resonator depicted in Fig.
1(c). Shown are the resonance frequencies of the third and fourth
level, with focus on the region around the exceptional point of the
closed system [T = 0, as realized in panel (a)]. Panels (b) and (c)
show the lifting of exact degeneracy when the system is slightly
open (T = 0.02 and T = 0.1, respectively). The arrows indicate the
direction of the evolution with increasing α. Before the exceptional
point, the resonances approach each other roughly parallel to the
real frequency axis. Beyond the exceptional point, one of the two
resonances is pushed toward the real axis, which facilitates the
reaching of the lasing threshold (see Ref. [13] for a system following
the same scenario). These results are obtained by numerical solution
of Eq. (59), where we set n0 = 2.

determine the emission lines around which the output intensity
is large. In this subsection, we directly derive expressions
near resonance, including for the situation near an exceptional
point; in the following subsection, these are compared to
the general near-resonant expression (43). For the discussion,
we again make use of the dimensionless variables � and α

[Eqs. (57) and (58), respectively].
Before we present analytical results, we illustrate the key

features in Fig. 4, where the solid lines are numerical results
for I = IL + IR , obtained from the expressions (34) and (35)
as described above (the dashed lines represent analytical
results derived below). We set n0 = 2, T = 0.02, and plot
the intensity in a frequency range covering the third and the
forth resonance, for values of α far below, near, and slightly
beyond the exceptional point α

2 ≈ 0.208573 of the closed
system (reaching up very closely to the lasing threshold, which
occurs at α ≈ 0.208587).

The upper panel in Fig. 4 shows results for four values of α

far below the exceptional point. The resonance frequencies
are then well isolated, and the output intensity displays
well-resolved resonance peaks, which fit to a Lorentzian line
shape. As α increases, the resonances draw together and
increase in height, but do not change their width, which is
≈�0. The middle panel shows how resonances start to merge
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FIG. 4. (Color online) Frequency-resolved intensity I (�) =
IL(�) + IR(�) for the PT -symmetric model resonator depicted in
Fig. 1(c), for n0 = 2 and T = 0.02. Frequencies are in the range
of the third and fourth resonance. Exact results from Eqs. (34) and
Eq. (35) (solid curves) are compared with various approximations
(dashed curves), as the non-Hermiticity parameter α is changed to
steer the system from the regime of well-isolated resonances across
the exceptional point of the closed system (α

2 ≈ 0.208573) up to just
below the lasing threshold (the threshold itself is at α ≈ 0.208587).
Below the exceptional point (top panel), the isolated resonances agree
with the Lorentzian line shape (71). Slightly below the exceptional
point (middle panel), the interfering resonances are well described by
Eq. (75). This expression also holds true for α = α

2, where Eq. (75)
degenerates into the squared Lorentzian (73) (lower left panel). Close
to the lasing threshold, one obtains again a Lorentzian line shape, in
agreement with (76) (lower right panel). Note the dramatic increase
in intensity as α is changed incrementally.

as one approaches the exceptional point. This goes along with a
dramatically increasing intensity, which is in accordance with
the expectation from strongly-violated mode orthogonality.
At the exceptional point (lower left panel), the resonances
merge into a very high single peak, which can be described
by a squared Lorentzian, which still is of width ∼�0. Moving
beyond the exceptional point, the resonance peak retains its
center. As one approaches the lasing threshold (where one of
the complex resonance frequencies approaches the real axis),
the emission line reverts to a Lorentzian, and the peak intensity
increases further, while the resonance width decreases.

In order to explain these results, we now obtain analytical
expressions for the resonance peaks in the output intensity,
covering the whole range far below, near, and slightly beyond
the exceptional point (where one quickly reaches the lasing
threshold). Upon obtaining these expressions, it is sufficient
to focus the attention on IL, as IR leads to the same results
in the relevant leading orders in T . The key step in the
derivation is to approximate the resonant denominator in
Eq. (34) by the same steps that lead from Eq. (59) to the
simplified quantization condition (67). Applying similar (more
straightforward) approximations also to the denominator, this
leads to the expression

IL(�) = 1

2π

�0

2

(1 + α2)2 sinh α�∣∣F(�) + i �0
2 F ′(�) − α(1 + α2)�2

0
8 sinh α�

∣∣2
,

(70)

from which all subsequent results follow.
For an isolated resonance far below the exceptional point,

we expand the denominator around the resonance condition
� = �̄m, where �̄m is the real quantized frequency of the
closed system, given by F = 0 [Eq. (60)]. This delivers the
Lorentzian expression

IL(�) = 1

2π

(1 + α2)2 sinh(α�̄m)

F ′2(�̄m)

�0/2

(� − �̄m)2 + �2
0/4

,

(71)
which in the upper panel of Fig. 4 is shown as a dashed line on
top of the solid lines representing the exact numerical results.
In the Hermitian limit α → 0, F ′(�̄m) → 1, and

IL(�) ≈ I
(0)
L (�) ≡ 1

2π

α�̄m�0/2

(� − �̄m)2 + �2
0/4

. (72)

As expected, Eq. (71) diverges at an exceptional point, which
here is manifest because the term F ′(�̄m) then vanishes [see
Eq. (61)]. This is remedied by keeping the next orders in the
expansion of the denominator in Eq. (70), which results in the
squared Lorentzian

IL(�) = 1

2π

(
1 + α2

l

)2
sinh(α

l �̄

l )

F ′′2(�̄
l )

2�0

|(� − �̄
l )2 + �2

0/4|2

= 1

2π

1

α2
l sinh(α

l �̄

l )

2�0

|(� − �̄
l )2 + �2

0/4|2 , (73)

where we used Eq. (60) to write

F ′′(�
l ) = α

l

(
1 + α2

l

)
sinh(α

l �̄

l ). (74)

Equation (73) is shown in the lower left panel of Fig. 4 as the
dashed curve on top of the numerical result at the exceptional
point.
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In order to better understand the approach to this squared
Lorentzian, let us rederive it by considering the merging of
the two involved resonance frequencies, �̄2l−1 and �̄2l , of the

closed system. While each associated partial intensity diverges
as one approaches the exceptional point, their coherent sum

IL(�) ≈ 1

2π

�0

2

(
1 + α2

l

)2
sinh(α

l �̄

l )

F ′2(α,�̄2l)

∣∣∣∣ 1

� − �̄2l−1 + i�0/2
− 1

� − �̄2l + i�0/2

∣∣∣∣
2

= 1

2π

1

α2
l sinh(α

l �̄

l )

2�0∣∣(� − �̄2l−1 + i �0
2

)(
� − �̄2l + i �0

2

)∣∣2

(75)

[where we have made use of Eqs. (66) and (74)] remains
finite, and reduces to the squared Lorentzian (73) when the
two resonance frequencies coalesce. Expression (75) is also
accurate slightly away from the exceptional point, as can be
seen from the curves in the middle panel of Fig. 4.

Slightly beyond the exceptional point, one approaches the
lasing threshold, where one of the two resonances (with index
2l − 1 if continuously labeled as in Fig. 3) comes close to
the real axis, thereby acquiring a much reduced width �� =
−2 Im �2l−1 ≈ �0 − 2 Im �̄2l−1 � �. The peak intensity of
this resonance then exceeds by far that of the other resonance,
resulting again in a (very narrow) Lorentzian,

IL(�) = 1

2π

1

α2
l sinh(α

l �̄

l )

2/�0

(� − Re �̄2l−1)2 + ��2/4
.

(76)
This is plotted in the bottom right panel of Fig. 4.

D. Implications of mode nonorthogonality

We now discuss the preceding analytical results for the
model resonator from the perspective of mode nonorthogonal-
ity, based on the general considerations presented in Sec. IV.
Our goal is to recover Eq. (71) by substituting the resonance
wave function of the model system into Eq. (43).

By assuming no incoming radiation from the outside of
the resonator, and employing scaled units s = x/L, the wave
function in the left and right parts of the system (in which the
respective refractive index is constant) can be written as

ψL = rnL,Mei�(1+iα)(s+1/2) + e−i�(1+iα)(s+1/2), (77a)

ψR = a[ei�(1−iα)(s−1/2) + rnR,Me−i�(1−iα)(s−1/2)]. (77b)

Here,

rnL,M ≈ −1 + nLT /2 = −1 + �0

2
(1 + iα), (78a)

rnR,M ≈ −1 + nRT /2 = −1 + �0

2
(1 − iα), (78b)

are the reflection coefficients of the mirrors, including the
step in the refractive index from 1 to nL or nR , respectively.
The coefficient a is determined by the matching condition
ψL(0) = ψR(0), giving, for �0 → 0,

a = sinh[i�(1 + iα)/2]

sinh[i�(1 − iα)/2]
. (79)

The second matching condition ψ ′
L(0) = ψ ′

R(0) recovers the
quantization condition (60). From this, we only need the
previously established property �m ≈ �̄m − i�0/2 [Eq. (69)].
For �0 → 0 and real �m, we furthermore find |a| = 1.

Based on these expressions, and keeping only leading
orders in �0 (which also appears in �m = �̄m − i�0/2), as
well as using the quantization condition (60), we find∫

R
Im (�2

mn2)|ψ |2 = −2n2
0(1 + α2)�̄m sinh(α�̄m), (80a)∫

R+L
Im (�2

mn2)|ψ |2 = −2n2
0(1 + α2)�̄m�0, (80b)

∣∣∣∣
∫
R+L

�2
mn2ψ2

∣∣∣∣
2

= [
2�̄2

mn2
0F ′(�̄m)

]2
. (80c)

Equation (43) then delivers

I (�) = 1

2π

(1 + α2)2 sinh(α�̄m)

F ′2(�̄m)

�0

(� − �̄m)2 + �2
0/4

, (81)

which indeed agrees exactly with our earlier result (71), given
that IL = IR = I/2 in the considered regime, �0 � 1. It is
noteworthy that we explicitly recovered the term F ′ in the
denominator, which vanishes at an exceptional point. This
confirms that the integral in the denominator of (43) constitutes
the appropriate overlap integral, which quantifies the degree
of mode nonorthogonality, as we already argued on general
grounds in Sec. IV. Finally, we once more call attention to
Eq. (75), which shows how the intensity is regularized by
the interference of the near-degenerate resonances. In this
construction, the partial amplitudes are still consistent with
Eq. (81). We thus can conclude that the appearance of the
squared-Lorentzian line shape at an exceptional point can
be explicitly linked to the self-orthogonality property of the
resonance wave function, given by Eq. (10).

VI. CONCLUSIONS

Motivated by the recent interest in optical non-Hermitian
PT -symmetric systems, we investigated the radiation inten-
sity emitted by a resonator which is partially filled with an
amplifying and an absorbing medium. This required us to
combine aspects of quantum noise with the properties of
the resonator modes (especially, the consequences of broken
Hermiticity). We addressed these issues on the common basis
of scattering theory, in which one can accommodate quantum
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noise via the quantum-optical input-output formalism (see
Secs. II B and III), while also giving access to the resonant
frequencies (see Sec. II A) and partial amplitudes in different
regions of the resonator (see Sec. IV).

Our main result is an expression of the near-resonant
frequency-resolved radiation intensity, given by Eq. (43),
which relates this quantity to the properties of the resonant
radiation mode, and includes an explicit measure of mode
nonorthogonality induced by the amplifying and absorbing
regions. PT -symmetric systems provide natural access to
exceptional points, where two resonances become degenerate,
and their modes become self-orthogonal. The partial intensity
of each resonance then diverges, but their sum yields a finite
result, with a squared-Lorentzian line shape. Compared to the

case of isolated resonances, we find that the total intensity is
dramatically increased (see Fig. 4), which should facilitate the
observation of this radiation in experiments.

We validated these results for the case of a model resonator
(see Sec. V), for which we obtained explicit analytical results
in the whole physically accessible range of broken Hermiticity,
from the case of isolated resonances [Eq. (71)] over the near-
degenerate case close to an exceptional point [Eq. (75)] up to
the lasing threshold [Eq. (76)].
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[5] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides,
M. Segev, and D. Kip, Nature Phys. 6, 192 (2010).

[6] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Phys. Rev. Lett. 103, 093902 (2009).

[7] M. C. Zheng, D. N. Christodoulides, R. Fleischmann, and
T. Kottos, Phys. Rev. A 82, 010103(R) (2010).

[8] H. Ramezani, T. Kottos, R. El-Ganainy, and D. N.
Christodoulides, Phys. Rev. A 82, 043803 (2010).

[9] A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, Phys. Rev. A 82,
043818 (2010).

[10] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and
D. N. Christodoulides, Phys. Rev. Lett. 106, 213901 (2011).

[11] H. Schomerus, Phys. Rev. Lett. 104, 233601 (2010).
[12] S. Longhi, Phys. Rev. A 82, 031801(R) (2010).
[13] Y. D. Chong, L. Ge, and A. D. Stone, Phys. Rev. Lett. 106,

093902 (2011).
[14] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
[15] M. Znojil, Phys. Lett. A 285, 7 (2001).
[16] A. Mostafazadeh, J. Math. Phys. 43, 205 (2002); 43, 2814

(2002); 43, 3944 (2002).
[17] A. Mostafazadeh and A. Batal, J. Phys. A 37, 11645 (2004).
[18] C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
[19] F. G. Scholtz, H. B. Geyer, and F. J. W. Hahne, Ann. Phys. (NY)

213, 74 (1992).
[20] S. Klaiman, U. Günther, and N. Moiseyev, Phys. Rev. Lett. 101,

080402 (2008).
[21] S. Bittner, B. Dietz, U. Günther, H. L. Harney, M. Miski-Oglu,
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