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Universal routes to spontaneous PT -symmetry breaking in non-Hermitian quantum systems
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PT -symmetric systems can have a real spectrum even when their Hamiltonian is non-Hermitian, but develop
a complex spectrum when the degree of non-Hermiticity increases. Here we utilize random-matrix theory to
show that this spontaneous PT -symmetry breaking can occur via two distinct mechanisms, whose predominance
is associated to different universality classes. Present optical experiments fall into the orthogonal class, where
symmetry-induced level crossings render the characteristic absorption rate independent of the coupling strength
between the symmetry-related parts of the system.
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In quantum mechanics, the analysis of level crossings pro-
vides a powerful tool for the extraction of discrete symmetries,
with applications ranging from the Zeeman effect to present-
day studies, for example, of the surface states in condensed-
matter systems [1,2]; in the absence of crossings, the degree
of level repulsion distinguishes principal universality classes
of quantum systems [3,4]. Spectral phenomena acquire an
additional richness in non-Hermitian quantum systems, which
generally have a complex energy spectrum, with imaginary
parts of the energies related to decay or amplification rates.
However, in the presence of symmetries which ensure that
loss and gain are in balance, the spectrum can still be real. One
intensely researched route to try and achieve such a balance
is to couple two identical systems symmetrically and then
induce opposite amounts of gain and loss into the two parts, as
illustrated in Fig. 1(a) [5–17]. The Hamiltonian then possesses
a combined parity (P) and time-reversal (T ) symmetry,
and its secular equation is real. Interestingly, this does not
guarantee a real spectrum; as the level of non-Hermiticity
(loss and gain) is increased, pairs of complex-conjugate energy
levels appear [7–9]. This phenomenon of spontaneous PT -
symmetry breaking has gained recent prominence because it
leads to optical effects such as double refraction, solitons, and
nonreciprocal diffraction patterns, which provide mechanisms
for the design of unidirectional couplers and left-right sensors
[11,12], concepts that are now being realized experimentally
in a variety of optical settings [13]. Over the past months,
these systems were proposed for at-threshold lasers [14] and
laser-absorbers [15,18]. In turn, these developments have
instigated a deeper theoretical understanding of the role of the
dynamics (such as the consequences of Anderson localization
and wave chaos [16], as well as interactions [17]). In this Rapid
Communication, based on an investigation of the symmetries
of such systems, we establish distinct universality classes
which directly affect the nature of spontaneous PT -symmetry
breaking and relate these to the propensity of level crossings.

To do so, we derive random-matrix ensembles where loss
and gain in the two parts of the system are implemented
by a uniform rate µ, while coupling is established through
N channels with transmission probability T ; the mean level
spacing of the decoupled parts is � [19]. We find that
the mechanism behind spontaneous PT -symmetry breaking
depends on whether the Hermitian limit µ = 0 is time-
reversal symmetric or not, amounting to a predominance of

symmetry-induced level crossings or level repulsion [see
Fig. 1(b)]. This results in different characteristic scales µPT

of amplification or absorption governing the transition from
an essentially real to an essentially complex spectrum. Present
optical experiments and theoretical studies concern systems
without magneto-optical effect (the orthogonal symmetry
class), in which the Hermitian limit is time-reversal sym-
metric. In this case µPT ∼ √

N�/2π ≡ µ0 becomes fully
independent of the coupling strength as soon as T surpasses a
parametrically small threshold Tc ∼ 1/N , thereby exhibiting a
level of universality that goes beyond what is normally encoun-
tered in mesoscopic systems. For weak coupling (T < Tc),
µPT ∼ √

NT µ0. Adding magneto-optical effects to the sys-
tem essentially changes the nature of the transition. In this case
(the unitary symmetry class), µPT ∼ √

T µ0 in the full range
of weak and strong coupling. These findings are illustrated in
Fig. 2.

Random-matrix ensembles. To derive the appropriate
random-matrix ensembles we formulate a quantization con-
dition based on scattering theory [14,20,21]. The N × N -
dimensional scattering matrix,

SL(E; µ) = 1 − 2iV †(E − iµ − H + iV V †)−1V, (1)

of the left subsystem can be expressed in terms of an M × M-
dimensional Hamiltonian H , which is real symmetric (a
member of the standard Gaussian orthogonal ensemble) if the
Hermitian limit µ = 0 is time-reversal symmetric and complex
Hermitian (a member of the Gaussian unitary ensemble) if
this is not the case [3]. We assume M � N � 1 and denote
the mean level spacing in the energy range of interest by �.
The M × N coupling matrix V then fulfills V V † = diag(vm),
where N diagonal entries vm = �M/π correspond to fully
transparent channels, and M − N entries vm = 0 describe
the closed channels [20]. Adopting a basis where the time-
reversal operation T is identical to complex conjugation, PT
symmetry results in the relation [14]

SR(E; −µ) = [S−1
L (E∗; µ)]∗

= 1 − 2iV †(E + iµ − H ∗ + iV V †)−1V (2)

for the scattering matrix of the right subsystem. The tunnel
barrier is described by reflection amplitudes r = −√

1 − T

and transmission amplitudes t = i
√

T . As shown in the lower
part of Fig. 1(a), these scattering matrices relate amplitudes
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FIG. 1. (Color online) (a) Sketch of a non-Hermitian PT -
symmetric system, where a region with absorption rate µ (and mean
level spacing �, left) is coupled symmetrically via a tunnel barrier
(supporting N channels with transmission probability T ) to an ampli-
fying region with a matching amplification rate (right). Below this is
the scattering description of the system. (b) Two routes to spontaneous
PT -symmetry breaking, depending on whether the Hermitian limit
µ = 0 is T symmetric (orthogonal class displaying level crossings,
left) or not (unitary class displaying avoided crossings, right). Shown
are real eigenvalues of a random Hamiltonian H [Eq. (4)] as function
of T for fixed µ = 0 (left of dashed line), and then as a function of µ

for fixed T = 1 (right of dashed line). Complex-valued levels (formed
by level coalescence at µ > 0) are not shown. Here µ0 = √

N�/2π ,
and we set N = 10.

of left- and right-propagating waves at the two interfaces of
the tunnel barrier. The requirement of consistency of these
relations results in the quantization condition

det

[(
r t

t r

) (
SL 0

0 SR

)
− 1

]
= 0, (3)

which can be rearranged into an eigenvalue problem det(E −
H) = 0 with effective Hamiltonian

H =
(

H − iµ �

� H ∗ + iµ

)
. (4)

The positive semidefinite coupling matrix � = diag(γm)
now incorporates the finite transmission probability of the
barrier; its N nonvanishing entries read γm = [

√
T /(1 +√

1 − T )]�M/π ≡ γ [22].
Numerical evaluation. Before engaging in an analytical dis-

cussion of the different routes to spontaneous PT -symmetry
breaking [illustrated in Fig. 1(b)], we put forward numerical
results which illustrate the physical consequences of the points
to be made below. These results, presented as (color) gradient
plots in Fig. 2, concern the fraction f (µ,T ) of complex-valued
energy levels within a range where the mean level spacing
can be assumed constant. We fix M = 1000, which ensures
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FIG. 2. (Color online) Gradient plots of the ensemble-averaged
fraction f (µ,T ) of complex energy levels (among all levels within
a range of energies over which the mean spacing � can be assumed
constant), for the orthogonal class (left) and the unitary class (right).
In (a) and (b), µ is scaled to µ0. The bottom panels show same data
with µ scaled to µ′

0 = µ0/
√

1 + 1/NT (c) and µ′
T = √

T µ0 (d).
Numerical results with N = 50.

a large number of levels within the range in question, and
N = 50 [23].

Figure 2(a) shows results for the orthogonal ensemble,
with µ scaled to µ0 = √

N�/2π . We see that above a small
threshold Tc (to be determined below as Tc ∼ 1/N), the
transition from the real spectrum (f = 0, obtained for µ = 0)
to a spectrum which is partially real and partially complex
spectrum (f ∼ 1/2) indeed occurs on the scale µPT ∼ µ0

and then is independent of the value of T . Only for T < Tc,
µPT ∼ √

NT µ0 ≡ µT is coupling dependent. In order to get
a unified view over both regimes, we plot in panel (c) the
same data, but with µ scaled to µ′

0 = µ0/
√

1 + 1/NT , which
interpolates between µT for T � Tc and µ0 for T � Tc. The
convergence of gradient lines for T → 0 indicates that for
weak coupling the transition becomes more abrupt.

Figure 2(b) shows the corresponding results for the unitary
ensemble, where µ is again scaled to µ0. Here we find that
a systematic T dependence persists across the full range of
coupling strengths. As shown in panel (d), this dependence
takes the form µPT ∼ √

T µ0 ≡ µ′
T . Now the only difference

between the strong and weak coupling regimes is a factor of
order 1. In further contrast to the orthogonal case, for weak
coupling the transition remains smooth; however, since µ′

T =
µT /

√
N � µT , it then occurs at a far smaller deviation from

Hermiticity.
Underlying mechanisms. We now show that the features

reported above originate from two distinct mechanisms of
spontaneous PT -symmetry breaking. We first consider the
orthogonal class and start in a regime which can be treated per-
turbatively. For µ = 0, the effective Hamiltonian H [Eq. (4)]
is real symmetric, and all its eigenvalues are real. For T = 0
(� = 0), on the other hand, the spectrum is a superposition
of two level sequences Ek = εk ± iµ, which are all complex
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if µ 	= 0; here εk are the eigenvalues of H . Therefore, in
regard to the question of how many levels are complex, the
limits T , µ → 0 do not commute. Nonetheless, for T = µ = 0
the spectrum reduces to the superposition of two degenerate
level sequences εk , so that quasidegenerate perturbation theory
applies. Denote by ψ (k)

m the wave function of H corresponding
to eigenvalue εk; in random-matrix theory, this is a random
normalized vector with real entries. Reduced to the symmetric
and antisymmetric extension of this wave function across the
whole system, the effective Hamiltonian takes the form

H′ =
(

εk − iµ
∑

m[ψ (k)
m ]2γm∑

m[ψ (k)
m ]∗2γm εk + iµ

)
, (5)

whose eigenvalues become complex for µ2
PT =

{∑m[ψ (k)
m ]2γm}2. Therefore, using the self-average [ψ (k)

m ]2 =
1/M , as well as γ ∼ √

T �M/2π for T � 1,

µPT ∼ N
√

T �/2π = µT (orthogonal, T � 1/N), (6)

which indeed recovers the numerical scale in the weak
coupling regime of the orthogonal class.

As indicated, this analysis is restricted to small values of T ,
corresponding to small tunnel splittings, so that the levels of the
originally degenerate sequence εk from the two subsystems do
not cross. Consequently, at larger values of T , a second route
to PT -symmetry breaking becomes available, which involves
two energy levels that are nondegenerate for T = 0. In order to
describe this case we reformulate the problem by starting with
µ = 0 and exploit the thus-emergingP symmetry to transform
the effective Hamiltonian to

HP =
(

H + � iµ

iµ H − �

)
. (7)

We denote by ε±
k the two level sequences of H ± �. Since � is

positive semidefinite these sequences arise from the sequence
εk by an oppositive shift which is approximately rigid. From
the resulting combined sequence, consider two levels ε+

k

and ε−
l which lie adjacent to each other; the corresponding

eigenvectors are ψ (k+) and ψ (l−). Finite µ mixes these levels,
which is embodied in the reduced Hamiltonian

H′′ =
(

ε+
k iµ〈ψ (k+)|ψ (l−)〉

iµ〈ψ (l−)|ψ (k+)〉 ε−
l

)
. (8)

Now, treating 2� as a perturbation which connects the
+ and − sequence, 〈ψ (k+)|ψ (l−)〉 ≈ 〈ψ (k+)|2�|ψ (l+)〉

ε+
k −ε+

l

. Because

|ε+
k − ε−

l | = O(�) is small compared to the shift due to the
coupling, the denominator can be estimated as ε+

k − ε+
l ≈

ε−
l − ε+

l ≈ −〈ψ (l+)|2�|ψ (l+)〉. The coupling strength drops
out, and on average |〈ψ (l−)|ψ (k+)〉|2 ∼ 1/N ; that is, the mixing
is small. As a result, the level pair in question becomes complex
for µ2|〈ψ (l−)|ψ (k+)〉|2 ∼ (ε+

k − ε−
l )2 ∼ �2; that is,

µPT ∼
√

N�/2π = µ0 (orthogonal, T � 1/N ). (9)

As indicated, comparison with Eq. (6) implies that this
mechanism becomes favorable around T = Tc ∼ 1/N .

We now turn to the unitary class, and start again in the
perturbative regime (we find that this now indeed extends to
T = 1). The reduced Hamiltonian is still of the form (5), but

the components of the vector ψ (k)
m now are complex. There-

fore, [ψ (k)
m ]2 = 0, and the average [ψ (k)

m ]2[ψ (k)
n ]∗2 ∼ δmn/M

2

appearing in the expression of µ2
PT involves an additional

contraction over channel indices m and n. As a result, the
perturbative crossover scale is now given by

µPT ∼
√

NT �/2π = µ′
T (unitary). (10)

Compared to the perturbative expression (6) in the orthogonal
class, µPT is, therefore, reduced by the parametrically large
factor ∼√

N . Physically, this amounts to vastly reduced tunnel
splittings. Therefore, the perturbative regime now extends to
T = 1, considering that only at this value does it cross over to
µ0. A related difference to the orthogonal class is revealed in
the P basis, where in place of Eq. (7) we now have

HP =
(

ReH + � iImH + iµ

iImH + iµ ReH − �

)
. (11)

Consequently, finite coupling now results in a direct mixing of
levels in the individual sequences. Therefore, instead of level
crossings one encounters level repulsion. This difference is
illustrated in Fig. 1(b), which shows the evolution of energy
levels as T is increased from 0 to 1 (while µ = 0), and the
subsequent fate of real levels as µ is increased from 0 to 4µ0

(while T = 1); pairwise coalescing levels become complex
and then are no longer shown. In the orthogonal class, such
pairs trace back to well-separated levels ε+

k , ε−
l from the two

different sequences (which are distinguished by the opposite
slopes of the levels for increasing coupling). In contrast, in
the unitary class the coalescing levels trace back to originally
closely spaced or degenerate levels, even when the coupling is
strong.

Conclusions. In summary, we identified two routes to the
formation of complex energy levels in non-Hermitian quantum
systems with PT symmetry (spontaneous PT -symmetry
breaking). The predominant mechanism depends on whether
or not the Hermitian limit possesses time-reversal symmetry
(orthogonal or unitary universality class, respectively). Present
optical experiments fall into the orthogonal class, where level
crossings result in a characteristic absorption and amplification
rate µPT which is independent of the coupling between the
symmetry-related parts of the system (unless the coupling is
very weak). The unitary class features strong level repulsion,
which reduces µPT and makes it coupling dependent.

While we employed random-matrix theory to obtain
specific expressions, the concept of discrete unitary and
antiunitary symmetries like P and T and their relation to
universality and level crossings are broader [3,4]. Therefore,
the different routes identified here also apply to alternative
models [19], and indeed to individual systems. In particular,
in optical or microwave experiments, the two routes could be
verified in a fixed geometry as illustrated in Fig. 1(a), where
one varies the transparency of a semitransparent mirror to
change the coupling between the left and the right cavities.
Instead of amplification, it suffices to implement different rates
µL, µR of absorption, which results in complex resonance
frequencies ωn on the line Imωn = −(µL + µR)/2, as well as
pairs of resonances symmetrical to this line. In such settings,
time-reversal symmetry can be broken via magneto-optical
effects [24,25].
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