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SUMMARY : Parkinson’s disease, Huntington’s disease, Amyotrophic lateral sclerosis (ALS) and Alzheimer’s

disease are all examples of neurodegenerative disorders that result from the premature death of nerve cells or

neurons. In order to understand the mechanisms through which these diseases advance, a number of models have

been put forward to describe the decline in the numbers of surviving neurons. Such work has been hampered by

the poor quality of estimates of the numbers of surviving neurons and also by questionable model selection

techniques. Recent work has favoured the adoption of the exponentialmodel to explain neurodegenerative

decline. We present in this paper a methodology for challenging this model,using data from patients with ALS.

We use a two stage procedure to study motor unit numbers. The first stage involves determining the number of

motor units in a muscle on several occasions over a period of time. The method of Ridall et al. (2007) is used

which makes use of reversible jump Markov chain Monte Carlo (RJMCMC). The second stage involves the

analysis of the RJMCMC output by using a hidden Markov process of decline. Two such processes of decline are

compared. The first is the exponential where the rate parameter is constant. This is compared to a more general

semi-parametric process where the rate parameter is allowed to vary over time. The rate is set to be piecewise

constant between recordings where the magnitudes of the change in rateare weakly constrained by the length of

the interval between recording occasions. Between model comparisons are based on electrophysiological data

collected from a group of ALS patients where motor units (MUs) are gradually lost leading to progressive muscle

weakness. By calculating marginal likelihoods, we find the Bayes factor insupport of the exponential decline

model against the more general alternative. This approach is illustratedwith four ALS patients. Prediction of

MU numbers lost, which incorporates both models, can also be made. Ourmethods, we therefore believe, have

a role in formulating and evaluating biological models for neural degeneration of the motor system in ALS

patients.
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1. Introduction

Neurodegenerative diseases, such as Parkinson’s disease,Huntington’s disease, Alzheimer’s dis-

ease and amyotrophic lateral sclerosis (ALS), involve the progressive death of populations of nerve

cells. Our study is focused on the loss of functioning motor units of patients with ALS. This fatal

disease of the motor system is enigmatic, with a spontaneousonset, lack of an obvious cause and

lack of clinical markers to affirm diagnosis and measure the rates of progression of the disease.

The reasons why the disease is difficult and problematic to study include the inaccessibility of the

motor units and the inability of clinical examination to determine the number of remaining motor

units (as we explain later in this section). A number of biologically plausible models have been

suggested to describe the loss of motor units, (Kuether and Lipinski, 2007). A commonly used

model is that of an exponential decline of the number of unitswhere the rate of loss of units is

assumed to be proportional to the number of remaining units.Travis (1998) and Li et al. (1996)

find empirical support for this model and refer to it as the ’one hit model’. Others, for example

Kuether and Lipinski (2007), refer to the same model as that of ’decelerated decline’.

In the present study we compare the exponential model of decline with plausible alternatives

using a Bayesian approach. The aim of the present study is to develop a methodology for evaluating

the evidence in favour of the constant rate, exponential decline model against a flexible semi-

parametric model capable of incorporating the features of alternate models. To do this, we use data

from subjects with ALS, where we have developed a means of obtaining an accurate estimate of

the number of remaining motor neurons. We constructed a model of motor unit excitation using

explicit assumptions that are based on knowledge of the physiology of motor nerves and muscles.

We have refined this model and showed how estimates of the number of remaining motor neurons

can be obtained using reversible jump Markov chain Monte Carlo (RJMCMC). With four patients

in the present study, two of whom have typical ALS and two of whom have progressive lower
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motor neurone weakness without the upper motor neurone features of ALS, the test procedure was

carried out on a number of occasions and data collected over the progress of the disease.

Our overall approach involves two stages. Firstly, using data for each patient collected on dif-

ferent occasions, we perform RJMCMC motor unit number estimation using the method of Ridall

et al. (2007) on each individual study. For the second stage,using the output of the RJMCMC,

we construct a Markov process for the number of remaining motor units over the observation

period. Using a Bayesian approach we demonstrate how to weighthe evidence in favour of the

constant exponential decline model against that of a more complex time-varying rate process. We

demonstrate our approach with the four patients with ALS andfind that for one patient a constant

exponential decline process is strongly supported and for two patients it is weakly supported whilst,

for the last patient, there is strong evidence against.

In Section 2 we summarize the relevant literature for a description of the background of the

problem. In Section 3 we describe how the RJMCMC analysis is summarized to give the first

stage data of our approach. In Section 4 we describe the Markov process which represents the

underlying mechanism by which units are lost and propose possible models for the evolution of

the rate parameters. In Section 5 we describe the second stage of our approach, calculating Bayes

factors for model selection, and in Section 6 we display boththe results of our Markov chain Monte

Carlo (MCMC) and our model selection procedure. In Section 7 we formulate our conclusions and

discuss the neurological implications.

2. Background

In Section 2.1 we discuss some background to measuring the decline in the numbers of units while

in Section 2.2 we review models for loss of nerve cells in neurodegenerative diseases. In Section

2.3 we consider approaches to statistical model choice in the neurological literature.
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2.1 The background of measuring decline of units

Motor units (MU) are the functional units of the peripheral motor system. Each consists of an

anterior horn cell, its axon and the muscle fibres that this neuron innervates (Sherrington, 1929).

The anterior horn cells are located within the ventral horn of the spinal column. In ALS there is

progressive loss of MUs. Loss of MUs may be compensated by collateral sprouting of other intact

motor axons to re innervate the denervated muscle fibres, (Wohlfart, 1958). This compensatory

process results in an increased MU size, with an increased number of muscle fibres per MU and

a fairly well maintained force output of affected muscles. Consequently, muscle weakness is not

apparent until the rate of new sprouting is insufficient or until there are few remaining MUs. By

that time up to 80% of a patient’s MUs in a muscle may be lost, (Sica and McComas, 2003). This

also means that muscle strength is an inaccurate marker of the number of MUs and, hence, of the

progression of ALS. To measure numbers of MUs, Ridall et al. (2007) develop a stochastic model

using the underlying biology to explain the data from electrophysiological studies. RJMCMC is

used to provide an estimate of the number of surviving motor units.

2.2 Models of decline of neurons in neurodegenerative diseases

We first describe some models for the loss of nerve cells in neurodegenerative diseases. The death

rate of a particular neuron at timet is denoted byλt. WhenN is large we can model decline by the

differential equation:dNt

dt
= −λtNt whereNt denotes the number of functioning neurons at timet.

However, we model the process of decline as discrete and stochastic, taking only positive integer

values, giving the Markov process with transition probabilities

P (Nt+d = j|Nt = i, λt) =





1 − λtid + o(d); j = i

λtid + o(d); j = i − 1,

(1)

where the remaining transition probabilities areo(d) for a small time incrementd. We now describe

some models of the decline of the numbers of neurons found in the literature.

(i) Constant rate or exponential decline.
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The exponential model is widely favoured by Clarke et al. (2001) and Clarke et al. (2000). The

model is consistent with an assumption that the death of neurons is preceded by a single, inde-

pendent and cataclysmic biochemical event. The death rate parameterλt is fixed with respect

to time and assumed independent of other units. Decline can be modeled deterministically by

dNt

dt
= −λNt, giving Nt = N0e

−λt, whereN0 is the initial number of units at the beginning

of the disease process. The adoption of this model has important clinical implications because

it suggests that the remaining neurons are healthy and stillfunctioning and can somehow be

rescued from the disease process (Clarke et al., 2001). In evaluating whether this model applies

to ALS, a broad range of alternatives needs to be considered.These alternative models are

described below.

(ii) Linear decline.

Armon (2003) concludes that the decline or the number of surviving units is linear in time

in ALS patients. This implies that the rate of decline is not related to the initial number of

neurons. Such a decline could be explained by a damaging agent which captures neurons one

by one. Andres et al. (1988) also finds that the decline is linear but uses a score based on muscle

strength which, as we have explained, is not directly related to motor unit numbers because of

collateral sprouting. In the linear decline model, the rateof decline is not proportional to the

number of functioning units, (Kuether and Lipinski, 2007).

(iii) Sigmoidal decline.

The assumption that the rate of decline of a unit is proportional to the number of dead units,

giving dNt

dt
= −λNt(N0 − Nt), leads to the logistic or sigmoidal model. In the event that the

process was accelerated by dying rather than dead motor units a departure from the logistic

decline would be likely and a bivariate representation of the decline process would be more

appropriate.

(iv) Accelerated aging and the cumulative damage model.
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This type of cell death can be found in the process of aging in biological systems (Kuether and

Lipinski, 2007). This behaviour can be described by the Gompertz equation,

Nt = N0 exp {(−a exp(bt)} wherea and b are constants. Here decline is not governed by

the behaviour of other units but by alterations within the cell through some intrinsic defect.

For example,this could be related to the inability to maintain essential cellular proteins with

aging or alternatively through exposure to exogenous agents. This is consistent with a model

of cumulative damage where cell death is more likely later inthe disease. In ALS, examples

of cumulative damage include oxygen toxicity and the subsequent damage to macromolecules

(Aggarwai and Neilson, 2001) (Swash and Ingram, 1988), the accumulation or mislocalisation

of mutant proteins in the cell (Li et al., 1996), and an accelerating process such as abnormal

protein aggregation promoting the formation of further abnormal protein. The implication is

that the cell death rate,λt, increases with time.

(vi) The heterogeneous model.

Here not all motor units have the same death rate. For instance, in a given muscle there could

be two or more types of motor unit, each with different properties. Clarke and Lumsden (2005)

represents the decline process of each componenti by use of a distinct rate constantλ(i): N (i)
t =

N
(i)
0 e−λ(i)t. With some ALS patients we have observed that the rate of decline slows down in

the final stage of disease when the number of motor units is less than 20. Such behaviour could

be explained by survival of more resilient motor neurons. Proschan (1963) shows that any any

non-null mixture of exponential distributions will alwaysresult in an exponentially decreasing

hazard rate.

(vii) The multi-hit model.

Rai and Van Ryzin (1981) explains the model of cell death as a mechanism involving a multi-

step biochemical cascade consisting of a sequence of necessary events. The overall death rate
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is determined by rate constants for the transitions within this cascade and would lead to a

multiphase version of equation 1.

(viii) The delayed onset model.

In this model the process of decline does not start until sometime after disease onset.

A special case, proposed by Kuether and Lipinski (2007), is that the decline is given by the

quadratic formNt = N0 − c(t− tO)2 for t > tO for onset attO butNt is constant, equal toN0

prior to onset, so that the rate of decline is linear in the time since onset.

2.3 A coherent Bayesian approach for model choice for neurological decline

Various attempts to select the best mathematical model to describe the loss of neurons can be found

in the literature. Clarke et al. (2001) consider the sigmoidal decline model as an alternative to the

exponential decline model and select the best model as the one with the lowest p-value. Clarke

et al. (2001) consider an exponentially decreasing death rate model as an alternative to the constant

death rate model and compare models on the basis ofR2 values and associated p-values for the

null hypothesis of no linear correlation. Here, the exponentially decreasing death rate model can

be arbitrarily close to the constant death rate model. On a more general basis the method of Clarke

et al. (2001) is flawed. P-values derived from goodness-of-fit tests were not intended for comparing

different models but rather intended as a way of obtaining a measure of evidence against specific

null hypotheses. For a series of putative models, a series ofp-values derived from a likelihood ratio

test of one model as the null against another as the alternative fails because of the incoherence, non-

transitive and non-reflexive nature of the resulting p-values.

We approach the problem of model comparison using a coherentBayesian method. We con-

struct a flexible alternative model encompassing a range of models for neurodegeneration. This is

achieved by allowing the death rate parameter to vary from one short period of time to the next.

The model constrains the rate parameter to vary weakly but wehave made some simplifications to

make computations feasible. We compare the constant death rate model against the flexible model
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using the Bayesian method of computing a Bayes factor. This involves computing the marginal

likelihood by integrating out all of the parameters from thefull probability model, which can be a

computationally challenging exercise; see Friel and Pettitt (2008) for a review of methods. We also

use the power posterior method of Friel and Pettitt (2008) tocompute the marginal likelihood.

3. From first stage posterior to second stage likelihood

Instead of using a full probability model that combines botha model to infer the number of

remaining units in a given muscle on various occasions with achoice of models of decline over

time, we take a computationally less complex approach. The first stage of our approach involves

using the technique of Ridall et al. (2007) to estimate the posterior distributions of the number of

remaining units in a given muscle on various occasions. The posterior distribution of the number of

remaining units,p(N |y), at various instances of time can be summarised by a discretedistribution

for N which we describe as a histogram. We denote each of these histograms at timeτt, by h
˜t

wheret = 0, 1, 2, . . . , T . Histograms from an ALS patient recorded on multiple occasions over a

period of time are shown in the nine panels of Figure 1. In the second stage of our analysis we

interpret these histograms as data.

[Figure 1 about here.]

4. The hidden stochastic process of decline

We assume that the true number of unitsNτ at timeτ is non-increasing and subject to a process

of decline where the probability of neuron death is constantbetween thetth andt + 1th recordings

taken at timesτt and timeτt+1. This process of decline is observed indirectly at timesτt, where

t = 0, 1, 2, . . . , T . Information is provided by the estimated posterior summaries h
˜t, that is the

output of, say, 1000 thinned values from the RJMCMC expressed as relative frequencies over
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integers. We denote this by a ’likelihood’p(h
˜t | Nτt

). These data are combined together to give the

likelihood

p(h
˜
| N) =

T∏

t=0

p(h
˜t | Nτt

), (2)

Then the true number of units has a distributionp(N | λ) with λ the rate parameter of the Markov

process describing the decline in the number of units.

Between any two observations, ie for timesτ ∈ [τt, τt+1), we assume the rate parameter is fixed

atλt and the nonzero transition probabilities for the number of remaining unitsN satisfy

P (Nτ+d = j|Nτ = i, λt) =





1 − λtid + o(d); j = i

λtid + o(d); j = i − 1,

whered is a small time interval. Elements of the probability transition matrix,P
(
Nτt+1 = j | Nτt

= i
)
,

for this interval of time, can be calculated from the infinitesimal generator matrixG(λt), using the

matrix exponentialeG(λt)(τt+1−τt), where

G
(λt)
i,j =





−λti; j = i

λti; j = i − 1

.

We have assumed a stochastic process of decline with the Markov property (see for example Cox

and Miller (1965)), so that

p(N | λ) = p(Nτ0)
T∏

t=1

p(Nτt
| Nτt−1 , λt) 1(Nτt

≤ Nτt−1), (3)

where∆τt = τt − τt−1 are the time increments and the non-increasing constraint is imposed on the

Nτt
with 1 being the indicator function. We assume thatλt is constant in[τt, τt+1), and the motor

unit reductions over an interval are therefore binomial and

Nτt
|Nτt−1 , λt ∼ Binomial

(
Nτt−1 , e

−λt∆τt

)
t = 1, 2, . . . , T.

We assume a distribution forNτ0, the initial number of units at timeτ0. Without assuming specific
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knowledge we assume thatNτ0 is uniformly distributed over the integers{1, 2, . . . , Nmax} where

Nmax is set to 300.

The probability model can be written as the product of the RJMCMC output, expressed as a

likelihood,p(h
˜
| N), a stochastic process,p(N | λ), the rate parameters,p(λ | Φ), which describe

the process of neuron death, and the priors for the rate parameters,p(Φ).

p(h
˜
| N)p(N | λ)p(λ | Φ)p(Φ).

4.1 Models for the evolution of the rate parameters

To understand the disease process better, we now present twomodels which differ in how the rate

parameterλ is parameterized.

M1 : A piecewise constant rateλ.

To allow the rate parameters to vary smoothly and multiplicatively from interval to interval,

we allocate each rate parameter a mean of the previous rate parameter,λt−1, and a variance

proportional to the length of the interval of time,∆τt, and equal to∆τt/κ.

λt | λt−1, κ ∼ Gamma
(

κλ2
t−1

∆τt

, κλt−1

∆τt

)
t = 1, 2, . . . , T

λ0 ∼ Gamma(ǫ, ǫ).

In the above, Gamma(·, ·) denotes the Gamma distribution so thatλt has conditional mean equal

to λt−1. We choseǫ = .01 which corresponds to a non-informative prior forλ0. The precision

parameterκ is also given a non-informative gamma prior,p(κ), whereκ ∼ Gamma(ǫ1, ǫ1)

whereǫ1 was set atǫ1 = .1 The probability model for this model can be depicted using a

directed acyclic graph (DAG) which is shown in Figure 2.

M2 : Constant death rate.

In this model we assume that the rate is unchanged over time, ieλt = λ.
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Model M2 provides a simple model for MU decline so that the expected number of units at

time τ1 givenN0 units at timeτ0 is N0e
−λ(τ1−τ0). ModelM1 allows the rate parameterλt to vary

from time interval to time interval while incorporating thesimpler model. We discuss neurological

implications of these two models later.

[Figure 2 about here.]

5. Model comparison

We compare the two modelsMi, i = 1, 2 by calculating a Bayes factor from the logs of their

marginal likelihoods using thermodynamic integration of the expected log likelihood obtained

by sampling from the power posterior as shown in Friel and Pettitt (2008) and shown below in

Equation 4 .

p(θ|h
˜
, φ,Mi) ∝

[
p(h

˜
| θ,Mi)

]φ
p(θ | Mi), φ ∈ [0, 1]. (4)

wherep(θ | Mi) = p(N | λ)p(λ | Φ,Mi)p(Φ | Mi) represents all the unknowns and the

components have already been defined in Section 4. The log of the marginal likelihood can be

calculated using path sampling, and the identity shown below.

log p(h
˜
| M) =

∫ 1

0

Eθ|h
˜
,φ,M

log p(h
˜
| θ,M) dφ. (5)

The expectation in the integrand can be approximated by calculating a simulation average:

Eθ|h
˜
,φ,M

log p(h
˜
| θ,M) ≈

∑J log p(h
˜
| θ,M)

J
(6)

whereθ is taken from the MCMC output simulated from the powered posterior given by Equation

4 once convergence is attained. The integral can be approximated by allocatingφ values from the

range[0, 1]. Simpson’s rule can be used to approximate the integral given in Equation 5. The Bayes

factor for two modelsM1 andM2 is given byB12 =
p(h

˜
1|M1)

p(h
˜
2|M2)

.

We used a fifth order power sequence, used 5,000 iterations per power and repeated the marginal

likelihood calculation three times with three different smoothing priors.
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6. Results of our analysis

The progress of the patients (a) to (d) is shown in Figure 3 in four panels labelled patient (a)

to patient(d). Within each of these frames, the upper right hand sub-panels shows the output of

the first stage of our model, the RJMCMC. The modes of the marginalposterior distribtions of the

number of units are marked with error bars displaying the posterior standard deviations. Repetitions

are represented by a slight horizontal movement of each bar.Below these on the lower right of

each panel show the MCMC output which are derived from the RJMCMCoutput smoothed by

application of the second stage of our model. These are the outputs ofNt from the two models for

the stochastic death process, modelsM1 andM2.

[Figure 3 about here.]

Figure 4 shows the results of our model comparisons. Bayes factors are shown in the second,

third and fourth columns, respectively. The repetitions are used to show the lack of sensitivity

of the values of the Bayes factor to the prior for the parameterκ. The three priors used areǫ1 ∈

{0.001, 0.01, 0.1} giving a wide range of uninformative Gamma distribution priors. Weak evidence

in favour of a changing rate parameter is shown by Patients (a) and (c) with Bayes factors equal to

2.3 and 1.4, respectively. Strong evidence for the same model is shown for patient (b) with Bayes

factor equal to 12.3. The constant rate process is strongly favoured for patient (d) with Bayes factor

equal to 0.13. For patients (a), (c), and (d), the progress ofthe disease can be represented by a single

rate parameter or alternately a half life,τ .

95% credible intervals for the half life of patient (a) isτc ∈ [280 547] days, for patient (c) is

τc ∈ [206 447] days and that of patient (d) isτd ∈ [242 671] days.

[Figure 4 about here.]

The serial studies given in Figure 3 show the evolution of theparameters for the piecewise

constant rate model in each bottom left hand side panel. Notethat for patient (a) the rate is
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increasing whereas for patient (c) the rate is decreasing and the rate appears to decrease throughout

the disease. However there is a drop in rate for the last 20 units.

7. Discussion and Conclusion

7.1 Statistical Aspects

Using data collected from a quick and painless automated electrophysiological scan, we have

developed a computationally efficient and statistically sound method for monitoring the number

of motor units on repeated occasions in muscles of patients with ALS, an incurable neurological

disease, that advances with time. To determine the rate at which motor units are lost, we regard the

output of the RJMCMC analyses as data and then employ a hidden stochastic process of decline,

to construct a method of both smoothing the output from the RJMCMC and obtaining estimates of

the evolving neuron death rate parameter when it changes. By comparing Bayes factors of models

containing an evolving rate parameter with models with a fixed death rate parameter, we have

found a means of categorizing the dynamics of the disease progress.

By taking our two stage approach to the analysis of the serial data we have smoothed the process

of neuron decline and provided evidence for or against the constant rate, exponential decline model.

In order to estimate the number of remaining units at each time point and to choose between the

two models for the death rate, we could have employed RJMCMC twice. This would have been

a computationally challenging task, and we chose to avoid this. Our approach also provides a

predictive distribution for motor unit decline at some future time. The predictive distribution can

be found by averaging over the two possible models using the marginal likelihood values to find

posterior model probabilities and so automatically weighting each model appropriately without the

need to choose between them. Such a predictive distributioncould be used to measure the effect of

some intervention.

It would be of interest to investigate a Bayesian approach to the modelling which we have
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presented and which would replace the two stage approach by merging both the MUNE RJMCMC

and the stochastic model choice, having a large RJMCMC. We have made various approximations

in our analysis here and this gold standard could be used to investigate the accuracy of our ap-

proximations. For example, it would also be possible to extend the model with the evolving rate

parameter so that a finer grid of time intervals could be used which are not dependent on the times

of the study. Another approximation which we have used is thediscrete normal approximation for

the RJMCMC output which could be replaced by a set of thinned values from the MCMC output.

7.2 Neurological Aspects

As described in section 2.2, different mechanisms for neuron death lead to different mathematical

models of decline. Conversely, from the mathematical model that best describes the data, we may

be able to infer the mechanism of cell death .

The models in Section 4.1, apart from the constant rate model, lead to models with non-exponential

decline. Each of the non-exponential decline models can be approximated by a more general

model where the rate parameter is allowed to vary over time, the type proposed in Section 4.1.

In this study, two patients had typical ALS and two patients had a variant of ALS, and the patients

with typical ALS could be distinguished from the others by our analysis. This bodes well for the

possiblilty of anaysis of the rates of loss of units as a tool to identify different types of degeneration.

We can envisage three models for the death rate of motor unitsin ALS, each with a resulting

biological mechanism to explain it.

(1) The death rate of a motor unit is fixed and independent of all other units. The neuron death

mechanism is due to some internal process similar to aging but the process of decline is

initiated by some initial cataclysmic biochemical event.

(2) The death rate of a motor unit changes with time. An increasing rate could be explained by an

accelerating aging process or to a deceasing rate or due to differences between types of motor

units.
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(3) The death rate of a neuron is dependent upon the structural and spatial properties of the

surrounding afflicted units. This implies transmission by some damaging agent.

The methodology presented in this paper offers a way of weighing the evidence for whether the

death rate of a neuron is constant over time or whether it changes over time. A fixed death rate

would imply that neurodegeneration is of type (1) above. On the other hand if the rate was found to

be changing over time then the reason for this change could either be type (2), that is, due to some

transmission process or alternately due to an acceleratingaging process, or of type (3), dependent

upon the structural and spatial properties of the surrounding afflicted units.

There is little firm evidence to be found for each of these types of loss in the literature. A

major reason for this is that the symptoms such as strength are masked because of the process of

collateral sprouting. We have not attempted to differentiate between (2) and (3) but have developed

a methodology for distinguishing these from (1), the motor unit death process with a fixed rate.

Our methods, we therefore believe, have a role in formulating and evaluating biological models for

neural degeneration of the motor system in ALS patients.
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Appendix: Monte Carlo Markov Chain

λt | . . .

The full conditionals ofλt for t = 0, 1, 2, . . . , T are

p(λt | . . .) =





p(λt)p(λt+1 | λt, κ) t = 0

p(λt | λt−1, κ)p(λt+1 | λt, κ)p(Nτt
|Nτt−1 , λt, ∆τt) t = 1, . . . , T − 1.

p(λt | λt−1, κ)p(Nτt
|Nτt−1 , λt) t = T.

We sample fromp(λi | . . .) using random walk Metropolis on the log scale.

Nτt
| . . .

Nτt
is updated using Gibbs sampling fromNτt

∈ {Nτt−1 , Nτt−1 + 1, . . . , Nτt+1} using probabil-

ities

p(Nτt
| . . .) ∼ p(h

˜t | Nτt
)p(Nτt+1|Nτt

, λt+1, ∆τt+1)p(Nτt
|Nτt−1 , λt, ∆τt).

κ | . . .

The full conditional for the precision parameter is given byp(κ | . . .) ∝ p(κ)
∏T

t=1 p(λt |

λt−1, κ). We sample fromp(κ | . . .) using random walk Metropolis on the log scale.
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Figure 1. The plots show the output of the first stage RJMCMC for one patient on nine
occasions where the histograms,h0, . . . h8 give the marginal posterior probabilities of the number
of remaining motor neurons,N .
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Figure 2. The Directed Acyclic Graph shows the probability model forM1. Theh0, . . . , hT refer
to the stage one estimation of the posterior distribution ofthe number of remaining neurons at time
τt where the first study starts attτ0. Nτt

refers to the underlying process of decline, theλt are the
rate parameters and theτt are the measurement times.
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Figure 3. The MCMC output for each of the Patients (a) to (d) is shown above as four sub-panels
within four frames representing each patient. We describe each of these sub-panels starting on the
right and going from top to bottom. The top right hand panels show the output of the first stage.
The modal estimates from the posterior output of the RJMCMC areenclosed by vertical error bars
showing posterior standard deviations. Note that some of these error bars have have been displaced
slightly on the horizontal axis to show repetitions on the same day. The panels below these show
the smoothed output,Nt, from the application of the second stage of the model, the stochastic
death process. The output from modelsM1 andM2 is shown as modal estimates with error bars
showing the posterior standard deviations. The bottom leftpanel displays the modal estimates of
the time varying and piecewise constant rate parameterλt obtained from modelM1. The posterior
standard deviations are shown as error bars. The top left hand panels are used to show the result of
model selection between modelsM1 andM2. The horizontal axis showsφ and the vertical axis
shows the expected log likelihood approximated using equation 6. The Bayes factors of the two
models is the signed exponent of the areas between the two curves and are presented in Figure 4.
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BF1 BF2 BF3 λ std

(a) 2.3351 2.3346 2.3395 0.0018 0.0003
(b) 12.2680 12.2711 12.3269
(c) 1.3827 1.3662 1.3811 0.0024 0.0005
(d) 0.1258 0.1277 0.1289 0.0018 0.0005

Figure 4. The table gives: column 1, the patient identity, (a), . . . , (d); columns 2, 3 and 4, the
Bayes factors (BF1,BF2 and BF3) of modelM1 with respect toM2 using the three different priors:
ǫ1 ∈ {0.001, 0.01, 0.1}, Columns 5 and 6 show the posterior mean and standard deviations forλ,
the rate parameter ofM2.


