Smith, Rosanna and Sammonds, Peter and Tuffen, Hugh and Meredith, Philip (2011) Evolution of the mechanics of the 2004–2008 Mt. St. Helens lava dome with time and temperature. Earth and Planetary Science Letters, 307 (1-2). pp. 191-200. ISSN 0012-821X
Full text not available from this repository.Abstract
The 2004–2008 eruption of Mount St. Helens, Washington, USA, formed a typical example of a Pelean spiny lava dome, with solid spines of crystalline silicic lava extruded along shear zones bounded by fault gouge (Cashman et al., 2008; Iverson et al., 2006). Creation of and movement along shear zones in this erupting lava, recorded as shallow micro-earthquakes, were thus key controls on eruption style and rate, in addition to dome stability. As eruption style and lava dome stability often change within individual eruptions, it is important to identify how the strength of dome rocks changes with temperature, time, texture and extrusion rate. However, critical values of the shear strength of dome lava at eruptive temperatures have never been measured. We have found in controlled laboratory experiments simulating eruption conditions that dome lava strength increased during the course of the 2004–2008 eruption of Mount St. Helens, as the textures became more crystalline and less porous. Increasing lava strength during the eruption would lead to deformation becoming increasingly localised to shear zones, explaining why the extrusion style and centre were so consistent. Acoustic emissions and microstructure analysis indicate that fracturing was more localised at higher temperatures, resulting in higher strengths at eruptive temperature compared to ambient temperatures for later erupted samples. The strength of these later erupted samples at eruptive temperatures increased markedly with strain rate. This would damp any increases in effusion rate that may result from changes in magma pressure, explaining the steady effusion rate at Mount St. Helens from 2004 to 2008.