Mixing and entrainment of transitional non-circular buoyant reactive plumes

Jiang, Xi and Luo, K H (2001) Mixing and entrainment of transitional non-circular buoyant reactive plumes. Flow, Turbulence and Combustion, 67 (1). pp. 57-79. ISSN 1386-6184

Full text not available from this repository.


Three-dimensional spatial direct numerical simulation is used to investigate the evolution of reactive plumes established on non-circular sources. Simulations are performed for three cases: a rectangular plume with an aspect ratio of 2:1, a square plume, and the square plume in a corner configuration. Buoyancy-induced large scale vortical structures evolve spatially in the flow field. A stronger tendency of transition to turbulence is observed for the free rectangular plume than the free square case due to the aspect ratio effect. Dynamics of the corner square plume differs significantly from the corresponding free case due to the enhanced mixing by the side-wall effects. A turbulent inertial subrange has been observed for the free rectangular and corner square plumes. Mean flow properties are also calculated. The study shows significant effects of source geometry and side-wall boundary on the flow transition and entrainment of reactive plumes.

Item Type:
Journal Article
Journal or Publication Title:
Flow, Turbulence and Combustion
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
21 Nov 2011 11:38
Last Modified:
21 Nov 2022 21:52