Burton, David A (2003) A primer on exterior differential calculus. Theoretical and Applied Mechanics, 30. pp. 85-162.
1450_55840302085B.pdf - Published Version
Available under License Creative Commons Attribution.
Download (375kB)
Abstract
A pedagogical application-oriented introduction to the calculus of exterior differential forms on differential manifolds is presented. Stokes' theorem, the Lie derivative, linear connections and their curvature, torsion and non-metricity are discussed. Numerous examples using differential calculus are given and some detailed comparisons are made with their traditional vector counterparts. In particular, vector calculus on R3 is cast in terms of exterior calculus and the traditional Stokes' and divergence theorems replaced by the more powerful exterior expression of Stokes' theorem. Examples from classical continuum mechanics and spacetime physics are discussed and worked through using the language of exterior forms. The numerous advantages of this calculus, over more traditional machinery, are stressed throughout the article.