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Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities
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Recently, it has been shown that spiral-shaped microdisk cavities support highly nonorthogonal pairs of
copropagating modes with a preferred sense of rotation (spatial chirality) [J. Wiersig et al., Phys. Rev. A 78,
053809 (2008)]. Here, we provide numerical evidence which indicates that such pairs are a common feature of
deformed microdisk cavities which lack mirror symmetries. In particular, we demonstrate that discontinuities of
the cavity boundary such as the notch in the spiral cavity are not needed. We find a quantitative relation between
the nonorthogonality and the chirality of the modes which agrees well with the predictions from an effective
non-Hermitian Hamiltonian. A comparison to ray-tracing simulations is given.
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I. INTRODUCTION

Optical microcavities allow trapping of photons for a long
time τc in very small volumes [1]. This enables one to
control light and matter at the nano- and microscale, which
is important for many applications such as ultralow threshold
lasers [2,3] and single-photon emitters [4,5]. Microdisks [6,7],
microspheres [8,9], and microtoroids [10,11] support so-called
whispering-gallery modes. Due to total internal reflection
of the photons at the boundary of the cavity, these modes
have very high quality factors Q = ωτc, where ω is the
resonance frequency. However, as a consequence of the
rotational symmetry of a microdisk, the in-plane light emission
from these modes is isotropic, which is a disadvantage for
many applications. This problem can be solved by deforming
the boundary of the cavity [12–14]. Several shapes for
unidirectional light emission have been proposed, for example,
the spiral cavity [15–17], the annular cavity [18], the limaçon
cavity [19], the circular disk with a point scatterer [20], and
the notched ellipse [21].

The spiral cavity is a well-studied system [15–17]. In
polar coordinates the boundary of this cavity is defined as
ρ(φ) = R(1 − ε

2π
φ), with deformation parameter ε > 0 and

radius R at φ = 0. The radius jumps back to R at φ = 2π ,
creating a notch. The spiral cavity appears to be special in
the list of studied geometries for two reasons: (i) it lacks any
discrete spatial symmetry and (ii) the boundary curve exhibits
a singularity. In Refs. [22,23] it has been demonstrated that the
modes in this open system come in highly nonorthogonal pairs.
Moreover, each pair of modes shows a strong spatial chirality,
in the sense that both modes have mainly counterclockwise
(CCW) propagating components, while the clockwise (CW)
component is weak in both modes. [It is important to
emphasize that our usage of the term “chirality” should not be
confused with optical activity in chiral media (see, e.g., [24]).]

The appearance of nonorthogonal and chiral modes in the
spiral cavity has been traced back to the asymmetric scattering
between CW and CCW propagating waves at the notch [22].

The aim of the present paper is to show that this effect also
appears in cavities without boundary singularities. We consider
two different geometries. One is a rather representative exam-
ple, an asymmetric version of the limaçon. The other example
is a variant of a curve of constant width [25]. This exotic
geometry helps to clarify the role of ray dynamics. Our results
indicate that the nonorthogonal and chiral pairs of modes
appear in any cavity geometry which is a sufficiently small
deformation of the circle and lacks any mirror symmetries. It
should be mentioned that in experiments fabrication tolerances
introduce small asymmetries quite naturally (see, e.g., [26]).
In this sense, the asymmetric shapes are generic, which is,
however, not reflected in the list of geometries studied in the
literature.

This paper is organized as follows. Section II reports
our numerical results on the properties of optical modes
in the asymmetric limaçon cavity. In Sec. III we introduce
an effective non-Hermitian Hamiltonian which describes the
relation between nonorthogonality and chirality. The ray
dynamics in the asymmetric limaçon cavity is presented in
Sec. IV. In Sec. V we discuss the cavity with a boundary curve
of constant width. We summarize our results in Sec. VI.

II. MODES IN THE ASYMMETRIC LIMAÇON

In the case of (deformed) microdisk cavities with a piece-
wise constant effective index of refraction n(x,y), Maxwell’s
equations can be reduced to a two-dimensional scalar mode
equation [27]

−∇2ψ = n2(x,y)
ω2

c2
ψ, (1)
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FIG. 1. (Color online) The left panel shows the boundary
parametrization ρ(φ) in Eq. (2) with ε1 = 0.1 and ε2 = 0.075, for
different values of δ. The curves are shifted vertically for better
comparison. The right panel shows a top view of the cavity with
δ = π

√
5−1
2 .

where ω = ck is the frequency, k is the wave number in vacuum
(outside the microdisk), and c is the speed of light in vacuum.
The mode equation (1) is valid for both transverse magnetic
(TM) and transverse electric (TE) polarization. For TM polar-
ization the electric field �E(x,y,t) ∝ (0,0,Re[ψ(x,y)e−iωt ]) is
perpendicular to the cavity plane. The wave function ψ and its
normal derivative ∂νψ are continuous across the boundary of
the cavity. For TE polarization, ψ represents the z component
of the magnetic field vector Hz. Here, the wave function ψ

and n(x,y)−2∂νψ are continuous across the boundaries [27].
At infinity, outgoing wave conditions are imposed, which
results in quasibound states with complex frequencies ω in
the lower half-plane. The real part is the usual frequency and
the imaginary part is related to the lifetime τc = −1/[2 Im ω]
and to the quality factor Q = −Re ω/[2 Im ω].

In polar coordinates the boundary shape studied in this
section is given by

ρ(φ) = R [1 + ε1 cos φ + ε2 cos(2φ + δ)] , (2)

with δ ∈ [0,2π ). This is illustrated in Fig. 1. The special
case ε2 = 0 is the limaçon cavity [19,26,28–33]. For nonzero
ε1,ε2 and δ �= 0,π the system does not possess any mirror
symmetry. We therefore call the cavity described by Eq. (2)
the asymmetric limaçon. The ray dynamics in such a geometry
is mainly chaotic as in the case of the symmetric limaçon.
The asymmetric version can be considered as a typical smooth
deformation of a circular disk, as the sum of the first three
terms of a Fourier expansion of an arbitrary periodic function
can be written as in Eq. (2).

If not stated otherwise, in the following we use δ =
π

√
5−1
2 ≈ 0.618π , ε1 = 0.1, and ε2 = 0.075. We have chosen

the golden ratio for δ/π to ensure that we are not too close to
the symmetric situations δ = 0 and π . The effective index of
refraction is set to n = 3.3 (e.g., GaAs) and we only consider
TM polarization. To compute the complex frequencies and
wave functions of quasibound states we use the boundary
element method [34] and, for comparison, the wave-matching
method (see, e.g., [35]). We always find very good agreement
between these two methods.

Figure 2 shows the resonances in a typical region of the
complex plane of normalized frequencies � = ωR/c = kR.
It can be clearly seen that modes here always appear in nearly
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FIG. 2. Position of dimensionless complex resonance frequencies
with TM polarization for the cavity in Eq. (2) with refractive index
n = 3.3 and shape parameters ε1 = 0.1, ε2 = 0.075, and δ = π
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Open circles (crosses) mark the slightly higher-Q (lower-Q) mode of
a given pair of modes.

degenerate pairs, even though the deformation of the cavity
boundary is not that small. This is due to the rather weak
coupling of CW and CCW propagating waves in these open
disklike cavities. One could guess that one member of such a
pair is a CW-propagating mode and the other one is a CCW-
propagating mode. But this is not true, as we will see in the
following.

Figure 3 depicts a typical example of such a pair of
nearly degenerate modes. The splitting in real part  Re(�) ≈
4.4 × 10−5 and imaginary part  Im(�) ≈ 10−5 is very small.
The spatial mode pattern is difficult to distinguish by eye. A
closer look at the far-field pattern shown in Fig. 4 reveals that
they have the same envelope, but there clearly are different
oscillations on top of this envelope. Note that not only
the far-field pattern indicates unidirectional light emission;
the near-field pattern in Figs. 3(c) and 3(d) shows that the
emission follows a single-lobe beam, which is interesting for
applications.

Following Refs. [22,23] we analyze the mode pattern by
expanding the wave function inside the cavity in cylindrical
harmonics,

ψ(ρ,φ) =
∞∑

m=−∞
αmJm(nkρ) exp (imφ), (3)

where Jm is the mth-order Bessel function of the first kind.
Positive (negative) values of the angular momentum index m

correspond to CCW (CW) traveling-wave components. As the
origin of this expansion we choose the center of mass of the
cavity, (x,y) = (ε1R/2,0). Note that this particular choice does
not affect our conclusions (as long as the origin is chosen inside
the cavity). The coefficients in the expansion in Eq. (3) are
naturally given in the case of the wave-matching method [35].
In the case of the boundary element method [34] we use
a Fourier transformation of the wave function to determine
the coefficients. Both approaches give identical numerical
results.

In Fig. 5(a) we can observe that for both modes the angular
momentum distribution |αm|2 is dominated by the CCW
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FIG. 3. (Color online) Intensity |ψ |2 of the nearly degenerate pair
of modes in the asymmetric limaçon with (a) �1 = 12.319 807 −
i0.000 89 and (b) �2 = 12.319 851 − i0.0009; cf. Fig. 2. The same
color map has been used in panels (a) and (b). Panels (c) and (d) show
the corresponding exterior mode pattern at some small distance away
from the cavity (white region). The far-field patterns are shown in
Fig. 4.

component, i.e., none of the two modes can be classified as a
CW traveling-wave mode. The small difference between the
expansion coefficients of the modes can be seen in Figs. 5(b)
and 5(c). For negative angular momentum index both the real
and the imaginary parts of αm have a different sign for the two
modes. That means that we can construct superpositions with
α±

m = (α(1)
m ± α(2)

m )/2 being CW and CCW traveling waves,
respectively, as can be seen in Fig. 5(d). However, the CCW
superposition has a much larger amplitude. It is important to
emphasize that these superpositions are not eigenmodes of
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FIG. 4. Far-field patterns of the modes in Fig. 3. The solid
and dashed lines correspond to the modes in Figs. 3(a) and 3(b),
respectively. For the definition of the far-field angle φ see Fig. 1.
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FIG. 5. (Color online) Angular momentum distributions α(1)
m

(black solid line) and α(2)
m (green dashed) of the modes in Fig. 3 (real

part normalized to 1 at maximum): (a) absolute value squared, (b) real
and (c) imaginary parts, and (d) superpositions α+

m = (α(1)
m + α(2)

m )/2
(black solid) and α−

m = (α(1)
m − α(2)

m )/2 (red dashed, multiplied by a
factor of 6).

the cavity as they are composed of two modes with slightly
different frequencies and Q factors.

It is convenient to use the angular momentum representation
(3) to define the (spatial) chirality of a mode by

α = 1 −
min

( −1∑
m=−∞

|αm|2,
∞∑

m=1
|αm|2

)

max

( −1∑
m=−∞

|αm|2,
∞∑

m=1
|αm|2

) . (4)

If the weight of the CW and CCW components is equally
distributed, then the chirality is α = 0. This is, for instance,
the case for a cavity which possesses a mirror symmetry. To
see this, choose the coordinate system such that ρ(−φ) =
ρ(φ). In the angular momentum representation (3) modes
with positive (negative) parity ψ(ρ, − φ) = ±ψ(ρ,φ) must
have a−m(−1)m = ±am. In both cases, |a−m|2 = |am|2, which
according to Eq. (4) gives a chirality α = 0. The same is true
in the case of a closed system (in nonlinear dynamics a closed
cavity is called a billiard) with real-valued frequencies, where
a∗

−m(−1)m = am, which again leads to |a−m|2 = |am|2. Note
that the former statement is correct for the special case of the
circular microcavity with its degenerate pairs of modes only if
the linear superpositions leading to standing waves are chosen.
The other extreme of full chirality, α = 1, is realized if a mode
has no CW (or CCW) component at all.

The asymmetric limaçon (with δ �= 0,π ) lacks any mirror
symmetry. Moreover, the system is open and has complex-
valued frequencies due to the outgoing-wave conditions at
infinity. For the modes in Figs. 3(a) and 3(b) we find
numerically α ≈ 0.839 and α ≈ 0.8404, respectively. Hence,
both modes show a strong chirality.

Now we demonstrate that the modes not only have a strong
chirality but that they are also pairwise highly nonorthogonal.
To quantify the nonorthogonality we compute the normalized
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overlap integral of two modes ψ1 and ψ2 over the interior of
the cavity C (see also, e.g., [36]),

S = | ∫C dx dy ψ∗
1 ψ2|√∫

C dx dy ψ∗
1 ψ1

√∫
C dx dy ψ∗

2 ψ2

. (5)

In the case of orthogonal states S = 0 and in the case of
collinear states S = 1. It is easy to show that in the presence of a
mirror symmetry or for a closed system the overlap S vanishes.
For the pair of modes in Fig. 3, however, we find S ≈ 0.7236
reflecting a strong nonorthogonality. Mode nonorthogonality
is important as it implies excess quantum noise [37–41].

One might think that the strong chirality must have a large
influence on the dynamics of waves in such a cavity. For the
asymmetric limaçon the impact is, however, weak. The upper
panel of Fig. 6 shows the dynamics of the CCW and CW
components of an initially (at time t = 0) CCW traveling wave
using proper superpositions of the modes shown in Fig. 3 (we
follow the procedure explained in detail in Ref. [22]). Only a
very weak scattering into the CW component can be observed.
The lower panel of Fig. 6 shows the situation where the initial
wave is purely CW propagating. Here, the backscattering
into the CCW component is significantly larger, though still
weak.

The chirality of the modes in Fig. 3 as a function of the
asymmetry parameter δ in the interval [0,π ] is shown in
the lower panel of Fig. 7. The curves have been computed
by starting with δ = π

√
5−1
2 , decreasing δ in small steps,

and thereby following the modes. Second, δ has been varied
between π

√
5−1
2 and π . 200 discretization points on the δ axis

have been used for each mode. As the total change in the
frequency is rather small in this range of parameter variation
we do not observe any avoided resonance crossing. For δ = 0
and δ = π the system possess a mirror symmetry and therefore
we observe no chirality, α = 0. The maximum chirality of
about 0.845 is attained at δ ≈ 2, which is close to the value
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superpositions of the modes with frequencies �1 and �2 depicted
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FIG. 7. Upper panel: individual decay rates −Im(�i) (solid and
dashed line) and the level splitting � = |Re(�1) − Re(�2)| (dotted
line, scaled by a factor of 10) of the pair of modes in Fig. 3 vs shape
parameter δ. Lower panel: corresponding chirality α as a function of
δ. Note that two curves are on top of each other.

that we mainly use in this paper, δ = π
√

5−1
2 ≈ 1.94. The upper

panel shows the level splitting � = |Re(�1) − Re(�2)| and
the individual decay rates of the two modes −Im(�i) as a
function of the asymmetry parameter δ. Note that the level
splitting is always much smaller than the individual decay
rates, i.e., the spectral width of the two modes strongly
overlap.

Another example of a pair of nearly degenerate modes
is shown in Figs. 8 and 9. Again we find that both modes
exhibit a strong chirality (α ≈ 0.8793 and α ≈ 0.8658) and a
significant nonorthogonality (S ≈ 0.7778). This is particularly
remarkable as the quality factor of the modes is about
3.5 × 106. For such enormously high quality factors one would
expect a behavior similar to that of orthogonal states in a
closed system such as in a billiard. This reasoning is, however,
too naive since the frequency splitting is much less than
the individual decay rates. The resonances therefore strongly
overlap, which is usually considered as a feature associated
with strongly open systems.

It is also important to mention that the overlap of long-
lived modes from different pairs is significantly smaller. For
instance, for one mode in Fig. 3 and one from Fig. 8 we

(a) (b)

FIG. 8. (Color online) Intensity |ψ |2 of the nearly degenerate pair
of modes in the asymmetric limaçon with (a) �1 = 12.730 702 92 −
i1.83 × 10−6 and (b) �2 = 12.730 702 86 − i1.88 × 10−6

(cf. Fig. 2).
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always find S < 6 × 10−4. That means the nonorthogonality
is significant only within each pair of long-lived modes.

Figure 10 summarizes the results on the chirality and the
pairwise nonorthogonality of the modes which are present in
the frequency regime considered in Fig. 2. The mode pair with
the highest Q factors (�1 ≈ 12.096 092 5 − i1.04 × 10−7 and
�2 ≈ 12.096 092 51 − i1.11 × 10−7) is, however, not shown
here. In this (and only in this) case the numerical computation
of the chirality is not fully converged due to the exceptionally
strong degeneracy of this particular mode pair even though we
use up to 32 000 discretization points in the boundary element
method. From Fig. 10 it can be observed that the chirality and
the overlap are correlated. This correlation can be explained by
an effective non-Hermitian Hamiltonian, which is discussed in
the next section. Finally, we remark that 29 of the 31 considered
pairs of modes exhibit a larger CCW component. Only two
pairs have a larger CW component.

For smaller frequencies the chirality and the nonorthogo-
nality are weaker (not shown). An intuitive explanation is that
for very small frequencies, i.e., large wavelengths, the modes
do not feel the asymmetry of the boundary shape anymore.

III. EFFECTIVE NON-HERMITIAN HAMILTONIAN

Reference [22] introduced a simple toy model to describe
the main features of the chirality and nonorthogonality of
modes in the spiral cavity. Here we use the same two-by-two
non-Hermitian and nonsymmetric matrix

H =
(

ω0 0
0 ω0

)
+

(
� V

ηV ∗ �

)
. (6)

For the convenience of the discussion, our interpretation is
that this matrix describes the dynamics of the wave function
ψ in slowly varying envelope approximation [42] in the time
domain by a Schrödinger-type equation

i
∂

∂t
ψ = Hψ. (7)
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FIG. 10. Chirality α vs spatial overlap S of pairs of almost
degenerate modes in the asymmetric limaçon. Open circles (crosses)
mark the slightly higher-Q (lower-Q) mode of a given pair of
modes computed numerically from Maxwell’s equations (cf. Fig. 2).
The solid line is the analytical prediction of the theoretical model,
Eq. (15).

When deriving this equation from the Maxwell’s equations
one assumes that the optical field varies slowly in time (not
necessarily in space) with respect to a reference frequency
which we choose to be close to the two nearly degenerate
modes of interest.

The nonsymmetric Hamiltonian matrix (6) is defined in the
CCW and CW traveling-wave basis

�t1 =
(

1
0

)
, �t2 =

(
0
1

)
. (8)

The eigenvectors of the first matrix in Eq. (6) on the right-hand
side belong to the CCW and CW traveling waves with,
for simplicity, equal frequency ω0 ∈ C in the absence of
any coupling between them. The second matrix accounts
for coupling of CCW and CW traveling components. The
diagonal elements are given by the total decay rates and
frequency shifts � ∈ C which are assumed to be equal
for simplicity. The off-diagonal element V = |V |eiβ ∈ C
describes scattering from a CW traveling wave into the CCW
traveling wave. The other off-diagonal element ηV ∗ describes
scattering from a CCW traveling wave into the CW traveling
wave. The latter scattering is assumed to be weaker, i.e.,
|η| < 1. Therefore, here |η| plays the role of the asymmetry
parameter.

Note that a standing-wave basis can be chosen as

�s1 = 1√
2

(
1
1

)
, �s2 = i√

2

(−1
1

)
. (9)

While the traveling-wave basis (8) corresponds to terms eimφ

with m > 0 and m < 0 in the angular momentum representa-
tion (3), the standing-wave basis corresponds to cos (mφ) and
sin (mφ) with non-negative m. In the standing-wave basis the
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non-Hermitian Hamiltonian matrix is symmetric (as required
by time-reversal symmetry):

H =
(

ω0 + � + V +ηV ∗
2

i
2 (V − ηV ∗)

i
2 (V − ηV ∗) ω0 + � − V +ηV ∗

2

)
. (10)

The complex eigenvalues of the matrix (6) are given by

ω± = ω0 + � ± √
η|V |. (11)

The (not normalized) right-hand eigenvectors in the CCW and
CW traveling-wave basis turn out to be

�α± =
(

1
±√

ηe−iβ

)
. (12)

These eigenvectors explain the mode structure observed in
Sec. II, including the sign difference in the CW components as
well as the relative weight of the CCW and CW components.
The weight of the first component (corresponding to CCW
traveling waves) squared ∼1 is much larger than that of the
second component (corresponding to CW traveling waves)
squared ∼|η| (cf. Figs. 5 and 9). Hence, the 2 × 2 model
predicts an identical chirality for both modes,

α = 1 − |η|, (13)

which is nonzero in the case of asymmetric coupling (|η| �= 1).
Note that the chirality α does not depend on the coupling
strength |V |. As a consequence, even an infinitesimal coupling
can lead to a significant chirality. The reason behind this
singular behavior is the twofold degeneracy of the unperturbed
modes.

The two eigenvectors in Eq. (12) are, in general, nonorthog-
onal, i.e., the normalized overlap

S = |�α∗
+ · �α−|

|�α+||�α−| = 1 − |η|
1 + |η| (14)

does not vanish. Using this result and Eq. (13) we arrive at
a relation between the chirality of the two modes and their
overlap,

α = 2S

1 + S
. (15)

Figure 10 compares this prediction with the data obtained from
numerical solutions of Maxwell’s equations. It can be seen that
the 2 × 2 model works very well.

For the case η = 0, the Hamiltonian (6) exhibits an
exceptional point [38,43], i.e., not only the eigenvalues become
degenerate,

ω± = ω0 + �, (16)

but also the eigenvectors collapse to a single one, which in the
CCW and CW traveling-wave basis reads

�α± =
(

1
0

)
. (17)

The corresponding complex-square-root topology of the
eigenvalues (11) with a branch point singularity is shown in
Fig. 11.

0
0

Re(η)Im(η)

R
e(

ω
)

FIG. 11. (Color online) Complex-square-root topology with
a branch point singularity at the exceptional point of the
Hamiltonian (6).

The eigenvector at the exceptional point in the standing-
wave basis (9) is given by

�α± ∼
(

1
0

)
+ i

(
0
1

)
. (18)

This is a chiral state in the sense of Refs. [44,45].
The solutions (ψ1(t),ψ2(t)) of the Schrödinger-type equa-

tion (7) can be found analytically. We consider the time scale
related to the strength of the mode splitting

T = 1√|η||V | (19)

and the decay time

τ = − 1

Im(ω0 + �)
. (20)

In the following we restrict ourselves to the case τ � T and
t � T , which is the relevant regime for small |η|. We find for
a wave propagating initially at t = 0 in a CCW direction with
normalized amplitude

|ψ1| = e−t/τ , (21)

|ψ2| =
√

|η| t

T
e−t/τ . (22)

The component |ψ1| decays from 1 to 0 in an exponential
manner and |ψ2| increases from zero to the value

|ψ2|max =
√|η|τ

T
e−1 (23)

and then decays to zero. For |η| � 1 the value of |ψ2|max is
very small. This corresponds to the situation in the upper panel
of Fig. 6. Note that Eqs. (21) and (22) are exact for η = 0, i.e.,
at the exceptional point (see also [22,46]).
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For a wave propagating initially at t = 0 in a CW direction
it follows that

|ψ1| = 1√|η|
t

T
e−t/τ , (24)

|ψ2| = e−t/τ . (25)

The component |ψ2| decays from 1 to 0 in an exponential
manner. However, |ψ1| increases from zero to the value

|ψ1|max = τ√|η|T e−1 (26)

and then decays to zero. Here, |ψ1|max, in principle, can be
close to 1, as |η| is a small number. The ratio

|ψ1|max

|ψ2|max
= 1

|η| (27)

reflects the fact that the scattering from CW to CCW is 1/|η|
times stronger than the scattering from CCW to CW.

For the modes in the asymmetric limaçon in Fig. 3 we
estimate τ/T ≈ 0.024, from Fig. 5 |η| ≈ 1/6, and therefore
|ψ1|max ≈ 0.022 and |ψ2|max ≈ 0.0037, in reasonable agree-
ment with Fig. 6. For the modes in Fig. 8 we estimate
|ψ1|max ≈ 0.017 and |ψ2|max ≈ 0.0021. If we apply the same
analysis to the spiral cavity, then we find that the |ψ1|max values
are significantly larger. This is consistent with the fact that the
mode splitting and the chirality in the spiral cavity is larger.

IV. RAY DYNAMICS IN THE ASYMMETRIC LIMAÇON

Figure 12 shows the ray analog of Fig. 6. In the upper
(lower) panel a bunch of 12 500 rays in the asymmetric limaçon
propagating in a CCW (CW) direction with angle of incidence
|χ | distributed uniformly well above the critical angle for total
internal reflection, | sin(χc)| = 1/n ≈ 0.3, has been launched.
In our case, we select | sin χ | � 0.5 in order to eliminate
the very short-lived rays. It can be seen that the scattering
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FIG. 12. Time evolution of amplitude (defined as square root of
intensity) in semilogarithmic scale corresponding to CCW (solid
lines) and CW (dashed) propagating light rays in the asymmetric
limaçon. The upper (lower) panel shows the dynamics starting with a
set of pure CCW (CW) propagating rays in analogy to the wave
dynamical considerations in Fig. 6. Time is proportional to the
geometric length of ray trajectories.
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FIG. 13. Intensity of long-lived rays vs angle of incidence χ in
the asymmetric limaçon. Positive (negative) χ correspond to CCW
(CW) propagation direction.

from CCW to CW is weaker than from CW to CCW, as
in the wave calculations in Fig. 6. However, the ratio of
the scattering rates, corresponding to 1/|η|, is below 2, i.e.,
the asymmetry of scattering seems to be weaker for the ray
dynamics. Note, however, that the asymmetry here depends
on the initial conditions of the rays. Restricting the initial rays
to regions near confined periodic ray trajectories can enhance
1/|η| to around 10.

Having observed this correspondence of rays and waves
in terms of scattering, we show now that there is no such
correspondence of rays and optical modes in terms of spatial
chirality. To see this, consult Fig. 13, which is the ray analog
of Fig. 5(a). In total, 40 000 rays with initially uniform
distribution along the boundary of the cavity and uniformly
distributed | sin χ | ∈ (0.5,1) have been started. The quantity
sin χ is related to the angular momentum of a ray. In the
case of the circle the relation is given by nkR sin χ = m with
angular momentum index m [13]. Positive values of sin χ

correspond to CCW propagation direction and negative to
CW propagation direction. After time t = 50, measured in
length of ray trajectory in units of R, the remaining intensity
of rays approaches a survival probability distribution [47].
This distribution reflects the long-time behavior of the light
rays which can be compared to the properties of the long-lived
modes. The survival probability distribution as function of
sin χ is plotted in Fig. 13. We do not observe a chirality in this
distribution, i.e., the amount of CW propagating rays is 49.8%,
roughly equal the amount of CCW propagating rays, which is
in strong contrast to the properties of the optical modes in
Fig. 5(a).

Neither does the spatial chirality show up in an extended
ray dynamics including first-order wave corrections such as the
Goos-Hänchen shift (GHS) and the Fresnel filtering (FF). The
GHS is a lateral shift of totally reflected beams along the optical
interface [48], i.e., the points of incidence and reflection do
not coincide. In the case of the FF [49–51], partial waves with
angles of incidence below the critical angle for total internal
reflection are (partially) refracted out of the cavity, leading
to a shift χ of the partial waves between the incident and
outgoing angles—i.e., a violation of Snell’s law. In the short-
wavelength limit λ → 0 the GHS and FF disappear leading
to the standard ray dynamics of geometric optics. Such wave
corrections have been used to explain properties of optical
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0 x

0

y W

FIG. 14. Billiard boundary of constant width as defined in
Eq. (28) with z(0) = (1/4 − i)R, a0 = R, a3 = iR/8, a5 = (1 +
i)R/4, and a2k+1 = 0 for k > 2. The straight lines show four possible
ways (out of infinitely many) to measure the width W . The value of
W is always 2R.

modes in deformed subwavelength-scale microdisk cavities
[26,52,53].

The presented ray simulations for the asymmetric limaçon
show that the weak asymmetry in the scattering between
CCW to CW propagating rays does not lead to a chirality in
the survival probability distribution. Hence, the ray dynamics
cannot explain the chirality observed in the optical modes. To
support this finding, in the next section we discuss another
cavity geometry, for which it is rigorously proven that there
is no scattering between CCW and CW propagating rays and
therefore no asymmetry in the scattering of rays. Nevertheless,
the modes show significant chirality and nonorthogonality.

V. GUTKIN’S BILLIARD OF CONSTANT WIDTH

Gutkin studied a class of convex billiards (closed cavities)
of constant width [25], i.e., for any point at the boundary
the maximal distance to other points of the boundary is a
constant (see, e.g., Fig. 14). The (conventional and extended)
ray dynamics in such billiards is characterized by a phase
space which is strictly separated into two parts corresponding
to CW and CCW motion, i.e., there is no scattering from CW
to CCW propagating rays. Optical microcavities of constant
width have been studied in the context of directional light

(a) (b)

FIG. 15. (Color online) Intensity |ψ |2 of the nearly degenerate
pair of modes in Gutkin’s billiard of constant width with (a) �1 =
12.386 847 − i0.005 61 and (b) �2 = 12.386 995 − i0.005 695.
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FIG. 16. (Color online) Angular momentum distributions α(1)
m

(black solid line) and α(2)
m (green dashed) of the modes in Fig. 15

normalized to 1 at maximum: (a) absolute value squared, (b) real
and (c) imaginary part, and (d) superpositions α+

m = (α(1)
m + α(2)

m )/2
(black solid) and α−

m = (α(1)
m − α(2)

m )/2 (red dashed, multiplied by a
factor of 3.5).

emission [54]. The parametrization of the class of boundary
shapes in the (x,y) plane is most conveniently given in the
complex variable z = x + iy,

z(α) = z(0) − i
∑
n∈Z

an

n + 1
(eiα(n+1) − 1), (28)

with α ∈ [0,2π ), a−n = a∗
n , a1 = 0, and a2n = 0 for n > 0.

Here we consider a realization without mirror symmetry and
where the CW and CCW components in phase space are almost
fully chaotic: z(0) = (1/4 − i)R, a0 = R, a3 = iR/8, a5 =
(1 + i)R/4, and a2k+1 = 0 for k > 2. The constant width is
W = 2R. This boundary curve is illustrated in Fig. 14.

We find that the optical modes in a microcavity with such
a boundary shape also appear in nonorthogonal and chiral
pairs of modes. Figures 15 and 16 show the mode pattern
and its angular momentum decomposition [origin is the center
of mass] of a typical pair of modes for TM polarization and
refractive index n = 3.3. The chirality turns out to be α ≈
0.726 and ≈0.717. The spatial overlap of both modes is around
0.56. These values are in good agreement with the result from
the effective Hamiltonian in Eq. (15).

A proper rotation of Fig. 14 shows that the boundary curve
is less asymmetric than the asymmetric limaçon. We therefore
consistently observe smaller chirality α and overlap S for the
cavity geometry defined by Eq. (28). Moreover, we find that
the relative number of CW copropagating pairs is larger if
compared to the asymmetric limaçon.

In a billiard of constant width there is no scattering from
CW and CCW propagating rays and vice versa. Using this fact,
we can rule out the asymmetric scattering of rays as the origin
of the spatial chirality in this system.

VI. SUMMARY

The nonorthogonality and spatial chirality of mode pairs
in two asymmetrically deformed microdisk cavities, the
asymmetric limaçon and Gutkin’s cavity of constant width, has
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been studied. Our results indicate that the appearance of such
nonorthogonal chiral pairs is a common feature of deformed
microdisks which lack mirror symmetries. Using an effective
non-Hermitian Hamiltonian we have linked these two interest-
ing effects and explained them by the asymmetric scattering
between clockwise and counterclockwise propagating waves,
expressed by an asymmetry parameter |η|. We have shown
that the observation of these effects in dynamical experiments
with waves depends not only on the ratio between the period
related to the mode splitting T and the decay time τ but
also strongly on the asymmetry parameter |η|. Finally, we
have demonstrated for the considered cavities that there is no
significant chirality in the survival probability distribution of
rays. This is in strong contrast to the case of the spiral cavity.
This observation shows that the nonorthogonality and spatial
chirality is, in general, a wave dynamical effect.

It remains an interesting question for future research to ask
for the size of the chiral effects in the case of circular-shaped

disks with surface roughness arising from the inevitable
imperfections in the fabrication process. In such a case we also
expect the appearance of nonorthogonal pairs of copropagating
modes. But the nonorthogonality and the chirality might be
small for the case of weak surface roughness that can be
achieved nowadays in state-of-the-art experiments. Moreover,
averaged over many mode pairs the chirality should be close
to zero due to the random character of the boundary profile.

We believe that our results are not only important for
deformed microdisks but also for other types of optical
microcavities (microspheres and microtoroids) and for open
quantum (wave) systems, in general.
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