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Abstract We consider the positive semidefinite (psd) matrices with binary entries,
along with the corresponding integer polytopes. We begin by establishing some basic
properties of these matrices and polytopes. Then, we show that several families of
integer polytopes in the literature—the cut, boolean quadric, multicut and clique par-
titioning polytopes—are faces of binary psd polytopes. Finally, we present some impli-
cations of these polyhedral relationships. In particular, we answer an open question in
the literature on the max-cut problem, by showing that the rounded psd inequalities
define a polytope.
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1 Introduction

A real square symmetric matrix M ∈ R
n×n is called positive semidefinite (psd) if and

only if any of the following (equivalent) conditions hold:

• bT Mb ≥ 0 for all b ∈ R
n ,
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Fig. 1 A binary psd matrix and a factorisation

• all principal submatrices of M have non-negative determinants,

• there exists a real matrix A such that M = AAT.

The set of psd matrices of order n forms a convex cone in R
n×n (e.g., [22]), and is

often denoted by Sn+.
In this paper, we consider the binary psd matrices, i.e., psd matrices belonging to

{0, 1}n×n . Figure 1 shows an example of a binary psd matrix of order 4, along with
one of its factorisations. We also consider an associated family of integer polytopes,
which we call binary psd polytopes.

Although psd matrices and semidefinite programming have received much interest
from the integer programming and combinatorial optimisation community (see the
surveys [17] and [24]), these specific matrices and polytopes appear to have received
no attention. This is remarkable, because, as we will see, the matrices can be eas-
ily characterised, and they have a natural graphical interpretation. Moreover, several
important and well-known integer polytopes—such as the cut, boolean quadric, mult-
icut and clique partitioning polytopes—can in fact be viewed as nothing but faces
of binary psd polytopes. In that sense, the binary psd polytopes form an important,
and hitherto overlooked, family of ‘master’ polytopes for combinatorial optimisa-
tion.

The paper is structured as follows. Section 2 presents three characterisations of
binary psd matrices, along with the graphical representation. Section 3 introduces
the binary psd polytopes and presents some elementary results on their structure. In
Sect. 4, we establish the relationships between the binary psd polytopes and the other
four families of polytopes mentioned above. In Sect. 5, we present some implica-
tions of these polyhedral relationships. In particular, we answer an open question
in the literature on the max-cut problem, by showing that the so-called rounded
psd inequalities define a polytope. Finally, some concluding remarks are given in
Sect. 6.

An extended abstract of this paper appeared in the 2008 IPCO proceedings [25].

2 Binary Psd matrices

This section is concerned with binary psd matrices. We characterise the matrices
(Sect. 2.1), give a graphical representation (Sect. 2.2), and give an associated com-
plexity result (Sect 2.3).
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Fig. 2 An alternative
factorisation of the matrix
shown in Fig. 1.

2.1 Characterisations

We now give three characterisations of binary psd matrices. The first characterisation
is in terms of symmetric rank one binary matrices. Note that the symmetric rank one
binary matrices are precisely those matrices that can be written in the form vvT for
some (non-zero) binary vector v ∈ {0, 1}n .

Proposition 1 A symmetric binary matrix is psd if and only if it is either the zero
matrix or the sum of one or more symmetric rank one binary matrices.

Proof The ‘if’ part follows trivially from the fact that Sn+ is a cone. We prove the ‘only
if’ part. Suppose that M is a binary psd matrix that is not the zero matrix. Since all
2 × 2 principal submatrices of M must have non-negative determinant, we have that,
if Mii = 0 for some i ∈ {1, . . . , n}, then Mi j = M ji = 0 for j = 1, . . . , n. Thus, if
we let R = {i ∈ {1, . . . , n} : Mii = 1}, we have that M has zero entries outside the
principal submatrix defined by the row/column indices in R. This submatrix, which
must also be psd, has 1s on the main diagonal. The fact that a binary psd matrix with 1s
on the main diagonal is the sum of symmetric rank one binary matrices is well-known
and easy to prove: see, e.g., Lemma 1 of Dukanovic and Rendl [15]. ��

The second characterisation follows easily:

Proposition 2 A symmetric binary matrix is psd if and only if it equals AAT for some
binary matrix A.

Proof The ‘if’ part follows immediately from the definition of psd-ness. We show the
‘only if’ part. Let M ∈ {0, 1}n×n be a binary psd matrix. If M is the zero matrix, the
result is trivial. Otherwise, from Proposition 1, there exists a positive integer r and
vectors v1, . . . , vr ∈ {0, 1}n such that:

M =
r∑

k=1

vk(vk)T.

If we let A be the n × r matrix whose kth column is the vector vk , we have that
M = AAT . ��
For example, the binary psd matrix shown in Fig. 1 has the alternative factorisation
shown in Fig. 2.

We note in passing the following corollary:

Corollary 1 Binary psd matrices are completely positive. That is, they are equal to
AAT for some non-negative real matrix A.
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Completely positive matrices were introduced by Diananda [14] and Hall and New-
man [21]. They have received increased attention recently, due to their connections
with various NP-hard optimisation problems (see, e.g., [6] and [29]).

We now come to our third characterisation, which is in terms of linear inequalities:

Proposition 3 A symmetric binary matrix M ∈ {0, 1}n×n, with n ≥ 3, is psd if and
only if it satisfies the following inequalities:

Mi j ≤ Mii (1 ≤ i < j ≤ n) (1)

Mik + M jk ≤ Mkk + Mi j (1 ≤ i < j ≤ n; k �= i, j). (2)

Proof It is easy to check that the inequalities (1) and (2) are satisfied by symmetric
rank one binary matrices. Proposition 1 then implies that they are satisfied by binary
psd matrices. Now, suppose that a symmetric binary matrix M satisfies the inequalities
(1) and (2). If Mii = 0 for a given i , the inequalities (1) imply that Mi j = M ji = 0
for all j �= i . Thus, just as in the proof of Proposition 1, we can assume that M has 1s
on the main diagonal. Now note that, if Mik = M jk = 1 for some indices i, j, k, then
the inequalities (2) ensure that Mi j = 1. By transitivity, this implies that {1, . . . , n}
can be partitioned into subsets in such a way that, for all pairs i, j, Mi j = 1 if and
only if i and j belong to the same subset. That is to say, M is the sum of one or more
symmetric rank one binary matrices. By Proposition 1, M is psd. ��

2.2 Graphical representation

The binary psd matrices have a natural graphical representation, as we now explain.
Let Kn = (Vn, En) denote the complete graph of order n, where Vn = {1, . . . , n} is
the vertex set and En = {S ⊂ Vn : |S| = 2} is the edge set. Given any n × n binary
psd matrix M , we can construct a subgraph of Kn as follows. The vertex i is included
in the subgraph if and only if Mii = 1, and the edge {i, j} is included if and only if
Mi j = M ji = 1.

If M has rank one, the subgraph will consist of a vertex set S, where S = {i ∈ Vn :
Mii = 1}, together with all edges in En , if any, having both end-vertices in S. We
call such a subgraph a clique subgraph. If M has rank r > 1, then the corresponding
subgraph of Kn will consist of the union of r disjoint clique subgraphs.

Figure 3 illustrates this concept. The binary psd matrix on the left is of order 7 and
has rank three. The corresponding subgraph of K7 is shown on the right. The three
clique subgraphs of which it is composed have vertex sets {1, 2, 4}, {5, 6} and {7}.
Note that vertex 3 is not included in a clique subgraph, since M33 = 0.

2.3 Complexity

We now show that optimising a linear function over the set of binary psd matrices is
NP-hard. We do this by reduction from the so-called Clique Partitioning Problem.
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Fig. 3 A binary psd matrix and its graphical representation

Given any partition of Vn into sets S1, . . . , Sr , the set of edges

En(S1, . . . , Sr ) = {{i, j} ∈ En : {i, j} ⊆ Sp for some 1 ≤ p ≤ r
}

is called a clique partition. Given a vector w ∈ Q
|En | of edge-weights, the Clique

Partitioning Problem calls for a clique partition of maximum total edge-weight. The
problem has applications in statistical clustering, and is NP-hard in the strong sense
(Grötschel and Wakabayashi [19]).

Proposition 4 Optimising a linear function over the set of binary psd matrices is
NP-hard in the strong sense.

Proof It follows from the discussion in the previous subsection that a symmetric binary
matrix M of order n is psd if and only if the edge set {{i, j} ∈ En : Mi j = 1} is a
clique partition. Thus, solving the Clique Partitioning Problem for a given n and w is
equivalent to maximising the linear function

∑

1≤i< j≤n

wi j Mi j

over the set of binary psd matrices of order n. ��
We remark that a similar hardness result holds for the symmetric rank one binary

matrices. Indeed, a symmetric binary matrix has rank one if and only if it satisfies
the quadratic equations Mi j = Mii M j j for all pairs i, j . Thus, optimising a linear
function over the symmetric rank one binary matrices is equivalent to unconstrained
quadratic 0–1 programming, which is also NP-hard in the strong sense [16].

Moreover, optimising a linear function over the set of psd matrices with ±1 entries
is known to be equivalent to the max-cut problem, and therefore NP-hard in the strong
sense [18,23].

These connections between binary psd matrices and various NP-hard combinato-
rial optimisation problems have polyhedral implications, as will be shown in Sect. 4.

3 Binary Psd polytopes

This section is concerned with binary psd polytopes. We define them in Sect. 3.1,
give some elementary results in Sect. 3.2, prove a general result about homogeneous
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Fig. 4 The polytope P2

inequalities in Sect. 3.3, and introduce a large class of homogeneous inequalities in
Sect. 3.4.

3.1 Definitions

Note that any binary psd matrix M , being symmetric, satisfies the
(n

2

)
equations Mi j =

M ji for all 1 ≤ i < j ≤ n. Therefore, if we defined the binary psd polytope in R
n×n ,

it would not be full-dimensional. Therefore, we decided to work in R
Vn∪En instead.

Accordingly, we define for all i ∈ Vn the binary variable xi , which takes the value
1 if and only if Mii = 1; and we define, for all {i, j} ∈ En , the binary variable yi j ,
which takes the value 1 if and only if Mi j = M ji = 1. We denote by M(x, y) the
linear operator that maps a given pair (x, y) ∈ {0, 1}Vn∪En onto the corresponding
n × n symmetric matrix. Then, the binary psd polytope of order n is defined as:

Pn = conv
{
(x, y) ∈ {0, 1}Vn∪En : M(x, y) ∈ Sn+

}
.

Example For n = 2, there are 5 binary psd matrices:

(
0 0
0 0

) (
1 0
0 0

) (
0 0
0 1

) (
1 0
0 1

) (
1 1
1 1

)
.

The corresponding vectors (x1, x2, y12) are (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0) and
(1, 1, 1), respectively. The polytope P2 is displayed in Fig. 4. It is described by the
linear inequalities x1 ≤ 1, x2 ≤ 1, y12 ≥ 0, y12 ≤ x1 and y12 ≤ x2. ��

Proposition 3 enables us to define Pn more explicitly.

Proposition 5 For n ≥ 3,Pn is the convex hull of pairs (x, y) ∈ {0, 1}Vn∪En satisfy-
ing the following inequalities:

yi j ≤ xi (i ∈ Vn, j ∈ Vn\{i}) (3)

yik + y jk ≤ xk + yi j ({i, j} ∈ En, k ∈ Vn\{i, j}). (4)

We will call the inequalities (3) and (4) variable upper bounds and triangle inequali-
ties, respectively.
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3.2 Some elementary results

We now present some simple results about binary psd polytopes. First, we show that
they are full-dimensional:

Lemma 1 For n ≥ 2,Pn is full-dimensional, i.e., has dimension
(n+1

2

)
.

Proof Consider the following extreme points of Pn :

• the origin (i.e., all variables set to zero);

• for each i ∈ Vn , the point having xi = 1, and all other variables set to zero;

• for each {i, j} ∈ En , the point having xi = x j = yi j = 1, and all other variables
set to zero.

These
(n+1

2

) + 1 points are easily shown to be affinely independent. ��

Next, we show that the upper bounds on the x variables induce facets:

Lemma 2 For all i ∈ Vn, the upper bound xi ≤ 1 induces a facet of Pn:

Proof The upper bound xi ≤ 1 is satisfied at equality by the following points:

• the point having xi = 1, and all other variables set to zero;

• for each j ∈ Vn\{i}, the point having xi = x j = 1, and all other variables set to
zero;

• for each j ∈ Vn\{i}, the point having xi = x j = yi j = 1, and all other variables
set to zero;

• for each { j, k} ⊂ Vn\{i}, the point having xi = x j = xk = y jk = 1, and all other
variables zero.

These
(n+1

2

)
points are also easily shown to be affinely independent. ��

Finally, we show that facet-inducing inequalities have a special structure:

Proposition 6 Every inequality inducing a facet of Pn, apart from the upper bounds
xi ≤ 1 for all i ∈ Vn, can be written in the form bT y ≤ aT x + c, with a ≥ 0 and
c ≥ 0.

Proof Clearly, any facet-inducing inequality can be written in the form bT y ≤ aT x+c.
Now, the origin belongs to Pn , which shows that c ≥ 0. Moreover, suppose that the
inequality is not an upper bound. Then, for each i ∈ Vn , there must exist a point
(x∗, y∗) lying on the facet, for which x∗

i = 0. Now, the point obtained from (x∗, y∗)
by changing xi to 1 belongs to Pn (since changing Mii from zero to one preserves
psd-ness). Therefore ai ≥ 0 for all i ∈ Vn . ��
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3.3 Homogeneous valid inequalities

An inequality bT y ≤ aT x + c is called homogeneous if c = 0. In this subsection, we
give a result concerned with homogeneous inequalities that define facets of Pn . To do
this, we need to recall the definition of the so-called boolean quadric cone.

Let us say that a vector (x∗, y∗) ∈ {0, 1}Vn∪En has rank one if the corresponding
symmetric matrix M(x∗, y∗) has rank one. The boolean quadric cone (sometimes
called the correlation cone) is the polyhedral cone in R

Vn∪En consisting of all non-
negative linear combinations of rank one vectors (see [13]). We let BQCn denote the
boolean quadric cone of order n.

We have the following result:

Proposition 7 A homogeneous inequality is valid (or facet-inducing) for Pn if and
only if it is valid (or facet-inducing) for BQCn.

Proof It follows from Proposition 1 that every rank one vector in {0, 1}Vn∪En is an
extreme point of Pn , and that every extreme point of Pn is a non-negative linear combi-
nation of rank one vectors in {0, 1}Vn∪En . Therefore, every valid inequality for BQCn
is valid for Pn , and every homogeneous valid inequality for Pn is valid for BQCn . Now,
since the origin is an extreme point of Pn , a homogeneous valid inequality defines a
facet of Pn if and only if it is not a convex combination of other homogeneous valid
inequalities. This is the case if and only if it defines a facet of BQCn . ��

The boolean quadric cone has been studied in depth, and many valid and facet-
inducing inequalities are known (see again [13]). We will mention one large class of
inequalities in the next subsection. For now, however, we simply note the following
corollary of Proposition 7:

Corollary 2 The following homogeneous inequalities induce facets of Pn :
• The non-negativity inequalities ye ≥ 0 for all e ∈ En, when n ≥ 2.

• The variable upper bounds (3), when n ≥ 2.

• The triangle inequalities (4), when n ≥ 3.

Proof All of these inequalities are known to induce facets of BQCn ; see, e.g., Padberg
[28]. ��

We will mention some non-trivial inhomogeneous inequalities for Pn in Sect. 5.1.

3.4 Hypermetric correlation inequalities

Recall that a matrix M is psd if and only if bT Mb ≥ 0 for all b ∈ R
n . This immediately

implies that the following homogeneous inequalities are valid for Pn :

∑

i∈Vn

b2
i xi + 2

∑

{i, j}∈En

bi b j yi j ≥ 0 (∀b ∈ R
n).
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These inequalities are however dominated by the following stronger homogeneous
inequalities, that are known to be valid for BQCn (e.g., [4]):

∑

i∈Vn

bi (bi − 1)xi + 2
∑

{i, j}∈En

bi b j yi j ≥ 0 (∀b ∈ Z
n). (5)

We will follow Deza and Grishukhin [9] in calling the inequalities (5) hypermetric
correlation inequalities.

To see that the hypermetric correlation inequalities are valid, note that bT x(bT x −
1) ≥ 0 for any integer vector b and binary vector x , and therefore bT Mb −
bT diag(M) ≥ 0 for any symmetric rank one binary matrix M .

Since the number of hypermetric correlation inequalities is infinite, not all of them
induce facets of BQCn . A survey of necessary and sufficient conditions for them to
induce facets can be found in Deza and Laurent [13]. We remark that Padberg [28] char-
acterised the facet-inducing hypermetric correlation inequalities with b ∈ {0,±1}n .
All of the inequalities mentioned in Corollary 2 are of this type.

4 Relationships with other polytopes

In this section, we explain in detail how the binary psd polytopes are related to cer-
tain other well-known polytopes in combinatorial optimisation. We will use these
polyhedral relationships to prove several new results in Sect. 5.

4.1 The clique partitioning polytope

The clique partitioning polytope [19] is the polytope associated with the Clique Par-
titioning Problem, mentioned in Sect. 2.3. It is defined as:

conv
{

y ∈ {0, 1}En : yik + y jk ≤ yi j + 1 (∀{i, j} ∈ En, k ∈ Vn\{i, j})
}
.

We will let CPPn denote the clique partitioning polytope of order n. From the discus-
sion in Sect. 2, a vector y ∈ {0, 1}En is a vertex of CPPn if and only if there exists a
vector x ∈ {0, 1}Vn such that (x, y) ∈ Pn . Thus:

Proposition 8 CPPn is the projection of Pn onto R
En .

As an immediate corollary we have:

Corollary 3 If the inequality bT y ≤ aT x + c is valid for Pn, then the inequality
bT y ≤ ∑

i∈Vn
ai + c is valid for CPPn.

In fact, we can say something stronger.

Proposition 9 CPPn is congruent to a face of Pn.

Proof From Lemma 2, the following n linear inequalities induce facets of Pn :

xi ≤ 1 (i ∈ Vn).
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Let F be the face of Pn obtained by setting these inequalities at equality, and let
(x∗, y∗) ∈ {0, 1}Vn∪En be an extreme point of F . From the discussion in Sect. 2.2, the
edges with y∗

i j = 1 form a clique partition. Therefore, y∗ is an extreme point of CPPn .
Moreover, if y∗ is any extreme point of CPPn , we obtain an extreme point (x∗, y∗) of
F simply by setting x∗

i = 1 for all i ∈ Vn . Thus, CPPn is congruent to F . ��
An immediate consequence of Proposition 9 is that inequalities for CPPn can be

lifted to yield inequalities for Pn :

Proposition 10 Let bT y ≤ c be a facet-inducing inequality for the clique partitioning
polytope CPPn. Then there exists at least one facet-inducing inequality for Pn of the
form

bT y ≤
∑

i∈Vn

αi xi + c −
∑

i∈Vn

αi ,

where αi ≥ 0 for all i ∈ Vn.

4.2 The boolean quadric polytope

The boolean quadric polytope [28] of order n is defined as:

BQPn = conv
{
(x, y) ∈ {0, 1}Vn∪En : yi j = xi x j ({i, j} ∈ En)

}
.

The boolean quadric polytope, sometimes called the correlation polytope, arises nat-
urally in quadratic 0–1 programming, and also has many applications in statistics,
probability and theoretical physics (see [13]).

Note that a pair (x∗, y∗) is an extreme point of BQPn if and only if it has rank
one, i.e., if and only if M(x∗, y∗) is a symmetric rank one binary matrix. Therefore,
BQPn ⊂ Pn ⊂ BQCn . Together with Proposition 7, this implies the following:

Proposition 11 BQPn and Pn have the same homogeneous facets; i.e., an inequality
bT y ≤ aT x is facet-inducing for BQPn if and only if it is facet-inducing for Pn.

In fact, the relationship between BQPn and Pn goes deeper than this:

Proposition 12 BQPn is congruent to a face of Pn+1.

Proof From Lemma 2 and Corollary 2, the following n + 1 linear inequalities induce
facets of Pn+1:

xn+1 ≤ 1

yi,n+1 ≤ xi (i ∈ Vn).

Let F be the face of Pn+1 obtained by setting these inequalities at equality, and let
(x∗, y∗) ∈ {0, 1}Vn+1∪En+1 be an extreme point of F . From the triangle inequalities
(4) with k = n + 1 we have:

y∗
i,n+1 + y∗

j,n+1 ≤ x∗
n+1 + y∗

i j ({i, j} ∈ En).
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Since by assumption x∗
n+1 = 1 and y∗

i,n+1 = x∗
i for all i , we have x∗

i + x∗
j ≤ 1 + y∗

i j
for all {i, j} ∈ En . Together with the variable upper bounds (3) and the fact that x∗ is
binary, this implies that y∗

i j = x∗
i x∗

j for all {i, j} ∈ En . Thus, if we project (x∗, y∗)
onto R

Vn∪En , we obtain an extreme point of BQPn . Using a similar argument, given
any extreme point of BQPn , one can construct a unique extreme point of F of which
it is the projection. Thus, BQPn is congruent to F . ��
The proof of Proposition 12 was inspired by the construction used by Lovász and
Schrijver [26] for forming SDP relaxations of 0–1 Linear Programs.

Proposition 12 implies that valid inequalities for Pn+1 can be converted into valid
inequalities for BQPn , and that facet-inducing inequalities for BQPn can be lifted to
yield facet-inducing inequalities for Pn+1. For the sake of brevity, we do not state
these results formally.

4.3 The cut and multicut polytopes

Finally, we mention connections between the above polytopes and the cut and multicut
polytopes.

Given any S ⊆ Vn , the set of edges

δn(S) = {{i, j} ∈ En : i ∈ S, j ∈ Vn\S}

is called an edge cutset or simply cut. The cut polytope CUTn is the convex hull of
the incidence vectors of all cuts in Kn [3], i.e.,

CUTn = conv
{

y ∈ {0, 1}En : ∃S ⊂ Vn : ye = 1 ⇐⇒ e ∈ δn(S) (∀e ∈ En)
}
.

Similarly, given any partition of Vn into sets S1, . . . , Sr , the set of edges

δn(S1, . . . , Sr ) = {{i, j} ∈ En : i ∈ Sp, j ∈ Sq for some p �= q
}

is called a multicut. The multicut polytope MCUTn is defined accordingly (e.g., [11]).
We now recall two important facts about the cut polytope. First, the cut polytope

CUTn+1 is the image of the boolean quadric polytope BQPn under an affine mapping
known as the covariance mapping (see [13]). This means that there is a one-to-one
correspondence between the facets of the respective polytopes. This correspondence
is the following [7]:

Proposition 13 Let a ∈ R
Vn , b ∈ R

En , c ∈ R
En+1 be linked by:

{
ci,n+1 = ai + 1

2

∑
j∈Vn\{i} bi j for i ∈ Vn,

ce = − 1
2 be for e ∈ En .

Given a0 ∈ R, the inequality cT y ≤ a0 is valid (resp. facet-inducing) for CUTn+1 if
and only if the inequality aT x + bT y ≤ a0 is valid (resp. facet-inducing) for BQPn.
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Second, the cut polytope possesses a remarkable symmetry, via the so-called switch-
ing operation [3,12,28]. Specifically, if an inequality of the form

∑

e∈En

αe ye ≤ β

induces a facet of CUTn , then so does the ‘switched’ inequality

∑

e∈En\δ(S)

αe ye −
∑

e∈δ(S)

αe ye ≤ β −
∑

e∈δ(S)

αe,

for all S ⊂ Vn . Moreover, if one is given a list of all homogeneous inequalities that
induce facets of CUTn , then by applying switching, one can obtain a complete linear
description of CUTn .

We remark that the cut polytope is also equivalent (under a simple linear mapping)
to the convex hull of the psd matrices with ±1 entries [18,23].

As for the multicut polytope MCUTn , it is not hard to see that it is nothing but the
complement of the clique partitioning polytope CPPn . That is, the vector y∗ belongs
to MCUTn if and only if the vector ỹ, with ỹe = 1 − y∗

e for all e ∈ En , belongs to
CPPn . This enables one to easily map valid inequalities and facets of CPPn onto valid
inequalities and facets of MCUTn , and vice-versa.

Finally, we ‘complete the circle’ of results by mentioning a link between the cut
and multicut polytopes:

Proposition 14 CUTn and MCUTn have the same homogeneous facets.

This fact was pointed out by Deza et al. [11].

4.4 Summary of the polyhedral relationships

In Fig. 5, we summarize the relationships between the five polytopes as established
by Propositions 8–14. (Note that Proposition 11 is not displayed.) As we remarked in
the introduction, the binary psd polytope Pn is the most complex of the five polytopes
under discussion, in the sense that a complete description of Pn can be used to derive
a complete description of the other four polytopes. We point out, however, that the
multicut and clique partitioning polytopes are themselves more complex than the cut
and boolean quadric polytopes: one needs only the homogeneous facets of MCUTn ,
together with the switching symmetry mentioned in the previous subsection, to obtain
a complete description of CUTn (and therefore, by the covariance mapping, also of
BQPn−1).

5 Consequences of the polyhedral relationships

In this section, we consider some implications of the polyhedral relationships estab-
lished in the previous section. In Sect. 5.1, we show how inhomogeneous inequalities
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Fig. 5 A pentagon of
polyhedral relations

for binary psd polytopes can be derived from inequalities for clique partitioning poly-
topes. In Sect. 5.2, we show how new valid inequalities for the other polytopes can also
be derived using similar arguments. Finally, in Sect. 5.3, we examine the hypermetric
correlation inequalities, and some related inequalities, which will enable us to answer
an open question in the literature on the max-cut problem.

5.1 Inhomogeneous inequalities for binary psd polytopes

In Sect. 3.3, we pointed out that all homogeneous valid inequalities for Pn come from
the boolean quadric cone. We now show that, using the results in Sect. 4.1, one can
derive interesting inhomogeneous inequalities for Pn from valid inequalities for CPPn .

We start with the so-called 2-chorded odd cycle inequalities of Grötschel and
Wakabayashi [19]. These inequalities, which always induce facets of CPPn , take the
form

∑

e∈C

ye −
∑

e∈C̄

ye ≤ (|C | − 1)/2,

where C ⊂ En is the edge set of a simple cycle of odd length at least 5, and C̄ is the
set of 2-chords of C . It turns out that these inequalities induce facets of Pn :

Proposition 15 All 2-chorded odd cycle inequalities induce facets of Pn.

Proof It suffices to show that the correct value for all of the lifting coefficients αi in
Proposition 10 is zero. This is trivial for the nodes not incident on an edge in C . So let
u be a node incident on an edge in C . We can obtain an extreme point of Pn satisfying
the 2-chorded cycle inequality at equality by setting xi to one for all nodes apart from
u, and setting ye to zero for all edges apart from (|C | − 1)/2 node-disjoint edges in
the cycle C . Since we can obtain another extreme point of Pn by changing the value
of xu from zero to one, αu must be zero. ��
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Note that the 2-chorded odd cycle inequalities do not involve the x variables. By
lifting different inequalities, however, one can obtain inhomogeneous inequalities that
involve the x variables. We know of several examples, but give just one, for the sake
of brevity. One can check (either by enumeration or with the aid of a computer) that
the following inequality defines a facet of CPP7:

y12 + y14 + y17 + y23 + y34 + y47 + 2y57 + 2y67

−y13 − 2y16 − y24 − y27 − y37 − 2y45 − 2y56 ≤ 4.

One can also check that the lifting coefficient αi is equal to 2 for node 7, and to 0 for
all other nodes. Thus, the lifted inequality has a right-hand side of 2 and involves x7.

We remark that not all inhomogeneous facets of Pn can be obtained by lifting facets
of CPPn . For example, one can check that the following inhomogeneous inequality
induces a facet of P4, yet cannot be obtained by lifting a facet of CPP4:

2y13 + 2y14 + y23 + y24 ≤ 1 + 2x1 + 2y12 + y34.

5.2 New inequalities for the other polytopes

Using the chain of polyhedral relationships presented in the previous section, one can
derive new valid inequalities not only for Pn , but also for all of the other polytopes
mentioned.

Here is an example. Grötschel and Wakabayashi [19] introduced a class of valid
inequalities for CPPn called 2-chorded path inequalities, which were generalised by
Sørensen [30] as follows. Let {v1, . . . , vk} be a subset of Vn with k ≥ 5, and let Z be
a non-empty subset of Vn\{v1, . . . , vk}. Then the inequality

k−1∑

i=1

yvi ,vi+1 −
k−2∑

i=1

yvi ,vi+2 +
�k/2�∑

i=1

∑

p∈Z

yp,v2i

−
�k/2�∑

i=1

∑

p∈Z

yp,v2i−1 −
⌊

k + 2

4

⌋ ∑

{i, j}⊂Z

yi j ≤ �k/2� (6)

is valid for CPPn , and induces a facet of CPPn unless k is even and |Z | < 2. Applying
Proposition 10, we obtain (after some work) the following result:

Proposition 16 Suppose we take the 2-chorded path inequality (6) and replace the
right-hand side with

∑�k/2�
i=1 xv2i . The resulting lifted 2-chorded path inequality induces

a facet of Pn if k ≥ 5, Z �= ∅ and, if k is even, |Z | ≥ 2.

Now, note that the lifted 2-chorded path inequalities are homogeneous. Therefore,
by Propositions 7 and 11, they also induce facets of the boolean quadric cone BQCn
and boolean quadric polytope BQPn . Moreover, by applying the covariance map-
ping (Proposition 13), one can obtain facet-inducing inequalities for the cut polytope
CUTn+1. These inequalities are also homogeneous, and therefore (by Proposition 14),
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they induce facets of the multicut polytope MCUTn+1 as well. Finally, by comple-
menting, one obtains facet-inducing inequalities for CPPn+1. As far as we know, this
gives new results for all polytopes mentioned.

As another example we consider the general 2-partition inequalities obtained by
Grötschel and Wakabayashi [20] for CPPn . Actually, they describe two classes of gen-
eral 2-partition inequalities. For the sake of brevity, we consider the ones described in
Grötschel and Wakabayashi [20, Theorem 3.5], as the other ones can be treated in a
similar manner. These inequalities take the form

p∑

k=1

⎛

⎝
∑

i∈Sk

∑

j∈Tk∪T ′
yi j −

∑

i∈Sk

∑

j∈S�,�>k

yi j −
∑

{i, j}⊂Sk

yi j

⎞

⎠

−
∑

{i, j}⊂T ′
yi j −

p∑

k=1

⎛

⎝
∑

{i, j}⊂Tk

yi j +
∑

i∈Tk

∑

j∈T ′
yi j

⎞

⎠ ≤
p∑

k=1

|Sk |, (7)

where S1, . . . , Sp, T1, . . . , Tp, T ′, with p ≥ 2, are mutually disjoint subsets of Vn

such that 1 ≤ |Sk | ≤ |Tk |, for k = 1, . . . , p, and |T ′| ≥ 2. Applying Proposition 10
we obtain (again after some work) the following result:

Proposition 17 Suppose we take the general 2-partition inequality (7) and replace the
right-hand side with

∑p
k=1

∑
i∈Sk

xi . The resulting lifted general 2-partition inequal-
ity induces a facet of Pn.

As in the case of the lifted 2-chorded path inequalities, we see that the lifted gen-
eral 2-partition inequalities are homogeneous. Thus, using the chain of polyhedral
relationships, one can convert the latter into new facet-inducing inequalities for
BQCn, BQPn, CUTn+1, MCUTn+1 and CPPn+1.

By applying a similar argument to other known valid inequalities for CPPn and
MCUTn , taken from [11,19,20,27,30,31], one can obtain further new inequalities for
the various polytopes.

5.3 On the hypermetric correlation inequalities

Now we revisit the hypermetric correlation inequalities (5). We begin by noting that the
hypermetric correlation inequalities for Pn+1 imply, via Proposition 12, the validity
of the following inequalities for BQPn :

∑

i∈Vn

bi (2bn+1 + bi − 1)xi + 2
∑

{i, j}∈En

bi b j yi j ≥ bn+1(1 − bn+1) (∀b ∈ Z
n+1).

(8)

To our knowledge, these inequalities were first discovered by Boros and Hammer [5].
Note that the hypermetric correlation inequalities themselves are a special case of the
inequalities (8), obtained when bn+1 = 0.
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Next, we note that the hypermetric correlation inequalities for Pn−1 correspond,
under the covariance mapping, to the following valid inequalities for CUTn and
MCUTn :

∑

{i, j}∈En

ai a j yi j ≤ 0

(
∀a ∈ Z

n :
n∑

i=1

ai = 1

)
. (9)

These are the well-known hypermetric inequalities, which have been studied in depth
by Deza and colleagues (e.g., [8,10,12,13]).

If one applies the covariance mapping to the more general inequalities (8) instead,
one obtains the following inequalities for CUTn :

∑

{i, j}∈En

ai a j yi j ≤ �σ(a)2/4� (∀a ∈ Z
n : σ(a)odd), (10)

where σ(a) = ∑
i∈Vn

ai . These inequalities, which include the hypermetric inequali-
ties as a special case, are also well-known in the literature on the cut polytope [2,13].
We will call them rounded psd inequalities.

We now present three new results. The first result, inspired by Proposition 12, is
that the separation problem for the Boros-Hammer inequalities (8) can be reduced to
the separation problem for the hypermetric correlation inequalities (5):

Proposition 18 Given a vector (x∗, y∗) ∈ [0, 1]Vn∪En , let (x̃, ỹ) ∈ [0, 1]Vn+1∪En+1 be
defined as follows. Let x̃i = x∗

i for i ∈ Vn, but let x̃n+1 = 1. Let ỹe = y∗
e for e ∈ En,

but let ỹi,n+1 = x∗
i for i ∈ Vn. Then (x∗, y∗) satisfies all Boros-Hammer inequalities

(8) if and only if (x̃, ỹ) satisfies all hypermetric correlation inequalities (5).

Proof Suppose that (x̃, ỹ) violates a hypermetric correlation inequality. Then there
exists a vector b ∈ Z

n+1 such that

∑

i∈Vn+1

bi (bi − 1)x̃i + 2
∑

{i, j}∈En+1

bi b j ỹi j < 0.

From the construction of (x̃, ỹ) this implies that:

∑

i∈Vn

bi (2bn+1 + bi − 1)x∗
i + 2

∑

{i, j}∈En

bi b j y∗
i j < bi (1 − bi ).

That is, (x∗, y∗) violates a Boros-Hammer inequality. The reverse direction is similar.
��

Our second result is that the separation problem for the rounded psd inequalities
(10) can be reduced to the separation problem for the hypermetric inequalities (9). (In
fact, this follows from Proposition 18 and the covariance mapping. Nevertheless, we
give an independent constructive proof, for the sake of clarity).
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Proposition 19 Given a vector y∗ ∈ [0, 1]En , let ỹ ∈ [0, 1]En+1 be defined as follows.
Let ỹe = y∗

e for e ∈ En, but let ỹi,n+1 = 1−y∗
i,n for i ∈ Vn−1, and let ỹn,n+1 = 1. Then

y∗ satisfies all rounded psd inequalities (10) if and only if ỹ satisfies all hypermetric
inequalities (9).

Proof Suppose that ỹ violates a hypermetric inequality. Then there exists a vector
ã ∈ Z

n+1 such that
∑n+1

i=1 ãi = 1 and such that
∑

{i, j}∈En+1
ãi ã j ỹi j > 0. Now define

a vector a∗ ∈ Z
n as follows: a∗

i = ãi for i = 1, . . . , n − 1, and a∗
n = ãn − ãn+1.

One can check that
∑n+1

i=1 a∗
i is odd and that

∑
{i, j}∈En

a∗
i a∗

j y∗
i j > 0, and therefore y∗

violates a rounded psd inequality. The reverse direction is similar. ��
In one sense, Propositions 18 and 19 do not help much, since the complexity of

hypermetric separation is a long-standing open problem (see, e.g., Deza and Laurent
[13] and Avis [1]). They do however imply that a separation heuristic for any of the
four classes of inequalities can be easily converted into separation heuristics for the
other three classes. Moreover, Proposition 19 can be used to prove the following result:

Corollary 4 The rounded psd inequalities (10) define a polytope. (That is, although
the inequalities are infinite in number, there exists a finite subset of them that dominates
all the others).

Proof The hypermetric inequalities were shown to define a polyhedral cone by Deza
et al. [10]. Now, Proposition 19 shows that the convex set defined by the rounded psd
inequalities can be obtained by intersecting the hypermetric cone in R

En+1 with the
affine space defined by the equations yi,n + yi,n+1 = 1 for i ∈ Vn−1 and the equation
yn,n+1 = 1, and projecting the resulting polyhedron onto R

En . The convex set is
therefore a polyhedron. Moreover, it is bounded, since the inequalities 0 ≤ ye ≤ 1 for
all e ∈ En are themselves rounded psd inequalities. ��
This answers in the affirmative a question raised by Avis and Umemoto [2].

To close this section, we note that the hypermetric correlation inequalities (5) imply,
via Corollary 3, the following inequalities for CPPn :

∑

{i, j}∈En

bi b j yi j ≥ 1

2

∑

i∈Vn

bi (1 − bi ) (∀b ∈ Z
n).

These inequalities generalise the weighted (s, T )-inequalities of Oosten et al. [27].
Moreover, if we complement them, we obtain the following inequalities for MCUTn :

∑

{i, j}∈En

bi b j yi j ≤ σ(b)(σ (b) − 1)/2 (∀b ∈ Z
n).

The validity of these inequalities for MCUTn was observed by Deza and Laurent [13]
(p. 465). Note that they generalise the hypermetric inequalities (9), but they are gen-
erally weaker than the rounded psd inequalities (which are not valid in general for
MCUTn).
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6 Conclusions

We have shown that the binary psd matrices are easily characterised and have a nat-
ural graphical representation. We have also shown that binary psd polytopes form an
interesting family of ‘master polytopes’, that enable one to easily derive both known
and new results for several other families of integer polytopes. We therefore believe
that the binary psd polytopes deserve further attention.

One interesting topic for future research would be to study the complexity of the
separation problem for various valid inequalities for binary psd polytopes. Positive
separation results in this area would of course imply positive separation results for the
other polytopes as well. A major open question is the complexity of separation for the
hypermetric correlation inequalities and their variants.
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