
Counting Statistics for Mesoscopic Conductors with Internal Degrees Of Freedom

Christopher Birchall and Henning Schomerus

Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
(Received 29 April 2010; published 6 July 2010)

We consider the transport of electrons passing through a mesoscopic device possessing internal

dynamical quantum degrees of freedom. The mutual interaction between the system and the conduction

electrons contributes to the current fluctuations, which we describe in terms of full counting statistics. We

identify conditions where this discriminates coherent from incoherent internal dynamics and also identify

and illustrate conditions under which the device acts to dynamically bunch transmitted or reflected

electrons, thereby generating super-Poissonian noise.
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The probabilistic nature of quantum transport consti-
tutes a fundamental source of current fluctuations, whose
study provides detailed information about the carrier dy-
namics [1]. A comprehensive characterization of these
fluctuations is provided by the framework of full counting
statistics (FCS), which delivers a unifying perspective on
the conductance G ¼ I=V (where I is the current and V is
the bias voltage), the shot noise P ¼ 2eIF (where F is the
Fano factor, with F ¼ 1 signifying the Poissonian statistics
of uncorrelated carriers), and higher-order stationary cur-
rent correlations [2]. In the regime of single-particle elec-
tronic transport close to equilibrium, the Pauli principle
fundamentally constrains the current fluctuations, which
results in sub-Poissonian noise with Fano factor F < 1.
Repulsive interactions between the charge carriers gener-
ally result in a further reduction of the noise [3]. Super-
Poissonian statistics can be achieved in strongly correlated
systems [4] or when superconducting correlations or en-
tanglement are present at some of the electronic sources
[1,5]. The noise can also be enhanced via external means,
e.g., by the presence of classical multistate fluctuators [6].

Many quantum conductors of present interest, such as
molecules with different conformations and nanoelectro-
mechanical systems, as well as a wide range of qubit pro-
posals, possess internal quantum degrees of freedom which
can be associated with multiple internal states of a meso-
scopic device [see Fig. 1(a)]. These degrees of freedom are
not directly associated with the charge carriers but cannot
be considered external because of the backaction of the
passing carriers. The purpose of this work is to demonstrate
that these internal dynamics can be effectively probed via
their influence on the counting statistics. We find that, even
though the internal degrees of freedom do not introduce
strong correlations in the conventional sense [7], they can
result in super-Poissonian statistics with F � 1. The trans-
port then takes the form of dynamically created trains of
transmitted or reflected electrons. We identify conditions
of ideal dynamical bunching and show that these can be
realized in a model system, a coherent which-path inter-
ferometer [8,9] consisting of an Aharonov-Bohm ring

which is electrostatically coupled to an excess electron in
a double quantum dot [see Fig. 1(b) and results in Fig. 2].
We also identify a regime where the transmitted bunches
consist of exactly two electrons, with F ¼ 2.
These phenomena are identified by extension of pre-

vious works on counting statistics in passive systems, in
particular, counting statistics of conductors coupled to
quantum detectors [10,11], and the wave-packet approach
[12], which provides a convenient dynamical perspective
on FCS. The resulting expression for FCS takes the form of
a generalized propagation of the density matrix for the
internal degrees of freedom. A key concept emerging
from these expressions is the extent of coherence main-
tained throughout the evolution of the internal system
dynamics, which manifests itself in electronic interference
contributions associated to different dynamical histories of
the internal system state.
Model and framework.—We consider electronic trans-

port through a mesoscopic system with internal degrees of
freedom, as schematically depicted in Fig. 1(a). The sys-
tem possesses N internal states jni, n ¼ 1; 2; 3; . . . ; N,
which affect the transport of electrons passing through
the system. In terms of creation and annihilation operators
c y and c of electrons in momentum (k) and position (r)
representation, a reference Hamiltonian representative of

FIG. 1. (a) Sketch of a mesoscopic device with internal de-
grees of freedom, attached to leads contacted by electronic
reservoirs. (b) Realization of such a system in terms of a
coherent which-path interferometer, consisting of an excess
electron in a double quantum dot (states j"i and j#i and tunnel
splitting �), which interacts via a state-dependent potential V";#
with charge carriers passing through an Aharonov-Bohm ring.
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this problem takes the form

H ¼
Z

dk�ðkÞc yðkÞc ðkÞ þX
nm

Hsys
nmjnihmj

þX
n

Z
drc yðrÞc ðrÞVnðrÞjnihnj: (1)

Here, the first term describes the kinetic energy of elec-
trons with dispersion relation �ðkÞ, which is independent
of the internal system state. The second term is the
Hamiltonian of the isolated internal system degrees of
freedom. The last term describes the interaction between
these degrees of freedom and the electrons, which here is
formulated in terms of a potential energy Vn whose state-
dependent part is assumed to be confined to the scattering
region (the potentials Vn may also contain a state-
independent part outside this region, which can model,
e.g., some features of the leads).

Note that we do not assume that the isolated system
Hamiltonian commutes with the interaction part.
Therefore, even when the internal degrees of freedom are
initially prepared in an eigenstate j�i of Hsys (correspond-
ing to energy E�, where� ¼ 1; 2; 3; . . . ; N), the interaction
with scattered electrons will induce dynamics into the
internal system. Moreover, since the system is not driven
externally, total energy conservation implies that any
change of internal system energy will be compensated by
a change of energy of the transmitted or reflected electrons,
which amounts to inelastic (but still coherent) scattering.
We are interested in the consequence of these phenomena
for the average current and its temporal fluctuations.

A general framework for the statistical description of the
electronic transport is provided by FCS, which delivers
information about the probability PðQ;T Þ that a number
Q of charge carriers are transmitted during a time interval
T . This information is encoded into the moment-
generating function

�ð�Þ ¼ X1
Q¼0

PðQ;T Þ expð�QÞ ¼ X1
k¼0

hQki�
k

k!
; (2)

where hQki denotes the kth moment of Q. Of particular
interest are the associated cumulants of order m,

hhQmii ¼ @m

@�m ln�ð�Þj�¼0; (3)

which for large times increase linearly in T , hhQmii �
ðT =�Þqm. Here 1=� is the attempt frequency of transmis-
sion for incoming electrons (� ¼ h=eV for bias voltage V);
the coefficient q1 ¼ g ¼ G=G0 then delivers the dimen-
sionless conductance (in units of the conductance quantum
G0 ¼ e2=h), while q2=q1 ¼ F delivers the Fano factor
[1,2].
General results.—In order to obtain a general expression

for the moment-generating function, we adopt the wave-
packet variant of the scattering approach, introduced in the
absence of internal dynamics in Ref. [12]. We restrict our
attention to circumstances where at most one electron at a
time is interacting with the internal system. This corre-
sponds either to weak interactions or to a small attempt
frequency, where the latter can be realized either by apply-
ing a small bias voltage or by judiciously injecting sparse
charge carriers via an electronic pumping device [13]. By
exploiting the fact that under these conditions wave pack-
ets of consecutive electrons are nonoverlapping, the initial
state of N electrons incident from the left lead can be
formulated as the product of wave packets [14]

�initialðfrng; tÞ ¼
�YN
n¼1

c ðinÞðrn; t� tnÞ
�X

�

p�j�i; (4)

where p� are the initial probability amplitudes of the
internal system. Here, tn � n� denotes the arrival times
of the electrons, which are spread out according to the
attempt frequency, and N � T =�. The final state of the
reflected or transmitted electrons then takes the form

�finalðfrng; tÞ ¼
X

f�ngNn¼0

�
p�0

j�N iYN
n¼1

c ðoutÞ
�n�n�1

ðrn; t� tnÞ
�
;

(5)

where

c ðoutÞ
�0� ðr; tÞ ¼ r�0�ðr; tÞ þ t�0�ðr; tÞ (6)

consists of a reflected and a transmitted wave packet,
confined to the left and right lead, respectively; the indices
indicate the final and initial internal states. These wave
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FIG. 2. Fano factor for the coherent which-path interferometer
sketched in Fig. 1(b), where (a) shows results as a function of the
magnetic flux � penetrating the Aharonov-Bohm ring, for fixed
tunnel splitting � ¼ 0:01EF, and (b) shows results as a function
of �, for fixed � ¼ h=2e. Solid (dashed) lines: Coherent (inco-
herent) internal dynamics. Insets in (a): Dimensionless conduc-
tance (top) and ratio of incoherent and coherent Fano factors
(bottom). The results are obtained by propagation of minimal-
uncertainty wave packets with energy spread �E ¼ 0:007EF.
The interaction V";# is modeled by an effectively impenetrable

barrier of height 20EF, which blocks one of the two arms (of
length L, with @

2=2mL2 ¼ 0:061EF) depending on the occupa-
tion of the double dot.
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packets correspond to asymptotic transmission and reflec-
tion probabilities

R�0� ¼
Z

drjr�0�ðr; t � 0Þj2; (7)

T�0� ¼
Z

drjt�0�ðr; t � 0Þj2: (8)

Following the general strategy of counting statistics
developed for systems without internal degrees of freedom,
we formulate the moment-generating function in terms of a
generalized wave function: �ð�Þ ¼ h�finalð�Þj�finalð�Þi,
where �finalð�Þ is of the same form as Eq. (5) but with

c ðoutÞ replaced by

c ðoutÞ
�0� ðr; t; �Þ ¼ r�0�ðr; tÞ þ e�=2t�0�ðr; tÞ: (9)

Here, the counting field � serves for bookkeeping of the
transmission events. After integration over the electron
coordinates, the generating function takes the compact
form of a matrix product:

�ð�Þ ¼ XTMN �; (10)

where

M �0 ~�0;�~� ¼
Z

drr�~�0 ~�ðr; tÞr�0�ðr; tÞ

þ e�
Z

drt�~�0 ~�ðr; tÞt�0�ðr; tÞ (11)

is the superoperator propagating the density matrix � of the
internal system state, generalized to include the counting
field �. Note that M can be interpreted as a matrix where
each row and column is specified by two indices, with one
index each arising from the propagation of the bra and the
ket of the internal system state (� then corresponds to a
vector). For the pure state specified in Eq. (4), the initial
density matrix is �� ~� ¼ p�p

�
~�; with modification of this

initial condition, the formalism also applies if the initial
internal state is mixed. The vector X with components
X~�0�0 ¼ � ~�0�0 embodies the trace of the final density ma-
trix. In this dynamical description, the matrix elements
M�0;� � M�0�0;�� are associated to the evolution of popu-

lations (the diagonal elements of �), while the other matrix
elements describe corrections due to coherence (interfer-
ence of electronic wave packets generated by different
histories of the internal dynamics).

In practice, the internal degree of freedom will suffer
from decoherence due to coupling to the environment. This
can be described by a modified generalized propagator
~M ¼ MZ, where the diagonal matrix Z embodies sup-
pression of off-diagonal elements of the intermediate den-
sity matrices. If the internal system state is continuously
monitored, the internal dynamics become incoherent,
Z ~�0�0;~�� ¼ �~�0�0�~�����0 , and the time evolution reduces

to a classical stochastic problem described by a rate equa-

tion, which involves only transition probabilities between
populations. The generating function then simplifies to

�ð�Þ ¼ YTMN P; (12)

where

M�0� ¼ R�0� þ e�T�0� (13)

is the classical propagator of the population probabilities
with initial conditions P� ¼ jp�j2, while the vector YT ¼
ð1; 1; 1; . . .Þwith unit components embodies the summation
over all final states of the system [15].
Of particular interest is the steady state behavior of the

system, corresponding to T � �. To analyze this limit we
diagonalize the matrices M (for coherent internal dynam-

ics),M (for incoherent internal dynamics), or ~M (for cases
in between these two limiting scenarios) and denote the
largest eigenvalue by Dmaxð�Þ. For large times, the
cumulant-generating function then becomes

ln�ð�Þ �T
�

lnDmaxð�Þ: (14)

Therefore, the problem of full counting statistics is reduced

to finding the eigenvalues of the matrices M, M, or ~M,
respectively. By expanding Dmaxð�Þ ¼

P1
k¼0 dk�

k=k! as a
Taylor series, the dimensionless conductance is given by
g ¼ d1, and the Fano factor is given by F ¼ ðd2 � d21Þ=d1
[16].
Dynamical electron bunching.—As we now show, even

though we consider electrons that never directly interact
with each other, the internal system degrees of freedom can
induce dynamical correlations which result in super-
Poissonian noise with F � 1, corresponding to dynamical
bunching of electrons. This possibility is most transpar-
ently revealed in the case of incoherent dynamics of an
internal two-state system. In anticipation of the concrete
example discussed below, we denote the two internal states
as � ¼ þ;�. The matrix M then takes the form

M ¼ Rþþ þ e�Tþþ Rþ� þ e�Tþ�
R�þ þ e�T�þ R�� þ e�T��

� �
; (15)

and the largest eigenvalue can be calculated explicitly.
Consider now the case of small switching probabilities
Sþ� ¼ Rþ� þ Tþ� � 1, S�þ ¼ R�þ þ T�þ � 1. On
average, the two states are then populated with probabili-
ties Pþ ¼ Sþ�=ðSþ� þ S�þÞ and P� ¼ S�þ=ðSþ� þ
S�þÞ. In terms of these probabilities, the dimensionless
conductance takes the simple form g � PþTþþ þ P�T��
of a time-averaged transmission probability. By assuming
Tþþ � T��, the Fano factor

F � 1

Sþ� þ S�þ
2PþP�ðTþþ � T��Þ2
PþTþþ þ P�T��

; (16)

on the other hand, can become arbitrarily large. The noise
is then dominated by the rare probabilistic switching be-
tween states of different transmission probabilities. In the
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limiting case that one of the two transmission probabilities
is much larger than the other (say, Tþþ � T��), the
device is partially transmitting during some time intervals
but effectively shut down during others, which results in
well spaced-out trains of transmitted electrons. These ob-
servations also extend to multistate dynamics; noise is
generally enhanced whenever the transmission probabil-
ities differ between the states of the device.

Application to a mesoscopic device.—We now illustrate
how conditions of dynamically enhanced current fluctua-
tions can be realized in a specific mesoscopic device, the
coherent which-path interferometer shown in Fig. 1(b)
[8,9]. The internal degree of freedom arises from an excess
electron in a double quantum dot, with states j"i and j #i for
occupation of the upper or lower dot, respectively.
Depending on its location, this electron blocks the path
of charge carriers moving through the upper or lower arm
of an Aharonov-Bohm ring, where coherent transport can
be tuned by varying the magnetic flux �. As we are
interested in situations where the isolated system
Hamiltonian does not commute with the interaction term,
we assume that the isolated system eigenstates are the
symmetric and antisymmetric orbital states j�i ¼ ðj"i�
j#iÞ= ffiffiffi

2
p

of the excess electron, which are separated by a
tunnel splitting energy � (corresponding to E� ¼ 	�=2).

To characterize the transport through this device, we
calculate the matrix elements (11) by numerical propaga-
tion of initially Gaussian wave packets. The conductance
and Fano factor are then obtained from the eigenvalues of
the matrices Mð�Þ (for coherent internal dynamics) and
Mð�Þ (for incoherent internal dynamics), as described
above. Figure 2(a) shows the resulting Fano factor as a
function of � for a set of system parameters. We observe
that the current fluctuations can be significantly enhanced
above the threshold F ¼ 1 for super-Poissonian noise. For
� ! 0, the switching probabilities Sþ� and S�þ vanish
because of the parity symmetry of the system [9], and the
Fano factor increases over all bounds, as predicted by
Eq. (16). In this regime, the Fano factor discriminates
coherent from incoherent dynamics (bottom inset; as
shown in the top inset, the conductance is unaffected by
this distinction). In contrast, when half a flux quantum
penetrates the ring (� ¼ h=2e), parity symmetry ensures
that each transmission event is strictly correlated with a
transition of the internal system degree of freedom, while
no such transitions occur when an electron is reflected (i.e.,
R�þ ¼ Rþ� ¼ Tþþ ¼ T�� ¼ 0) [9]. Even in this case,
dynamical electron bunching can occur: The maximal
Fano factor for incoherent internal dynamics now is F ¼
2, which is realized when R��; T�þ � Rþþ; Tþ� (or vice
versa), so that Pþ � P�. The transport then consists of
pairs of transmitted electrons, which coincide with the rare
transitions into the state j�i (first transmitted electron),

followed by its immediate depopulation (second transmit-
ted electron). Figure 2(b) shows that such conditions can be
met by tuning the tunnel splitting � and are insensitive to
the degree of coherence in the internal dynamics. Guided
by these results, we expect that super-Poissonian noise
statistics should be common when mesoscopic systems
possess internal degrees of freedom.
Concluding remarks.—In summary, we have investi-

gated the phase coherent transport through mesoscopic
devices with internal degrees of freedom and formulated
the full counting statistics in terms of a generalized propa-
gator of the density matrix for these freedoms [Eqs. (10)–
(14)]. In general, the counting statistics depend on the
degree of coherence of the internal system dynamics.
The dynamical switching of the internal system degrees
of freedom can enhance the current fluctuations, resulting
in Fano factors that significantly exceed the threshold
F ¼ 1 for super-Poissonian noise.
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