
0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60

Fl
ow

 le
ng

th
 (m

)

Time after flow initiation (hours)

F1

F2

F3

Estimating rheological properties of lava flows using 
high-resolution time lapse imaging
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* Corresponding author: l.j.applegarth@lancaster.ac.uk, Lancaster Environment Centre, Lancaster University, UK

1. Introduction
The rheology of a lava flow is one of the main factors controlling 
its advance, but is extremely challenging to measure directly.  
Here we demonstrate the use of integrated, remotely sensed 
topographic and time-lapse image data to estimate rheological 
properties using the method of Ellis et al. (2004)1. 

References: 1. Ellis B, Wilson L, Pinkerton H (2004) Lunar& Planetary Science XXXV 
Abst. 1550. 2. James MR, Pinkerton H, Applegarth LJ (2009) Geophys. Res. Lett. 36 
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Wilson L (1994) Bull. Volc. 56:108-120. 7. Tallarico A, Dragoni M (1999) Bull. Volc. 
61:40-47. 8. Robson GR (1967) Nature 216:251-252.

Fig. 2. Topographic data 
collected on 06/06/2009 
from Pizzi Deneri (black 
points), showing the 3-D 

structure of the lava delta. 
The superimposed 

coloured points represent 
the advance of three flow 

units that were tracked 
through the time lapse 

image sequence, as 
discussed in the text.

4. Calculating rheological properties
Assuming that lavas behave as Bingham (plastic) materials, Ellis et al. (2004)1

suggested that flow rheology could be described by an apparent viscosity 
with the form of a Newtonian viscosity, η = (ρ g d2 sinS) / 3 u, and an effective 
yield strength, Y = ρ g d sinS. η and Y were calculated for F1 and F2 for the 
intermediate and final conditions (Table 1), and are shown in Fig. 5. 

Fig. 1. Overview of the 
2008-9 lava delta, on 

the E side of Mt. Etna, 
Sicily. In June 2009, 

active ‘a’ā  flows were 
limited to the upper ~1 
km of the delta. Image 
and topographic data 
were collected from 

Pizzi Deneri, on the N 
side of the Valle del 

Bove. The yellow box 
shows the region 

enlarged in Fig. 3a. 
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2. Data Collection
During the 2008 – 2009 eruption of Mt. Etna, Sicily, a large lava 
delta developed on the headwall of the Valle del Bove (Fig. 1). By 
June 2009, activity was limited to the upper part of  the delta, 
where ephemeral vents fed 'a'ā lava flows that advanced a few 
hundreds of metres over lifetimes of hours to a few days. At this 
time, we deployed a Canon EOS 450D camera at Pizzi Deneri  (Fig. 
1) that captured images at 15-minute intervals until the end of 
the eruption. In addition, on 06/06/2009 we collected 
topographic data of the active flows using a terrestrial laser 
scanner2 (Fig. 2).
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Fig. 3. (a) Upper delta, showing the width 
measurements made. Most flows are similar in 
size, but one much larger flow (F3) can be seen. 
F3 was one of those tracked through the time-

lapse image sequence, but was not cooling-
limited (Fig. 4). (b) Advance of F3 over 2 days. 

Fig. 4. Flow advance with time for 3 units tracked through the image 
sequence (Figs. 2 & 3b). All flows slowed beyond ~200 m length. F1

and F2 were cooling-limited. F3 had a more complex advance pattern, 
with a period of reactivation after ~40 hours. Because of this 

behaviour, Gz cannot be calculated for F3. Inset shows the underlying 
slope, which is almost constant and similar for each flow.

Flow u
(m hr-1)

L
(m)

w
(m)

d
(m)

de
(m)

S
( )

κ6

(m2 s-1)
ρ7

(kg m-3)
g

(m2 s-1)

F1 18.4 207
5.7 3.8 4.6

16.1
7.1 x 10-7 2650 9.81

10.8 267 15.5

F2 64.1 144
5.7 3.8 4.6

14.5
7.1 x 10-7 2650 9.81

13.4 375 13.2

Table 1. Parameters used to calculate rheological properties. u, L and 
S were derived from the topographic and image data, and d from 

setting Gz = 300 at flow cessation. u, L and S were estimated for an 
intermediate stage as well as the whole flow, so values are shown for 
both stages. F1 and F2 could not be individually identified in Fig. 3(a), 

but because the majority of flows had similar w values ( 15%, Fig. 
3a), average widths were calculated from several flow units. Density 

(ρ) and thermal diffusivity (κ) values are from the literature. 
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Flow widths (w) were estimated from aerial 
images (Fig. 3a). Depths (d) of cooling-limited 
flows can be constrained using the Gratz number4, 
which characterises conductive heat loss: 
Gz = u de

2 / (κ L), where de = 2 w/(w + d), and κ = 
thermal diffusivity. Cooling-limited flows cease 
advancing when Gz ≈ 3005,6, so d was estimated 
assuming Gz = 300 at cessation (Table 1).

Fig. 5. η and Y for 2 stages of F1 and F2
advance. η increases by nearly an order 
of magnitude, with flow cessation at η ~ 
107 Pa s. The lack of change in Y reflects 

the single value used for d. Robson 
(1967)8 suggested that Etna flows stop 

when Y ~105 Pa s. As we cannot measure 
changes in d, we cannot test this theory. 

5. Summary
The Etna flows appear to stop when η ~ 107. Ellis et al. (2004) found a similar 
result for Hawaiian flows. However the estimation of d needs to be improved 
so that the influence of Y can be investigated further. This approach has the 
potential to allow rheological properties to be estimated from remotely 
sensed data during eruptions, when field measurements are not available.

3. Flow measurements and behaviour
The fronts of 3 flows were tracked through the time-lapse image sequence
(Fig. 3b). Using knowledge of the camera imaging geometry, the pixel tracks
were reprojected onto the topography (Fig. 2) to determine flow advance in 3-
D geographic coordinates, allowing flow lengths (L), mean velocities (u) and
slopes (S) to be measured. Fig. 4 shows a decrease in advance rate for all flows
at ~200 m that is not correlated with any change either in slope or lava supply,
so is inferred to be due to internal factors such as cooling. F1 and F2 are
considered to be cooling-limited3, though F3 shows more complex behaviour.
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