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SUMMARY: Parkinson’s disease, Huntington’s disease, Amyotrophic laterabs@e/ALS) and Alzheimer’s
disease are all examples of neurodegenerative disorders thitfresuthe premature death of nerve cells or
neurons. In order to understand the mechanisms through which tisessels advance, a number of models have
been put forward to describe the decline in the numbers of surviviagns. Such work has been hampered by
the poor quality of estimates of the numbers of surviving neurons awdbgigjuestionable model selection
techniques. Recent work has favoured the adoption of the exponerd@| to explain neurodegenerative
decline. We present in this paper a methodology for challenging this megief data from patients with ALS.
We use a two stage procedure to study motor unit numbers. The firstistagves determining the number of
motor units in a muscle on several occasions over a period of time. Ttiodef Ridall et al. (2007) is used
which makes use of reversible jump Markov chain Monte Carlo (RIMCM®@§ second stage involves the
analysis of the RIMCMC output by using a hidden Markov process difdedwo such processes of decline are
compared. The first is the exponential where the rate parameter ignbrghis is compared to a more general
semi-parametric process where the rate parameter is allowed to vargiroge The rate is set to be piecewise
constant between recordings where the magnitudes of the changeaneateakly constrained by the length of
the interval between recording occasions. Between model compsidserbased on electrophysiological data
collected from a group of ALS patients where motor units (MUs) are grthgiost leading to progressive muscle
weakness. By calculating marginal likelihoods, we find the Bayes facteupport of the exponential decline
model against the more general alternative. This approach is illustratiedour ALS patients. Prediction of
MU numbers lost, which incorporates both models, can also be maden€&hods, we therefore believe, have
a role in formulating and evaluating biological models for neural degeioer of the motor system in ALS

patients.
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1. Introduction

Neurodegenerative diseases, such as Parkinson’s distastington’s disease, Alzheimer’s dis-
ease and amyotrophic lateral sclerosis (ALS), involve tlhgressive death of populations of nerve
cells. Our study is focused on the loss of functioning motatsuof patients with ALS. This fatal
disease of the motor system is enigmatic, with a spontaneset, lack of an obvious cause and
lack of clinical markers to affirm diagnosis and measure #tes of progression of the disease.
The reasons why the disease is difficult and problematicudysinclude the inaccessibility of the
motor units and the inability of clinical examination to dehine the number of remaining motor
units (as we explain later in this section). A number of bgibally plausible models have been
suggested to describe the loss of motor units, (Kuether apiddki, 2007). A commonly used
model is that of an exponential decline of the number of untiere the rate of loss of units is
assumed to be proportional to the number of remaining uhitszis (1998) and Li et al. (1996)
find empirical support for this model and refer to it as the€dnt model’. Others, for example
Kuether and Lipinski (2007), refer to the same model as thaeeaelerated decline’.

In the present study we compare the exponential model ofrgeulith plausible alternatives
using a Bayesian approach. The aim of the present study isébogea methodology for evaluating
the evidence in favour of the constant rate, exponentialirdeenodel against a flexible semi-
parametric model capable of incorporating the featurefiefraate models. To do this, we use data
from subjects with ALS, where we have developed a means @firihf an accurate estimate of
the number of remaining motor neurons. We constructed a hoddeotor unit excitation using
explicit assumptions that are based on knowledge of theipllogy of motor nerves and muscles.
We have refined this model and showed how estimates of the eumilbemaining motor neurons
can be obtained using reversible jump Markov chain MontedG&IMCMC). With four patients

in the present study, two of whom have typical ALS and two obwhhave progressive lower
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motor neurone weakness without the upper motor neuronerésadf ALS, the test procedure was
carried out on a number of occasions and data collected bggrbgress of the disease.

Our overall approach involves two stages. Firstly, usintadar each patient collected on dif-
ferent occasions, we perform RIMCMC motor unit number esiomatsing the method of Ridall
et al. (2007) on each individual study. For the second stagiag the output of the RIMCMC,
we construct a Markov process for the number of remainingomonits over the observation
period. Using a Bayesian approach we demonstrate how to vieeyhvidence in favour of the
constant exponential decline model against that of a margtax time-varying rate process. We
demonstrate our approach with the four patients with ALSfardlthat for one patient a constant
exponential decline process is strongly supported anaMopatients it is weakly supported whilst,
for the last patient, there is strong evidence against.

In Section 2 we summarize the relevant literature for a digison of the background of the
problem. In Section 3 we describe how the RIMCMC analysis isnsamzed to give the first
stage data of our approach. In Section 4 we describe the Mamaress which represents the
underlying mechanism by which units are lost and propossiplesmodels for the evolution of
the rate parameters. In Section 5 we describe the secorelatagr approach, calculating Bayes
factors for model selection, and in Section 6 we display tiwtresults of our Markov chain Monte
Carlo (MCMC) and our model selection procedure. In Section 7om@@ilate our conclusions and

discuss the neurological implications.

2. Background
In Section 2.1 we discuss some background to measuring thieee the numbers of units while
in Section 2.2 we review models for loss of nerve cells in ndagenerative diseases. In Section

2.3 we consider approaches to statistical model choicesiméturological literature.
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2.1 The background of measuring decline of units

Motor units (MU) are the functional units of the peripherabtor system. Each consists of an
anterior horn cell, its axon and the muscle fibres that thisereinnervates (Sherrington, 1929).
The anterior horn cells are located within the ventral hdrthe spinal column. In ALS there is
progressive loss of MUs. Loss of MUs may be compensated bgtecdl sprouting of other intact
motor axons to re innervate the denervated muscle fibreshltay 1958). This compensatory
process results in an increased MU size, with an increasetdh@uof muscle fibres per MU and
a fairly well maintained force output of affected musclesn€equently, muscle weakness is not
apparent until the rate of new sprouting is insufficient otilihere are few remaining MUs. By
that time up to 80% of a patient’s MUs in a muscle may be losta(8nd McComas, 2003). This
also means that muscle strength is an inaccurate markee oiutmber of MUs and, hence, of the
progression of ALS. To measure numbers of MUs, Ridall et 8l072 develop a stochastic model
using the underlying biology to explain the data from eleghysiological studies. RIMCMC is

used to provide an estimate of the number of surviving matasu

2.2 Models of decline of neurons in neurodegenerative diseases

We first describe some models for the loss of nerve cells inaumgenerative diseases. The death
rate of a particular neuron at timés denoted by\;,. WhenN\ is large we can model decline by the
differential equation% = —\:N; whereN; denotes the number of functioning neurons at time
However, we model the process of decline as discrete antdagtc, taking only positive integer

values, giving the Markov process with transition prohiéibg

. . 1 — \id + o(d); j=1
P (Nipa=jINe=1,N) = (1)
Meid + o(d); j=i-1,
where the remaining transition probabilities afé) for a small time increment. We now describe

some models of the decline of the numbers of neurons fourttkifiterature.

(i) Constant rate or exponential decline.
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(iii)
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The exponential model is widely favoured by Clarke et al. @@hd Clarke et al. (2000). The
model is consistent with an assumption that the death ofomsus preceded by a single, inde-
pendent and cataclysmic biochemical event. The death aataneter); is fixed with respect
to time and assumed independent of other units. Decline eanduleled deterministically by
4 = —\N,, giving N; = Noe™, whereN; is the initial number of units at the beginning
of the disease process. The adoption of this model has ianastinical implications because
it suggests that the remaining neurons are healthy andwstidtioning and can somehow be
rescued from the disease process (Clarke et al., 2001). lvegvey whether this model applies
to ALS, a broad range of alternatives needs to be consid@itezse alternative models are
described below.

Linear decline.

Armon (2003) concludes that the decline or the number ofigugy units is linear in time
in ALS patients. This implies that the rate of decline is related to the initial number of
neurons. Such a decline could be explained by a damagind atp&h captures neurons one
by one. Andres et al. (1988) also finds that the decline islibat uses a score based on muscle
strength which, as we have explained, is not directly rdl&emotor unit numbers because of

collateral sprouting. In the linear decline model, the w@teecline is not proportional to the

number of functioning units, (Kuether and Lipinski, 2007).

Sigmoidal decline.

The assumption that the rate of decline of a unit is propoéiido the number of dead units,
giving d% = — AN, (Noy — Vy), leads to the logistic or sigmoidal model. In the event that t

process was accelerated by dying rather than dead motar aiciéparture from the logistic

decline would be likely and a bivariate representation efdlecline process would be more

appropriate.

(iv) Accelerated aging and the cumulative damage model.
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This type of cell death can be found in the process of agingplodical systems (Kuether and
Lipinski, 2007). This behaviour can be described by the Gamzpequation,

N; = Nyexp{(—aexp(bt)} wherea andb are constants. Here decline is not governed by
the behaviour of other units but by alterations within th# teough some intrinsic defect.
For example,this could be related to the inability to mamtssential cellular proteins with
aging or alternatively through exposure to exogenous agéihis is consistent with a model
of cumulative damage where cell death is more likely latehedisease. In ALS, examples
of cumulative damage include oxygen toxicity and the subeetjdamage to macromolecules
(Aggarwai and Neilson, 2001) (Swash and Ingram, 1988), tbaraulation or mislocalisation
of mutant proteins in the cell (Li et al., 1996), and an aaeileg process such as abnormal
protein aggregation promoting the formation of further @iomal protein. The implication is

that the cell death ratey, increases with time.

The heterogeneous model.

Here not all motor units have the same death rate. For instama given muscle there could
be two or more types of motor unit, each with different projest Clarke and Lumsden (2005)
represents the decline process of each comparsnise of a distinct rate constaxit): Nt(i) =
Né“e‘*(”t. With some ALS patients we have observed that the rate ofradeslows down in
the final stage of disease when the number of motor unitssshes 20. Such behaviour could
be explained by survival of more resilient motor neuronssehan (1963) shows that any any
non-null mixture of exponential distributions will alwayssult in an exponentially decreasing

hazard rate.

(vii) The multi-hit model.

Rai and Van Ryzin (1981) explains the model of cell death as @aresm involving a multi-

step biochemical cascade consisting of a sequence of megesents. The overall death rate
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is determined by rate constants for the transitions withis tascade and would lead to a

multiphase version of equation 1.

(viii) The delayed onset model.
In this model the process of decline does not start until siome after disease onset.
A special case, proposed by Kuether and Lipinski (2007has the decline is given by the
quadratic formV; = Ny — c(t — tp)? for t > t, for onset at, but N, is constant, equal t&,

prior to onset, so that the rate of decline is linear in thestsimce onset.

2.3 A coherent Bayesian approach for model choice for neurcklgiecline

Various attempts to select the best mathematical modeksicrithe the loss of neurons can be found
in the literature. Clarke et al. (2001) consider the sigmiadggline model as an alternative to the
exponential decline model and select the best model as thevih the lowest p-value. Clarke
et al. (2001) consider an exponentially decreasing des&thmmadel as an alternative to the constant
death rate model and compare models on the basi# afalues and associated p-values for the
null hypothesis of no linear correlation. Here, the expdiadlg decreasing death rate model can
be arbitrarily close to the constant death rate model. Onra meneral basis the method of Clarke
et al. (2001) is flawed. P-values derived from goodnessttédis were not intended for comparing
different models but rather intended as a way of obtainingeasure of evidence against specific
null hypotheses. For a series of putative models, a serigsvalfues derived from a likelihood ratio
test of one model as the null against another as the alteerfatis because of the incoherence, non-
transitive and non-reflexive nature of the resulting p-galu

We approach the problem of model comparison using a coh&ayesian method. We con-
struct a flexible alternative model encompassing a rangeoaliets for neurodegeneration. This is
achieved by allowing the death rate parameter to vary fromstort period of time to the next.
The model constrains the rate parameter to vary weakly bdtave made some simplifications to

make computations feasible. We compare the constant detatmiodel against the flexible model
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using the Bayesian method of computing a Bayes factor. Th@ves computing the marginal
likelihood by integrating out all of the parameters from tuk probability model, which can be a
computationally challenging exercise; see Friel and R€008) for a review of methods. We also

use the power posterior method of Friel and Pettitt (2008ptapute the marginal likelihood.

3. From first stage posterior to second stage likelihood

Instead of using a full probability model that combines batimodel to infer the number of
remaining units in a given muscle on various occasions with@ce of models of decline over
time, we take a computationally less complex approach. Teediage of our approach involves
using the technique of Ridall et al. (2007) to estimate thegsms distributions of the number of
remaining units in a given muscle on various occasions. Dsegpior distribution of the number of
remaining unitsp(NV|y), at various instances of time can be summarised by a dististtédution
for N which we describe as a histogram. We denote each of thesgytasts at timer;, by A,
wheret = 0,1,2,...,T. Histograms from an ALS patient recorded on multiple ocmasiover a
period of time are shown in the nine panels of Figure 1. In #@sd stage of our analysis we

interpret these histograms as data.

[Figure 1 about here.]

4. The hidden stochastic process of decline

We assume that the true number of urits at timer is non-increasing and subject to a process
of decline where the probability of neuron death is condt@twveen the'* andt + 1 recordings
taken at times; and timer, ;. This process of decline is observed indirectly at timgshere
t =0,1,2,...,T. Information is provided by the estimated posterior sumesar,, that is the

output of, say, 1000 thinned values from the RIMCMC expressetlative frequencies over
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integers. We denote this by a 'likelihoog(h; | V., ). These data are combined together to give the

likelihood

p(h [ N) = IIPM\A% (2)
Then the true number of units has a distributigN | A) with X the rate parameter of the Markov
process describing the decline in the number of units.

Between any two observations, ie for times [r;, 7,,1), we assume the rate parameter is fixed

at \; and the nonzero transition probabilities for the numbeleaiaining unitsV satisfy

_ ‘ 1 — M\id + o(d); j=1
P (N7-+d - j|N7— - Z, )\t) -
Mid + o(d); j=i—1,
whered is a small time interval. Elements of the probability traiesi matrix, P (N,,, = j | N, = 1),

for this interval of time, can be calculated from the infisiteal generator matrig "), using the

matrix exponentiat®"? (+1=7) \where

—\i; j=1i
A\i; j=i—1
We have assumed a stochastic process of decline with theoMprkperty (see for example Cox

and Miller (1965)), so that

!

(N ‘ )‘ Hp Tt ’ Tt— 1a>‘t) 1(N7't S NTt—l)a (3)

t=1

whereAr; = 1, — 1, are the time increments and the non-increasing constgaimgosed on the
N, with 1 being the indicator function. We assume thats constant i, 7,,1), and the motor

unit reductions over an interval are therefore binomial and

N.|N;,_,, A ~ Binomial (N,,_,, e 47) t=1,2,....T.

Tt—19

We assume a distribution fd¥,,, the initial number of units at time,. Without assuming specific
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knowledge we assume that, is uniformly distributed over the integefs, 2, ..., Npax } Where
N, IS set to 300.

The probability model can be written as the product of the RINECdlitput, expressed as a
likelihood, p(h | N), a stochastic procesg(N | A), the rate parameterg(A | ®), which describe

the process of neuron death, and the priors for the rate aeasp(P).

p(h [ N)p(N [ X)p(X | @)p(®).

4.1 Models for the evolution of the rate parameters
To understand the disease process better, we now presentddels which differ in how the rate
parameten is parameterized.

M : A piecewise constant rate.

To allow the rate parameters to vary smoothly and multipilredy from interval to interval,
we allocate each rate parameter a mean of the previous regeeter,\;_;, and a variance

proportional to the length of the interval of timar;, and equal ta\r; /.

kA2 PV
M| A1, ko~ Gamma( Ai;,%;) t=12,...,T

Ao ~ Gammgg,e).
In the above, Gamm@, -) denotes the Gamma distribution so thahas conditional mean equal
to \;_1. We chose = .01 which corresponds to a non-informative prior fgy. The precision
parametelx is also given a non-informative gamma pripfx), wherex ~ Gammaey, €;)
wheree; was set at; = .1 The probability model for this model can be depicted using a

directed acyclic graph (DAG) which is shown in Figure 2.

M, : Constant death rate.

In this model we assume that the rate is unchanged over e~ \.
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Model M, provides a simple model for MU decline so that the expectadlbar of units at
time 7, given N, units at timer, is Noe (" ~7), Model M; allows the rate parametgy to vary
from time interval to time interval while incorporating teanpler model. We discuss neurological

implications of these two models later.

[Figure 2 about here.]

5. Model comparison

We compare the two modelst;, ¢ = 1,2 by calculating a Bayes factor from the logs of their
marginal likelihoods using thermodynamic integration loé texpected log likelihood obtained
by sampling from the power posterior as shown in Friel anditP€2008) and shown below in

Equation 4 .

p(81h, &, M)  [p(h | 6, M:)]”p(8 | M), ¢ €10,1]. @
wherep(@ | M;) = p(N | X)p(A | &, M,;)p(® | M,) represents all the unknowns and the

components have already been defined in Section 4. The Idgeaiarginal likelihood can be

calculated using path sampling, and the identity shownvioelo

1
logp(| M) = [ gy, losplla | 0.0) do. 5)
| Eg,

The expectation in the integrand can be approximated byileging a simulation average:

J
logp(h | 6, M
B .6 logp(h [ 0, M) ~ 2 2 | ) ©)

where@ is taken from the MCMC output simulated from the powered pastgiven by Equation

4 once convergence is attained. The integral can be appatsthby allocating values from the

rangel0, 1]. Simpson’s rule can be used to approximate the integrahgivEquation 5. The Bayes

p(hi|Mq)

factor for two models\M; and M, is given by B, = o)

We used a fifth order power sequence, used 5,000 iteratiomoper and repeated the marginal

likelihood calculation three times with three different@othing priors.
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6. Results of our analysis

The progress of the patients (a) to (d) is shown in Figure 3our panels labelled patient (a)
to patient(d). Within each of these frames, the upper rigintchsub-panels shows the output of
the first stage of our model, the RIMCMC. The modes of the margwsikrior distribtions of the
number of units are marked with error bars displaying theégras standard deviations. Repetitions
are represented by a slight horizontal movement of eachBadow these on the lower right of
each panel show the MCMC output which are derived from the RIMGQ@Mutput smoothed by
application of the second stage of our model. These are tipeiswof V;, from the two models for

the stochastic death process, models and M.

[Figure 3 about here.]

Figure 4 shows the results of our model comparisons. Baydsr&are shown in the second,
third and fourth columns, respectively. The repetitions ased to show the lack of sensitivity
of the values of the Bayes factor to the prior for the parametdihe three priors used arg €
{0.001,0.01, 0.1} giving a wide range of uninformative Gamma distributioropsi Weak evidence
in favour of a changing rate parameter is shown by Patieh&n@ (c) with Bayes factors equal to
2.3 and 1.4, respectively. Strong evidence for the same hiedbeown for patient (b) with Bayes
factor equal to 12.3. The constant rate process is stroagbutred for patient (d) with Bayes factor
equal to 0.13. For patients (a), (c), and (d), the progreizeadisease can be represented by a single
rate parameter or alternately a half life,

95% credible intervals for the half life of patient (a)7is € [280 547] days, for patient (c) is

7. € [206 447] days and that of patient (d) 1§ € [242 671] days.

[Figure 4 about here.]

The serial studies given in Figure 3 show the evolution of jheameters for the piecewise

constant rate model in each bottom left hand side panel. Matefor patient (a) the rate is
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increasing whereas for patient (c) the rate is decreasidgierate appears to decrease throughout

the disease. However there is a drop in rate for the last 28.uni

7. Discussion and Conclusion

7.1 Statistical Aspects

Using data collected from a quick and painless automatectrefghysiological scan, we have
developed a computationally efficient and statisticallyrab method for monitoring the number
of motor units on repeated occasions in muscles of patieifsALLS, an incurable neurological
disease, that advances with time. To determine the rateiahwiotor units are lost, we regard the
output of the RIMCMC analyses as data and then employ a hiddelmasttic process of decline,
to construct a method of both smoothing the output from the & and obtaining estimates of
the evolving neuron death rate parameter when it changesoBparing Bayes factors of models
containing an evolving rate parameter with models with adfideath rate parameter, we have
found a means of categorizing the dynamics of the diseagggss.

By taking our two stage approach to the analysis of the seaial We have smoothed the process
of neuron decline and provided evidence for or against thetemt rate, exponential decline model.
In order to estimate the number of remaining units at eack point and to choose between the
two models for the death rate, we could have employed RIMCMEetwiihis would have been
a computationally challenging task, and we chose to avasl thur approach also provides a
predictive distribution for motor unit decline at some figdime. The predictive distribution can
be found by averaging over the two possible models using tgimal likelihood values to find
posterior model probabilities and so automatically weigineach model appropriately without the
need to choose between them. Such a predictive distribotiold be used to measure the effect of
some intervention.

It would be of interest to investigate a Bayesian approacthéonhodelling which we have
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presented and which would replace the two stage approactelgimy both the MUNE RIMCMC
and the stochastic model choice, having a large RIMCMC. We hade rarious approximations
in our analysis here and this gold standard could be usedséstigate the accuracy of our ap-
proximations. For example, it would also be possible to mxtihe model with the evolving rate
parameter so that a finer grid of time intervals could be udeidiware not dependent on the times
of the study. Another approximation which we have used iglteerete normal approximation for

the RIMCMC output which could be replaced by a set of thinnedegirom the MCMC output.

7.2 Neurological Aspects

As described in section 2.2, different mechanisms for nedemath lead to different mathematical
models of decline. Conversely, from the mathematical mddsllbest describes the data, we may
be able to infer the mechanism of cell death .

The models in Section 4.1, apart from the constant rate miedel to models with non-exponential
decline. Each of the non-exponential decline models canppeoaimated by a more general
model where the rate parameter is allowed to vary over tilme type proposed in Section 4.1.
In this study, two patients had typical ALS and two patierdd b variant of ALS, and the patients
with typical ALS could be distinguished from the others by analysis. This bodes well for the
possiblilty of anaysis of the rates of loss of units as a toadéntify different types of degeneration.

We can envisage three models for the death rate of motor unA& S, each with a resulting

biological mechanism to explain it.

(1) The death rate of a motor unit is fixed and independentlafthéer units. The neuron death
mechanism is due to some internal process similar to aginghauprocess of decline is
initiated by some initial cataclysmic biochemical event.

(2) The death rate of a motor unit changes with time. An ingirearate could be explained by an
accelerating aging process or to a deceasing rate or duffdredces between types of motor

units.
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(3) The death rate of a neuron is dependent upon the stru@ndaspatial properties of the

surrounding afflicted units. This implies transmission byne damaging agent.

The methodology presented in this paper offers a way of vireggtine evidence for whether the
death rate of a neuron is constant over time or whether itggmver time. A fixed death rate
would imply that neurodegeneration is of type (1) above.l@nather hand if the rate was found to
be changing over time then the reason for this change cotlidréde type (2), that is, due to some
transmission process or alternately due to an acceleratjimgy process, or of type (3), dependent
upon the structural and spatial properties of the surroundifflicted units.

There is little firm evidence to be found for each of these $yptloss in the literature. A
major reason for this is that the symptoms such as strengtmasked because of the process of
collateral sprouting. We have not attempted to differdatisetween (2) and (3) but have developed
a methodology for distinguishing these from (1), the motoit death process with a fixed rate.
Our methods, we therefore believe, have a role in formugadimd evaluating biological models for

neural degeneration of the motor system in ALS patients.
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Appendix: Monte Carlo Markov Chain

Al

The full conditionals of\; fort =0,1,2,...,T are
(

PA)P(Air1 | Aty k) t=0

P ) =19 pO | Mc1, £)pOigr | Ay €)P(NA, N7 A ATy) t=1,...,T — 1.

{ p(/\t | )‘t—l’ /{>p<N7't|N7’t—l7 /\t) t="T.
We sample fronp()\; | ...) using random walk Metropolis on the log scale.

N,

..

N,, is updated using Gibbs sampling fraW, € {N,,_,, N.

Tt—1

+1,..., N, } using probabil-
ities
p(Nn ‘ ) ~ P(@t ’ Nn)p(NnH’Nm At11 ATtH)p(Nn‘Nn_p )\taATt)-

Kl...

The full conditional for the precision parameter is givengify: | ...) o p(r) [, p(\e |

Ai—1, k). We sample fronp(x | .. .) using random walk Metropolis on the log scale.
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Figure 1. The plots show the output of the first stage RIMCMC for one patennine
occasions where the histograms, . .. hg give the marginal posterior probabilities of the number
of remaining motor neuronsgy.
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ho hi ha hr—1 hr

Figure 2. The Directed Acyclic Graph shows the probability modelfdr . Thehy, ..., hy refer

to the stage one estimation of the posterior distributioeinumber of remaining neurons at time
7, where the first study starts at. ., refers to the underlying process of decline, there the
rate parameters and theare the measurement times.
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Figure 3. The MCMC output for each of the Patients (a) to (d) is shown al@s/four sub-panels
within four frames representing each patient. We descrélohd ef these sub-panels starting on the
right and going from top to bottom. The top right hand panalssthe output of the first stage.
The modal estimates from the posterior output of the RIMCM@actosed by vertical error bars
showing posterior standard deviations. Note that somessitlerror bars have have been displaced
slightly on the horizontal axis to show repetitions on thmsalay. The panels below these show
the smoothed outputy,, from the application of the second stage of the model, thehsistic
death process. The output from modais, and M, is shown as modal estimates with error bars
showing the posterior standard deviations. The bottonmplafiel displays the modal estimates of
the time varying and piecewise constant rate parametentained from modeM ;. The posterior
standard deviations are shown as error bars. The top ledk pamels are used to show the result of
model selection between modeld; and M,. The horizontal axis shows and the vertical axis
shows the expected log likelihood approximated using egu&. The Bayes factors of the two
models is the signed exponent of the areas between the twescand are presented in Figure 4.
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BF, BFs BF3 A std

(@) 2.3351 2.3346 2.3395 0.0018 0.0003
(b) 12.2680 12.2711 12.3269

(c) 1.3827 1.3662 1.3811 0.0024 0.0005
(d) 0.1258 0.1277 0.1289 0.0018 0.0005

Figure 4. The table gives: column 1, the patient identity, (a), .. ); tlumns 2, 3 and 4, the
Bayes factors (BEBF, and BR) of model M with respect toM using the three different priors:
e, € {0.001,0.01,0.1}, Columns 5 and 6 show the posterior mean and standard dexgdto),

the rate parameter g¥1,.



