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the decisions of the judges as well as possible association structures between the attributes

can be incorporated in the model, providing an advantage over parallel univariate analyses

of individual attributes. The approach outlined gives parameters which can be interpreted
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1. Introduction

The method of paired comparisons addresses the problem of determining the scale values of
a set of J objects O1, O2, . . . , OJ on a preference continuum that is not directly observable.
Paired comparisons are judgmental tasks that typically involve repeatedly exposing an
individual to a selection of pairs of objects chosen from this set of objects one at a time and
asking for a judgment about which element of the pair is preferred.

This sort of experiment results in
(

J

2

)

paired comparisons, say in the pre-defined order

(1, 2), (1, 3), . . . , (1, J); (2, 3), (2, 4), . . . , (2, J); . . . ; (J − 1, J) , (1)

where (i, j) is a shorthand notation for the comparison of objects Oi and Oj . One of the
most prominent and well-known models that covers such situations is due to Bradley and
Terry (1952). The basic Bradley-Terry (BT-) model is defined by

P{Oi > Oj} =
πi

πi + πj

, P{Oj > Oj} =
πj

πi + πj

(2)
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where {Oi > Oj} or {Oj > Oi} denote the events that object i or object j is chosen in the
comparison of objects i and j. The π’s are unknown non-negative parameters, the so called
‘worth’ parameters, describing the location of the objects on the preference scale which have
to be estimated from the observations. To calculate the worth parameters π we have to
take into account that the BT-model is invariant under change of scale, and identifiability
is usually achieved by the requirement that

∑

i πi = 1.
The basic BT-model has been extensively discussed in the literature (for a review cf.

e.g. David (1988)) and various extensions have been proposed. To name just a few of
those: Ties (Rao and Kupper (1967), Davidson (1970), Kousgaard (1976)); order effects
(Davidson and Beaver (1977), Fienberg (1979)); the incorporation of explanatory variables
(Kousgaard (1984), Matthews and Morris (1995), Dittrich, Hatzinger and Katzenbeisser
(1998), Francis, Dittrich, Hatzinger and Penn (2002)); ordinal paired comparison models
(Agresti (1992), Böckenholt and Dillon (1997)).

In all the above work, the objects are compared solely on a single attribute. This paper
examines multivariate paired comparisons, where the objects are compared on more than
one attribute (Davidson and Bradley (1969), Böckenholt (1988)). For example, a collection
of cameras could be compared on picture quality and ease of use. As in the basic BT-model
it is assumed that for each attribute α, α = 1, 2, . . . , p, there exists a separate continuum on
which the parameters π1α, π2α, . . . , πJα representing the worth of the objects with regard to
the attributes are located. The probability of preferring object i over object j for attribute
α is also defined in Bradley-Terry form

P{Oi >α Oj} =
πiα

πiα + πjα

, (3)

and identifiability is again achieved by setting
∑J

i=1 πiα = 1. To fit multivariate BT-models
an incomplete contingency table approach due to Imrey, Johnson and Koch (1976) which is
based on the Grizzle-Starmer-Koch approach for the analysis of categorical data by linear
models (Grizzle, Starmer and Koch (1969)) can be used. Another approach based on a
logistic representation (Böckenholt (1988)) can be applied.

In almost all BT-models a more or less explicit assumption is that all decisions of the
judges are independent, an assumption which might be questionable at least for the deci-
sions of a given judge: In paired comparison studies, a judge chooses among objects several
times, and in such cases, judgements made by the same judge are likely to be dependent.
The stochastic nature of the data is now a result of between- and within-subject sources
of variation. These possible dependencies should of course be incorporated in the mod-
elling process. Thus the aim of this paper is to present a log-linear representation for
multivariate paired comparisons, where the main issue is the modelling of various possible
dependencies between the decisions of the judges. The statistical modelling of the multi-
variate paired comparisons will be embedded in the analysis of multiple binomial responses
(Cox (1972)). The model presented in this paper can be seen as a generalization of the log-
linear model used for modelling dependencies in univariate paired comparisons (Dittrich,
Hatzinger, Katzenbeisser (2002)).

In principle two different types of dependencies can be considered: According to the ideas
of Böckenholt and Dillon (1997) the association between pairs of paired comparisons can be
taken into account. Dependencies between responses are introduced by repeated evaluation
of identical objects in a paired comparison experiment. If a judge uses the same standard
in comparing objects i and j and objects i and k on attribute α, the assessment of object
i is likely to be similar in both comparisons for the given attribute. This similarity in the
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evaluation of object i might introduce dependencies between the observed responses. Let
us call it between object pairs dependencies. Consider for example the paired comparisons
involving the object pairs (Oi, Oj) and (Oi, Ok) for a given attribute α; dependency is
introduced by the same object Oi involved in both pairs which is characterized by a further
parameter θij,ik|α := θi,jk|α. For pairs of paired comparisons that do not involve the same
object we set θij,kl|α = 0. This case, however, occurs only if J ≥ 4. Therefore two pairwise
responses are regarded as independent when they are based on two nonoverlapping sets of
object pairs. A second type of dependencies can be defined for a given comparison over
(two) attributes, so called within attribute dependencies. For example there could be an
association between the outcome of the comparison of object i with object j with respect to
the two attributes α1 and α2. This possible association will be represented by the parameter
βij|α1α2

.
The proposed log-linear approach has several advantages: (i) First, modelling is done

within the Generalised Linear Model (GLM-) framework, thus parameter estimates can be
obtained by using standard software, e.g. GLIM (Francis et al. (1993)). Moreover various
hypotheses about the parameters of the model can easily be tested within the GLM frame-
work by comparing deviance differences of the involved (nested) models. (ii) The second
advantage of the log-linear approach is that both types of dependencies can be incorporated
into the analysis in the usual GLM way as two-way interaction. Moreover, this specification
allows in principle also that higher order dependencies, i.e. dependencies involving more
than two objects, can also be taken into account. Therefore, this simultaneous modelling
gives an advantage over parallel univariate analysis of single attributes. (iii) The parame-
ters of interest can as usual in the GLM framework be interpreted in terms of log-odds and
log-odds ratios, however in a conditional sense.

2. A log-linear approach for multivariate paired comparisons

In this section we will present a log-linear formulation of the multivariate paired comparison
experiment. With regard to the aim of formulating a log-linear representation a multiplica-
tive specification, rather than an additive specification (Bahadur (1961)), of the underlying
joint probability distribution is used.

2.1. Parameter estimation

Modelling starts with the following representation of the multivariate paired comparison
experiment which has the advantage that this approach can easily be adapted to incorporate
both types of dependencies.

Consider N judges who independently undergo a multivariate paired comparison ex-
periment, where it is assumed that each judge compares each pair of objects on all p
attributes. The result for each comparison can be represented by random variables Yijα,
i, j = 1, 2, . . . , J, i < j, α = 1, 2, . . . , p where

Yijα =

{

1 if Oi > Oj on attribute α ,

−1 if Oj > Oi on attribute α .
(4)

Hence, for a given judge the experiment results in one of 2p(J

2) = ℓ possible response pattern
vectors yi, i = 1, 2, . . . , ℓ, a vector of p

(

J
2

)

elements consisting entirely of {1,−1}, also in
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the pre-defined order (1). In general the response pattern vector can be written as

y = (y121, y122, . . . , y12p ; y131, y132, . . . , y13p ; . . . ; yJ−1,J,1, yJ−1,J,2, . . . , yJ−1,J,p) ,

with yijα ∈ {1,−1} according to (4). The order in which the responses are observed could

be the standard order of a 2p(J

2) factorial main effects only design; this means that the
rightmost y varying the fastest and the leftmost y varying the slowest with all possible
combinations being produced. A few response pattern vectors are then given by

y1 = (1, 1, . . . , 1, 1),

y2 = (1, 1, . . . , 1,−1),

y3 = (1, 1, . . . ,−1, 1),

y4 = (1, 1, . . . ,−1,−1),

...

yℓ = (−1,−1, . . . ,−1,−1).

In order to get a log-linear representation for the multivariate paired comparison experiment
that can be extended to account for the mentioned dependencies we have to model the joint
distribution of the the random variable

Y = {Y121, Y122, . . . , Y12p; Y131, Y132, . . . , Y13p; . . . ; YJ−1,J,1, YJ−1,J,2, . . . , YJ−1,J,p} .

Example: To illustrate the log-linear approach consider the special case J = 3 and p = 2.
According to the multiplicative specification for multivariate binary data due to Cox (1972),
we specify the joint probability distribution for the random variable Y in the following way:
by using Sinclair’s reparameterization (Sinclair(1982)) of the Bradley-Terry specification
(3) for a single comparison

P{Yijα = yijα} =
1

√

πiα/πjα +
√

πjα/πiα

(√
πiα√
πjα

)yijα

, yijα ∈ {−1, 1} (5)

we obtain the joint distribution analogously to Dittrich, Hatzinger and Katzenbeisser (2002):

P{Y121 = y121, Y122 = y122; Y131 = y131, Y132 = y132; Y231 = y231, Y232 = y232} =

= ∆

(√
π11√
π21

)y121
(√

π12√
π22

)y122
(√

π11√
π31

)y131
(√

π12√
π32

)y132
(√

π21√
π31

)y231
(√

π22√
π32

)y232

×

exp{θ1,23|1 y121y131} exp{θ1,23|2 y122y132} ×
exp{θ2,13|1 y121y231} exp{θ2,13|2 y122y232} × (6)

exp{θ3,12|1 y131y231} exp{θ3,12|2 y132y232} ×
exp{β12|12 y121y122} exp{β13|12 y131y132} exp{β23|12 y231y232} ,

where ∆ is a normalizing constant in order to make the probabilities in (6) sum up to unity.
Figure 1 illustrates the various types of dependencies considered in this example.
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FIGURE 1 ABOUT HERE
Figure 1: Dependency structure

Furthermore, let Ni be the random variable

Ni = number of times where response pattern vector yi, i = 1, 2, . . . , ℓ , occurs ,

then the Ni’s are multinomially distributed with N =
∑

i Ni, and probabilities given in (6).
Now let mi be the expectation of Ni, i.e. the expected number of times where response
pattern vector yi occurs. Hence we base our estimation procedure upon simple multinomial
sampling. Thus we obtain for the logarithm of the expectation mi of the random variables
Ni the following linear representation

ln m = γ + λ11(y121 + y131) + λ12(y122 + y132) +

λ21(y231 − y121) + λ22(y232 − y122) +

λ31(−y131 − y231) + λ32(−y132 − y232) +

θ1,23|1 y121y131 + θ1,23|2 y122y132 + (7)

θ2,13|1 y121y231 + θ2,13|2 y122y232 +

θ3,12|1 y131y231 + θ3,12|2 y132y232 +

β12|12 y121y122 + β13|12 y131y132 + β23|12 y231y232 ,

where γ = ln ∆ and λiα = 1
2

lnπiα. For example, the log-linear representation for the
expectation of N1, the expected number of times, where the response pattern vector y1 =
(1, 1; 1, 1; 1, 1) occurs is given by

lnm1 = γ + 2λ11 + 2λ12 − 2λ31 − 2λ32 +

θ1,23|1 + θ1,23|2 + θ2,13|1 + θ2,13|2 + θ3,12|1 + θ3,12|2 +

β12|12 + β13|12 + β23|12 .

Model (7) is a Generalised Linear Model and the parameters can easily be estimated by
standard software using, e.g. by GLIM using Poisson error and a log-link. The design
matrix for the case under considerations, is given by

X = (1,YA,W) , (8)

where 1 is a column vector consisting of 1. The (26 × 6)-matrix Y, the response pattern
matrix, is the design matrix for a 26 main effects only design in standard order (in fact the
rows of Y are the response pattern vectors yi and is given by

Y =



















1 1 1 1 1 1
1 1 1 1 1 −1
1 1 1 1 −1 1
1 1 1 1 −1 −1
...

...
...

...
...

...
−1 −1 −1 −1 −1 −1



















=



















y1

y2

y3

y4

...
yℓ



















,

and
A = B⊗ I2 ,
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where B is the (3 × 3) paired comparison design matrix (Böckenholt and Dillon (1997)).
Each column of this matrix corresponds to one of the 3 objects, and each row to one of the
(

3

2

)

= 3 paired comparisons (in the order given in (1))

B =





1 −1 0
1 0 −1
0 1 −1



 ;

I2 denotes the (2× 2) identity matrix, and the index refers to the number of attributes, i.e,
p = 2. The matrix W is given by W = (W1,W2), where the columns of W1 represent the
between object pairs dependencies, and the columns of W2 represents the within attribute
dependencies, according to our previous definition. Therefore, all columns of the matrix W

can be interpreted as representing two-way interactions between responses corresponding to
columns of Y and can easily be constructed in the usual GLM way as two-way interactions
by elementwise multiplication of suitable columns of the response pattern matrix Y. Let
yijα be the columns of the response pattern matrix, corresponding to the comparison of
objects i and j on attribute α, i.e. Y = (y121,y122;y131,y132;y231,y232), the matrices W1

and W2 are given by

W1 = (y121 ⊙ y131,y122 ⊙ y132,y121 ⊙ y231,y122 ⊙ y232,y131 ⊙ y231,y132 ⊙ y232) ,

and
W2 = (y121 ⊙ y122,y131 ⊙ y132,y231 ⊙ y232) ,

where ⊙ represents the elementwise (Hadamard) product of the corresponding columns.
The design matrix for the simplest case as shown in the example can be generalized for

more than three objects and more than two attributes in an obvious way. For the general
case with J objects and p attributes the design matrix is analogously to (8) given by

X = (1,YA,W)

where the matrix Y is the (2p(J

2) × p
(

J
2

)

) design matrix for a 2p(J

2) main effects only design

in standard order, A = B⊗ Ip, where B is the (
(

J

2

)

× J) paired comparison design matrix
given by

B =











1 −1 0 . . . 0 0
1 0 −1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 −1











,

and Ip is the corresponding identity matrix of order p, i.e. the number of attributes. Care
has only to be taken when specifying the matrix W because not all possible interactions
between columns of Y are meaningful according to the definition of the origin causing the
dependencies as there are nonoverlapping sets of object indices, when J ≥ 4. The log-linear
model is overparameterized and one has to impose some restrictions on the parameters. In
this paper we use the standard GLIM-restrictions, and aliase the λ parameters accordingly.

2.2. Parameter interpretation

Even in this small example of three objects and two attributes, there are already six as-
sociation parameters. An interesting question might be whether all association parame-
ters are needed in the specification of the model. For example one could be interested
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in the hypothesis θ1,23|α = θ1,24|α = · · · = θ1|α. Another, more restrictive hypoth-
esis, would be θ1|1 = θ1|2 = · · · = θ1|p = θ1|·. Furthermore, another hypothesis is
θ1,23|1 = θ1,23|2 = · · · = θ1,23|p. The most restrictive hypothesis would be that all asso-
ciation parameters are zero, in which case the independence model is achieved. It might
also be of interest whether the β-parameters can be restricted in some interesting way. An
obvious advantage of this GLM-approach is that all mentioned hypotheses can easily be
tested in the usual GLM way by comparing deviances of the associated nested models.

The interpretation of the parameters of model (7) is best seen by considering conditional
distributions, because as Cox pointed out, conditional distributions from this class of models
have a simple form, marginal probabilities do not. Consider for example the log-odds in
favour of Y121 conditional on all other Yijα:

ln
P{Y121 = 1|Y−}

P{Y121 = −1|Y−}
= 2(λ11 − λ21) + 2(θ1,23|1y131 + θ2,13|1y231) + 2β12|12y122 ,

where Y− denotes the random vector Y without the element Y121. Therefore, for given
attribute α = 1, the log-odds in favour of object O1 are not only determined by the param-
eters of the involved objects, as in the basic BT-model, but additionally (i) all θ’s have to be
taken into account which represents interactions between those pairs of paired comparisons
which involve the pair (O1, O2), i.e. the pairs ((O1, O2), (O1, O3)) and ((O1, O2), (O2, O3)),
and (ii) there is perhaps also an effect of the within attribute dependency. Therefore, for
two evenly matched objects, and assuming no within attribute dependency, i.e. β12|12 = 0,
there is an advantage in preferring object O1 over object O2 regarding attribute α = 1 if
θ1,23|1y131 + θ2,13|1y231 > 0, which for example is given when θ1,23|1 and θ2,13|1 are positive
and y131 = y231 = 1. Note that this advantage is caused solely by the assumed between
object pairs dependency.

The θ-parameters are proportional to log-odds ratios describing the association between
two Y ’s in the conditional distribution of two paired comparisons, i.e. two Y ’s, given
the others. For example, the parameter θ1,23|1 is proportional to the log-odds ratio in the

conditional distribution of {Y121, Y131} given Y−, where Y− now denotes the random vector
Y without the elements {Y121, Y131}:

ln
P{Y121 = 1, Y131 = 1|Y−}P{Y121 = −1, Y131 = −1|Y−}
P{Y121 = 1, Y131 = −1|Y−}P{Y121 = −1, Y131 = 1|Y−}

= 4 θ1,23|1 .

A positive association parameter θ1,23|1 indicates that the judges will rather be consistent
(positive or negative) within their decisions between objects O1 and O2 for a given attribute.
Following Böckenholt and Dillon (1997) the θ parameters can be interpreted as an indicator
of a stimulus identity effect that reflects the degree of similarity or consistency in the two
assessments of the common object with regard to the attribute. In general, however, the
interpretation of the sign of the association parameters θ is not so straight forward, because
it depends on the object indices involved in the pairs of paired comparisons. If the common
index i is the smallest or the largest of the involved indices i, j, k than a positive parameter
suggests consistency of the decisions, but in all other cases a negative parameter indicates
consistency. This is caused by the ordering of the two-dimensional tables representing the
two-dimensional conditional distributions of the random variables Yij|α and Yik|α, as will
be shown in the following example.

A similar interpretation can be given for the β-parameters. For example β12|12 is pro-
portional to the log-odds ratio in the conditional distribution of {Y121, Y122} given all other
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Y ’s:

ln
P{Y121 = 1, Y122 = 1|Y−}P{Y121 = −1, Y122 = −1|Y−}
P{Y121 = 1, Y122 = −1|Y−}P{Y1211 = −1, Y122 = 1|Y−}

= 4 β12|12 .

A positive (negative) parameter β12|12 indicates therefore a positive (negative) association
between both attributes within the comparison of objects 1 and 2, given all other decisions.

3. An Application

In this section we will illustrate our approach by means of an example. A paired comparison
experiment was carried out at the Vienna University of Economics during the summer term
2001, after the election in the year 1999. 266 mainly first-year students were asked to
state a preference about the leaders of the four political parties represented in the Austrian
Parliament. In this experiment two attributes, namely competence in social issues, s, and
competence in economic issues, e, were taken into account. The leaders of the four political
parties are denoted by the abbreviations S, the head of the social democrats, F, the leader
of the so-called freedom party , C, the leader of the conservatives, and G the head of the
green (ecologic) party (sorted by the number of votes reached in the election 1999). Two
questions for each pairwise comparison were asked, namely which of two party leaders has
more competence in social issues and more competence in economic issues, respectively.

As a first step the independence model for four items (=party leaders) was fitted by
GLIM and the results are given in Table 3 in the appendix. From the estimates of the
initial λ parameters the worth parameters π̂ for the four party leaders with respect to the
two attributes can be calculated by

π̂iα =
exp{2λ̂iα}

∑

ℓ exp{2λ̂ℓα}

and are shown in the following table:

π̂s π̂e

G 0.55 0.37
C 0.18 0.35
S 0.17 0.14
F 0.10 0.14

From the independence model one would conclude that G, the leader of the Green party, is
thought to have the most competence in social and economic issues. However, the distance
to C in the economic attribute is not significant; an approximate 0.95%-confidence interval
for the initial parameter λGe

is given by [−0.072, 0.109]. S and F are quite similar, although S
is seen to have a higher social competence, the corresponding approximate 0.95%-confidence
interval for λSs

is given by [−0.106, 0.074]. One has to be careful in interpreting the overall
fit of the independence model because there are numerous random zeros in the underlying
contingency table, which inflates the residual degrees of freedom. Therefore we consider
deviance changes of hierarchical models only.

The next step is to incorporate dependencies between the decisions of the students
into the model. Therefore we fitted the ‘full’ model allowing for between objects pair

dependencies as well as within attribute dependencies and the results are shown in Table
4 in the appendix. Comparing the independence model with the ‘full’ model, one can see
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a tremendous improvement of the fit, with a change of deviance 813.3 on 30 degrees of
freedom. This suggests that the independence model is not appropriate for this data set.
It is interesting that the worth parameters for the party leaders based on this dependence
model change:

π̂s π̂e

G 0.44 0.24
C 0.20 0.38
S 0.19 0.17
F 0.17 0.21

The changes in the model parameters are displayed in Figure 2, where the arrows represent
the direction of the changes, with starting points given by the worth parameters calculated
on the basis of the independence model.

FIGURE 2 ABOUT HERE
Figure 2: Ascribed competence in social and economic issues

The effect of the incorporation of the dependencies leads to, at least in this example,
more similarity between the party leader, which can be seen in Figure 2. The ascribed
competence of G, the head of the green party, changes most. Compared to the initial
model he is seen to be less competent in both attributes, but still he is ascribed the highest
competence in social issues of all party leaders; an approximate 0.95% confidence interval
for the corresponding initial social competence parameter is given by [0.275; 0.519]. C gains
in both attributes and overtakes G in the ascribed competence in economic issues.

Concerning the interaction parameters θ they have positive as well as negative signs.
Nevertheless, all those interaction parameters indicate that there is a tendency towards
consistent decisions. Consider for example the parameters θS,GF |s and θF,SC|s. To make it
easier to read we will denote the choices e.g. {YSFs = 1}, if the first leader (S) is chosen, by
SF >s S and and the choice {YSFs = −1}, if the second leader (F) is chosen, by SF >s F .

The (estimated) parameter θ̂S,GF |s implies that the (estimated) choice probabilities can
be written as:

P{SG >s S, SF >s S|Y −} P{SG >s G, SF >s F |Y −} =

exp{4 · 0.3233} P{SG >s S, SF >s F |Y −} P{SG >s G, SF >s S|Y −} .

The responses on the left hand side are consistent decisions about S, because SG >s S and
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SF >s S both mean that S, the first party leader in the comparisons is seen to have more
competence in social issues (s) when compared to F and G while SF >s F and SG >s G
mean that in both cases S is seen to have less competence in social issues when compared
to F and G. Whereas the responses in the other side are inconsistent decisions about S,
because S is seen to have more competence in social issues than F (SF >s S) but less
competence in social issues than G (SG >s G). This illustrates that in this case the chance
for a consistent decision ({SF >s S, SG >s S}{SF >s F, SG >s G}) of the students for
either always choosing S to be the party leader with more competence in social issues or
never choosing S when compared to the party leaders F or G is exp{1.2932} = 3.64 times
higher than the probability for choosing S just once when compared to the party leader
F or G. In other words one is more likely either to prefer the social democrat to both
the conservative and freedom party leader, or to prefer the freedom and conservative party
leader to the social democrat.

On the other hand for θF,SC|s we get

P{SF >s S , FC >s F |Y −} P{SF >s F, FC >s C|Y −} =

exp{−4 · 0.6853} P{SF >s S, FC >s C|Y −} P{SF >s F, FC >s F |Y −} .

In this case consistency about the leader F is indicated by {SF >s S, FC >s C}{SF >s

F, FC >s F} which is now on the right hand side of the formula above, and therefore the
chance for consistency is 1

exp{−4· 0.6853} ≈ 16 times higher than the chance for inconsistency.

In order to obtain a more parsimonious model, we tried to simplify the θ’s, according
to the suggestions made at the end of Section 2. However, in general this is not possible
in this example. Consider for example the hypothesis θS,GF |s = θS,GC|s = θS,FC|s = θS|s.
This hypothesis has to be rejected, change in deviance is 18.7 on 2 df. This is the reason
why we did not simplify the model further with respect to the θ parameters.

It is also remarkable that all β-parameters are positive and approximately of the same
size. Therefore the model can further be simplified by substituting six parameters by only
one β, with an estimated value of 0.3385 (s.e.=0.0297), change in deviance is 2.03 on 5 df.
This can be interpreted as a positive association between the competence in social- and
economic issues.

Summarizing the results of this experiment one could conclude that it is important
to consider interaction parameters representing dependencies between the decisions of the
judges on the one hand and attributes on the other hand, otherwise one might get biased
estimates for the worth parameters.
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Table 1. Estimates of the λ parameters of the independence

multivariate model

scaled deviance = 1444.3 at cycle 6

residual df = 4089

estimate s.e. parameter

1 -0.0165 0.04512 Ss
2 -0.4517 0.04643 Se
3 0.5760 0.04997 Gs
4 0.0186 0.04525 Ge
5 -0.2771 0.04654 Fs
6 -0.4414 0.04633 Fe
7 0.0000 aliased Cs
8 0.0000 aliased Ce
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Table 2. Parameter estimates for the multivariate dependence

model

scaled deviance = 630.98 (change = -813.3) at cycle 8
residual df = 4059 (change = -30 )

estimate s.e. parameter

1 -0.0316 0.0616 Ss
2 -0.3889 0.0552 Se
3 0.3970 0.0610 Gs
4 -0.2252 0.0534 Ge
5 -0.0758 0.0615 Fs
6 -0.3025 0.0565 Fe
7 0.0000 aliased Cs
8 0.0000 aliased Ce
9 0.3233 0.1244 THETA S, GF|s

10 0.2024 0.1175 THETA S, GC|s
11 0.9171 0.1506 THETA S, FC|s
12 -0.3229 0.1288 THETA G, SF|s
13 -0.3842 0.1194 THETA G, SC|s
14 0.5094 0.1171 THETA G, FC|s
15 0.5350 0.1221 THETA F, SG|s
16 -0.6853 0.1540 THETA F, SC|s
17 -0.4377 0.1165 THETA F, GC|s
18 0.6618 0.1123 THETA C, SG|s
19 0.6389 0.1561 THETA C, SF|s
20 0.1578 0.1165 THETA C, GF|s
21 0.3106 0.0986 THETA S, GF|e
22 0.2950 0.0973 THETA S, GC|e
23 0.5900 0.1157 THETA S, FC|e
24 -0.3354 0.1035 THETA G, SF|e
25 -0.3425 0.0993 THETA G, SC|e
26 0.7671 0.1243 THETA G, FC|e
27 0.4372 0.0966 THETA F, SG|e
28 -0.4255 0.1170 THETA F, SC|e
29 -0.4611 0.1280 THETA F, GC|e
30 0.3615 0.0959 THETA C, SG|e
31 0.5573 0.1172 THETA C, SF|e
32 0.4304 0.1272 THETA C, GF|e
33 0.3997 0.0803 BETA SG|se
34 0.3526 0.0738 BETA SF|se
35 0.3328 0.0810 BETA SC|se
36 0.3802 0.0880 BETA GF|se
37 0.3216 0.0831 BETA GC|se
38 0.2584 0.0726 BETA FC|se


