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Weyl’s law approximates the number of states in a quantum system by partitioning the energetically acces-
sible phase-space volume into Planck cells. Here, we show that resonances in open quantum systems can
follow a modified fractal Weyl law, even when their classical dynamics is not globally chaotic but also contains
domains of regular motion. Using an appropriate phase-space representation for open quantum systems, we
connect this behavior to emerging quantum-to-classical correspondence.
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I. INTRODUCTION

Phase-space rules provide powerful universal relations for
classical and quantum systems. A time-honored example is
Sabine’s law, originally formulated in the context of room
acoustics, which can be cast into the relation �dwell=4V /vA
for the mean dwell time of a classical particle escaping from
a container, expressed in terms of the volume V of the con-
tainer, the area A of the opening, and the particle’s velocity v
�1�. In quantum mechanics, Weyl’s law approximates the
number N�E� of states with energy En�E by the number of
Planck cells hd which fit into the accessible phase-space vol-
ume of the corresponding classical system �here h is the
Planck’s constant and d is the number of dimensions� �2�.
For a quantum particle in a container �e.g., an electron in a
quantum dot, with h fixed�, N�E��Ed/2 therefore follows a
power law with a strictly determined exponent.

In reality, quantum systems are open, and the eigenstates
acquire a finite lifetime—the resulting resonance states con-
stitute a fundamental concept across many fields of physics.
However, there are reasons to believe that the synthesis of
both mentioned phase-space rules in open quantum systems
can modify Weyl’s law. Evidence in this direction is pro-
vided by systems with globally chaotic classical dynamics,
which exhibit a fractal Weyl law N�E ,���c�E

dH/2 for the
number of resonances with En�E and lifetime �n�� �where
the cutoff value � only enters the shape function c�� �3–6�.
Remarkably, the number dH in the exponent is not an integer;
instead, it is given by the dimension of the strange repeller,
which for a chaotic system is a fractal �7�. While this obser-
vation already led to a paradigm shift of the understanding of
resonances in open quantum-chaotic systems, its direct prac-
tical consequences are necessarily limited: generic dynamical
systems are not globally chaotic, which has profound conse-
quences for their quantum dynamics �8�.

Here, we show that fractal Weyl laws indeed apply much
more generally also to dynamical systems for which regular
and chaotic motions coexist in a mixed phase space �7�. The
key which reveals the fractal Weyl law is to restrict the reso-
nance counting to a window of intermediate lifetimes
����n���, where ���dwell����. �Physically, this window
is of interest because it contains those resonances that deter-
mine the mesoscopic fluctuations of cross sections when the
system is probed via the openings, as well as directional
lasing modes in dielectric microresonators �9�.� We arrive at
this conclusion by a combination of semiclassical arguments
�based on a tailor-made phase-space representation of reso-

nance wave functions, which avoids problems with their mu-
tual nonorthogonality� with numerical results for a paradig-
matic quantum-dynamical model system, the open kicked
rotator, �4,10–12�, which can be realized for atoms in pulsed
optical fields �13�.

II. HUSIMI-SCHUR REPRESENTATION

We start our considerations with some general observa-
tions about quantum-to-classical correspondence. A basic in-
gredient in the derivation of the ordinary Weyl law in closed
systems is the mutual orthogonality of energy eigenstates,
which is guaranteed by the Hermiticity of the Hamiltonian
�equivalently, the unitarity of the time-evolution operator�.
Quantum-to-classical correspondence can then be exploited,
e.g., by using a basis of semiclassically localized states �x�
which occupy Planck cells in phase space x= �q ,p�. Reso-
nance wave functions, however, overlap with each other be-
cause open systems are necessarily represented by non-
normal �neither Hermitian nor unitary� operators. In open
quantum maps, for example, resonances are associated to the
spectrum of a truncated unitary matrix M=QFQ, composed
of the unitary time-evolution operator F of the closed system
and the projector Q=Q2 onto the nonleaky part of the
Hilbert space �see Fig. 1 for an example of an open quantum
map�. Because of the truncation, the eigenvalues
�n=exp�−iEn−�n /2� of M lie inside the unit disk of the
complex plane, ensuring that the decay rates �n=1 /�n are
positive �14�. But since M is not normal, the associated
eigenstates—which now describe the resonance wave
functions—are not orthogonal to each other. This circum-
stance, which is the root for the scarceness of analytical tools
in non-normal problems, complicates the task of exploiting
quantum-to-classical correspondence for the purpose of reso-
nance counting.

We circumvent this problem by applying standard phase-
space methods to an alternative spectral decomposition, the
Schur decomposition M=UTU†, which delivers the same
eigenvalues �occupying the diagonal of the upper triangular
matrix T� but associates to them an orthogonal basis set U
�15�. The Schur decomposition exists for any operator, even
when it is not normal; moreover, this decomposition remains
stable against small perturbations. For definiteness assume
that all eigenvalues are ordered by their modulus,
��1�� ��2�� ��3�� ¯ � ��M�. The first r rows ur of U then
form a complete basis for the r fastest decaying resonance
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	states. Quantum-to-classical correspondence can now be
exploited by considering the Husimi representation �16�
Hr�x�=�m=1

r ��x �um��2= �x�
r�x� of this subspace, where

r=�m=1

r �um��um� is the associated projector. This provides
insight into the regions in classical phase space which sup-
port the quickly decaying quantum resonances. An analogous
construction can be based on the opposite ordering,
��1�� ��2�� ��3�� ¯ � ��M�, which focuses on the slowest
decaying resonance wave functions. Because of nonorthogo-
nality, the resulting “fast” and “slow” Husimi-Schur repre-
sentations carry independent information on the resonance
wave functions.

Figure 1 demonstrates the viability of this method for a
paradigm of quantum chaos, the kicked rotator �10� with
unitary time-evolution operator,

Fnm = �iM�−1/2

�exp	 i

M
�m − n�2 −

iMk

4

cos

2n

M
+ cos

2m

M
�� ,

�1�

which classically reduces to the �symmetrized� standard map
p�= p+k cos�2q+p� mod 1, q�=q+ p /2+ p� /2 mod 1.
The matrix dimension M =h−1 determines the inverse effec-
tive Planck’s constant �17� �corresponding to discrete initial
and final positions q=m /M, q�=n /M�, while the kicking
strength k determines the nonlinearity. For k=0 the classical
system is integrable, while for k�7 it is globally chaotic
�resonances in the chaotic variant have been studied in Refs.
�4,12��.

In Fig. 1, the kicking strength is set to k=2, for which the
phase space of the closed system is mixed, as shown by
trajectory segments �black dots� in Fig. 1�a�. The color-coded
areas superimposed on the phase space indicate the classical
initial conditions for escape after one, two, three, or four
iterations when an opening is placed at 0�q�0.2
��dwell=5�. Figure 1�b� shows the ordinary Husimi represen-
tation of quickly decaying resonance eigenfunctions with
0� ��n��0.1 �M =1280�. Figures 1�c� and 1�d� show the fast
Husimi-Schur representation �0� ��n��0.1; M =160 and
M =1280�, while Figs. 1�e� and 1�f� display the slow Husimi-
Schur representation �0.98� ��n��1; M =160 and M =1280�
�18�.

The ordinary Husimi representation demonstrates that the
quickly decaying resonance eigenfunctions are all localized
in the region of escape after a single iteration. However,
since these eigenfunctions strongly overlap, partitioning their
phase-space support with Planck cells significantly under-
estimates their number �predicting 25 instead of r=44
short-lived states for M =160, and 200 instead of r=568
short-lived states for M =1280�. In contrast, the fast Husimi-
Schur representation clearly maps out the classical escape
zones and uncovers that the domain of quantum-to-classical
correspondence increases with increasing M. The slow
Husimi-Schur representation maps out stable phase-space re-
gions that are classically decoupled from the opening by im-
penetrable dynamical barriers; these regions do not signifi-
cantly change as M increases.

By construction, Planck-cell partitioning of the support of
the Husimi-Schur representations accurately estimates the
underlying number of resonances. The fast Husimi represen-
tation therefore uncovers a proliferation of anomalously
short-lived states driven by the emerging quantum-to-
classical correspondence—among the total count of M reso-
nances, the fraction of short-lived states increases as M in-
creases. On the other hand, the slow Husimi representation
shows that the fraction of anomalously long-living reso-
nances supported by classically uncoupled regions remains
fixed, which corresponds to the ordinary Weyl law for this
effectively closed-off part of the system. Crucially, we are
led to conclude that the remaining fraction of resonances
with intermediate lifetime �chosen here to satisfy
0.1� ��n��0.98� decreases as M increases, and therefore
cannot follow an ordinary Weyl law. �The absolute number
of such resonances still increases with increasing M.�
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FIG. 1. �Color online� Quantum versus classical escape in a
kicked rotator �kicking strength k=2.0� with opening at
0�q�0.2. �a� Classical escape zones in phase space �q , p�, color
coded according to escape after one �red�, two �blue�, three �green�,
or four �magenta� iterations �for gray scale see the markers in the
figure�. The black dots are trajectory segments in the closed system,
whose phase space is a mixture of regular and chaotic motion. �b�
Husimi representation of short-lived quantum resonances with de-
cay time �n�1 / �2 ln 10� �decay factor ��n��0.1�, for Hilbert-space
dimension M =1280. The other panels show the fast �panels �c� and
�d�, ��n��0.1� and slow �panels �e� and �f�, ��n��0.98� Husimi-
Schur representation, introduced in this work, for ��c� and �e��
M =160 and ��d� and �f�� M =1280.
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III. FRACTAL WEYL LAW

A detailed understanding of the resonance distribution
can be obtained by counting the resonances in fixed lifetime
windows and comparing these counts for different values of
M. We adopt probabilistic terminology and proceed in two
steps. In the first step we determine the fraction
P���=prob���n���� of resonances with lifetime exceeding
a lower threshold �=−1 / �2 ln ��. This defines a
monotonously decreasing function interpolating between
P�0�=1 and P�1�=0. In the second step, we extract the
fraction of resonances within an interval of intermediate
lifetimes �0.1� ��n��0.98�, which follows from
Pint=prob���n�� �0.1,0.98��= P�0.1�− P�0.98� �our results
and conclusions do not depend on the chosen window as
long as it stays in the range of typical classical lifetimes�.

Numerical results for the system with opening at
0�q�0.2 are shown in Fig. 2. Figure 2�a� shows P��� for
various values of M. As a function of �, P decreases very
sharply at the two extreme ends of the graph. At �0 we
witness the influence of extremely short-lived resonances,
while at �1 we observe the states which have very long
lifetimes. The applicability of the ordinary Weyl law would
entail that modulo small fluctuations, P��� is independent of
M, since the uncertainty-limited resolution of phase space
increases uniformly when the Planck cell shrinks. The plot,
however, shows that the body of the function P drops as M
increases. This is due to the proliferation of the short-lived
resonances ��0�, whose relative fraction among all reso-
nances increases with increasing M, in agreement with the
expanding domain of support of the fast Husimi-Schur rep-
resentation. In the region of long-living states ��1�, on the
other hand, P does not depend significantly on M, in agree-
ment with the observed M-independent support of long-
living resonances in the slow Husimi-Schur representation.

Complementing these trends for short and long lifetimes,
the body of P becomes flatter as M increases. As shown in
Fig. 2�b�, the fraction Pint of resonance with intermediate
lifetime therefore decreases with increasing M. The linear fit
in this double-logarithmic plot demonstrates that this trend
closely follows a power law, Pint�M−0.50. These resonances
therefore obey a fractal Weyl law, Nint=MPint�M0.50.

Figure 3 shows that the fractal Weyl law remains intact
when the opening is shifted to 0.2�q�0.4, so that it
couples to a larger part of the regular regions in phase space
�see Fig. 4�a��. In this case Ptyp�M−0.19, and therefore Ntyp
�M0.81. Compared to the situation in Fig. 2, the fraction of
long-living states is now reduced, in keeping with the
shrunken size of the classically uncoupled phase-space re-
gion. The fast Husimi-Schur representation �Fig. 4�b�� shows
that the newly coupled parts support additional short-lived
resonances. Consequently, the states with intermediate life-
time are still associated to the chaotic regions. We also stud-
ied other values of k and positions of the opening �see the
Appendix� and always found that a fractal Weyl law holds
true.

IV. DISCUSSION AND CONCLUSIONS

For globally chaotic systems, the fractal Weyl law can be
understood by associating the proliferation of short-lived
resonance to quasideterministic decay following classical es-
cape routes �4�. This quasideterministic decay requires
classical-to-quantum correspondence, which is lost exponen-
tially on a time scale given by the Ehrenfest time �E
=�−1 ln M �19�. The probability to reside within the system
decays exponentially, too, and is governed by �dwell. The
power law for the fractal Weyl law therefore arises from the
combination of two exponential laws, based on the relation
exp�−�E /�dwell�=M−1/��dwell for the part of phase space where
classical-to-quantum correspondence does not apply; this re-
gion supports N�Md−1/��dwell resonances �delivering an accu-
rate estimate for dH if the opening is sufficiently small �7��.

For the kicked rotator with a mixed phase space, our
Husimi-Schur representation confirms the association of
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FIG. 2. �Color online� Fractal Weyl law for resonances in the
open kicked rotator with a mixed classical phase space �kicking
strength k=2.0, opening at 0�q�0.2�. �a� Fraction P��� of reso-
nances with decay factor ��n���, corresponding to a lifetime
�n�−1 / �2 ln ��. �b� Fraction Pint of resonances in a band of inter-
mediate lifetimes �0.1� ��n��0.98�, as a function of dimensionless
system size M. In this double-logarithmic representation, the fractal
Weyl law results in a linear dependence with a negative slope.
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FIG. 3. �Color online� Same as Fig. 2, but with opening shifted
to 0.2�q�0.4.
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FIG. 4. �Color online� �a� Classical escape zones and �b� fast
Husimi-Schur representation of short-lived quantum resonances
�M =1280� for the kicked rotator in Fig. 1, with opening shifted to
0.2�q�0.4.
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short-lived resonances to quasideterministic escape routes,
while the resonances of intermediate lifetime are now asso-
ciated to chaotic regions. It is generally accepted that these
regions are characterized by classical power-law decay �t−�

in place of the exponential decay �20�, while there is also
evidence that loss of quantum-to-classical correspondence in
these regions is similarly modified into a power law �t�, so
that the Ehrenfest time takes the algebraic form �E�M1/�

�21�. Heuristically, therefore, it is tempting to suggest that
the fractal Weyl law now arises from the combination of two
power laws, based on the relation �E

−��M−�/� for the part of
phase space where quantum-to-classical correspondence
does not apply. For individual realizations as studied here,
however, the classical escape is characterized by multiscale
decay, displaying varying exponents � associated to switch-
ing between island structures explored at different times
�22�. Over the computationally accessible range, we find that
the fractal Weyl law is always characterized by a single ex-
ponent �see also the results in the Appendix�, which would
indicate that any multiscale fluctuations of the decay �expo-
nent �� are compensated by multiscale fluctuations in the
loss of quantum-to-classical correspondence �exponent ��.

In summary, we have demonstrated that open quantum
systems with mixed phase space can obey a modified fractal
Weyl law, even when the classical dynamics displays a
mixed phase space. We unraveled this law by introducing the
concept of a Husimi-Schur representation, a phase-space rep-
resentation of resonance wave functions which captures
maximal information on quantum-to-classical correspon-
dence �circumventing the problem that resonance eigenfunc-
tions are not orthogonal to each other�. The formation of
anomalously short-lived states that drive the departure from
the ordinary Weyl law originates in quasideterministic decay
along classical escape routes, whose phase-space support ex-
pands as one approaches the classical limit.

The kicked rotator used here for the illustration can be
realized with atoms that are driven by pulsed optical waves
�13�. Experimentally, direct evidence of the fractal Weyl law
is more likely to come from autonomous �nondriven� sys-
tems, which can be related to quantum maps via surface of
section methods �23�. In particular, advanced techniques now
enable the accurate determination of complex resonance fre-
quencies in microwave resonators �24�; a mixed phase space
is obtained for any generic smooth resonator shape.
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APPENDIX: NUMERICAL RESULTS FOR OTHER
KICKING STRENGTHS

In our computations for the open kicked rotator we find
that the fractal Weyl law for resonances with intermediate
lifetime holds robustly when the kicking strength or the
opening position is varied. Figures 5 illustrates these findings
for kicking strength k=2.5, where the main stability island
has four large satellites �see phase-space portrait in Fig. 6�.
For comparison, we also present in Fig. 7 results for an
almost-chaotic phase space with small islands �k=5.5�, and
in Fig. 8 results for the case k=7.5 of a strongly chaotic
system. In all cases the fast Husimi-Schur representation
demonstrates that the fractal Weyl law is associated to the
expanding domain of quantum-to-classical correspondence.
This substantiates the link to the fractal repeller at the scale
of the Ehrenfest time.
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FIG. 5. �Color online� Fractal Weyl law for
resonances in the open kicked rotator with k
=2.5 and various positions of the opening: �a�
opening at 0�q�0.2; �b� opening at 0.2�q
�0.4; �c� opening at 0.4�q�0.6. First column:
fraction P��� of resonances with decay factor
��n���, corresponding to a lifetime �n�
−1 / �2 ln ��. Second column: fraction Pint of
resonances in a band of intermediate lifetimes
�0.1� ��n��0.98�, as a function of dimensionless
system size M. In this double-logarithmic repre-
sentation, the fractal Weyl law results in a linear
dependence with a negative slope. Third column:
classical escape zones. Last column: fast Husimi-
Schur representation of short-lived quantum reso-
nances �M =1280�.
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FIG. 6. Phase-space portraits of the kicked rotator with kicking strengths �a� k=2.5, �b� k=5.5, and �c� k=7.5.
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FIG. 7. �Color online� Same as Fig. 5, but for kicking strength k=5.5.
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FIG. 8. �Color online� Same as Fig. 5, but for kicking strength k=7.5, for which the system is strongly chaotic �since the phase space is
globally chaotic, results are shown for only one position of the opening �0.4�q�0.6�; see also Ref. �4��.
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