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1. Introduction and main results. Throughout we shall consider only finite-
dimensional Lie algebras over a field of characteristic zero. In [3] it was shown that the
classes of solvable and of supersolvable Lie algebras of dimension greater than two are
characterised by the structure of their subalgebra lattices. The same is true of the classes
of simple and of semisimple Lie algebras of dimension greater than three. However, it is
not true of the class of nilpotent Lie algebras. We seek here the smallest class containing
all nilpotent Lie algebras which is so characterised.

Let L, M be Lie algebras over the same field F, and let Z£{L), Z£{M) denote their
lattices of subalgebras. By an l-isomorphism (lattice isomorphism) of L onto M we mean
a bijective map 6: £6(L) -» S£(M) such that

6(A n B) = 6{A) D 6(B) and 6(A U B) = 6{A) U 6(B)

for all subalgebras A, B of L (where AU B denotes the subalgebra of L generated by A
and B in L). We shall write A* for 6(A), the image of A e i£{L) under the /-isomorphism
from L onto M = L*.

If xu . . . , xn e L we shall denote by ((xu . .., xn)) (respectively, (xu . . . , xn)) the
subspace (respectively, subalgebra) of L generated by xx, . . . , xn. We shall often write
((*•)) for ((*))*•

A Lie algebra L is called almost abelian if it is a split extension L = L2 + ((a)) with
L2 D ((a)) = 0 and with ada acting as the identity map on the abelian ideal L2; L is
quasi-abelian if it is abelian or almost abelian. (Note that quasi-abelian Lie algebras are
what the author has previously called semiabelian Lie algebras).

We shall call L almost nilpotent of index n if it has a basis

{x; eu, . . . , elri;. . . ; enl, . . . , enrj

such that

-etjx = xetj = en + ei+hj for 1 ^ i ̂  n - 1, 1 ^j ^ rh

-enjx = xenj = enj, and rj-^rj+x for l g ; ' g n - l ,

all other products being zero. We shall refer to this as the standard basis. Note that
L = N + ((x)), where N is an abelian ideal of L (in fact, it is the nilradical), and
N n ((x)) = 0. Then L is quasi-nilpotent if it is nilpotent or almost nilpotent.

Finally we shall say that the nilpotent Lie algebra L has index of nilpotency (or just
index) n if L" =£0, but L"+1 = 0.

The main results of this paper are the following theorems.

THEOREM 1. Let L be a nilpotent Lie algebra of index n and of dimension greater than
two for which L* is not nilpotent. Then L* is almost nilpotent of index n.
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THEOREM 2. Every almost-nilpotent Lie algebra is l-isomorphic to a nilpotent Lie
algebra.

COROLLARY 3. If L is a quasi-nilpotent Lie algebra of index n of dimension greater
than two then so is L*.

COROLLARY 4. If L is a nilpotent Lie algebra in which L(3) = (L2)2 =£ 0 then L* is also
nilpotent.

2. The proofs. The following lemmas will prove useful.

LEMMA 5. If L is quasi-abelian then either L* is quasi-abelian, or L is two-
dimensional and L* is three-dimensional non-split simple.

Proof. Let L be quasi-abelian. Then L is upper semi-modular (see [1], Theorem
2.4). Since this condition is clearly preserved by /-isomorphisms, L* is upper semi-
modular. The result now follows from Theorem 2.4 of [1].

LEMMA 6. Let L be a nilpotent Lie algebra of dimension greater than two and let
((x*, y*, z*)) be a three-dimensional subalgebra of L*.

(i) Ifx*y* =y*, x*z* = Xz* andy*z* = 0 then A = 1.
. (ii) Ifx*y* = y* + z*, x*z* = Xz* and y*z* = 0 then A = l.

Proof, (i) It is easy to see from Lemma 5 that {{x, v)), ((x, z)) and ({y, z)) are
quasi-abelian.

Since L is nilpotent, they must be abelian; hence L is abelian. It follows that L* is
almost abelian, giving the desired result.

(ii) If A=£l then replacing v* by y* + (1/(1 - X))z* makes it clear that the
subalgebra has the same structure as in (i).

Proof of Theorem 1. First note that L* is solvable [3, Theorem 4.2]. We use
induction on the index of nilpotency of L. The result is clear if L is abelian, so suppose
that it holds when the index is strictly less than k (/: 2= 2), and let L be a Lie algebra for
which Lk+1 = 0, Lk±0. By Theorem 5.1 of [3], (Lk)* is an ideal of L* and L/Lk is
/-isomorphic to L*/(Lk)*. Suppose that L*l(Lk)* is nilpotent. Then L*/(L2)* is
nilpotent. But L2 is the Frattini subalgebra of L (see [2], for example), and so (L2)* is the
Frattini subalgebra of L*. It follows from Theorem 6.1 of [2] that L* is nilpotent, a
contradiction. By the inductive hypothesis, therefore, there is a basis for L* of the form

\X*'ifn> • • • > / l r , J - • • \fk-\,\> • • • > Jk-l.rk-^Jkl! • • • > Jkrk)

such that {f*kX, . . . Jtn) i s a b a s i s f o r (L*)*>

x*ft-u =ft-ij + gt-ij, where g*j e (Lk)*,

and any product of the form/,*/*, belongs to (Lk)*.
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Put N* = ({f*j:l^i^k,l^j^ rt)> and F = L2. Then N* = (L*)2 is nilpotent, and F
is the Frattini subalgebra of L. Therefore F* is the Frattini subalgebra of L*, and so
F* ~ {{To '• 2 = i = k, 1 ^y = r,}) and we have the following situation

F
II

0 — Lk L3 — L2—N—L

II I I I I
0*— (L*)* (L3)*—F*—N*—L*

Now (*, F) is of index at most fc - 1, and so (A:*, F*) = (x, F)* is almost nilpotent,
by the inductive hypothesis. Hence its nilradical, which must be F*, is abelian; that is,

(i) (F*)2 = 0.
Also, for any y e L, (y, Lk) is abelian, so that (y*, (Lk)*) is quasi-abelian. Now if

y* eN*, (y*, (Lk)*) is nilpotent, and therefore must be abelian. We thus have
(ii) N*(Lk)* = 0.
We now claim that ftifmj — 0 for 1 ^ m = k. The proof proceeds by backwards

induction on m. Result (ii) above shows that it holds for m = k, so suppose that it holds
for m = t and consider the case m = t — \. Then

by the inductive hypothesis. Suppose that ftiff-ij^O. Then (x*,(Lk)*) is almost
abelian, and x*g*=2g* for all g*e(Lk)*. But if gt-1A = 0 then ((x*, ft-1A, flfU,,))
contradicts Lemma 6(i), and if gt- i . i^O then ((JC*, /*_!,/, ^*-i,i)) contradicts Lemma
6(ii). The result follows by induction. We have now shown

(iii) (W*)2 = 0.
As was remarked in the paragraph preceding (ii), {x*, (Lk)*) is quasi-abelian.

Suppose it is abelian. Then, if gt-lji = O, the subalgebra ((x*,ft-i,i,g*)) (for any
g* e (Lk)*) contradicts Lemma 6(i), and, if gt-hi # 0 , the subalgebra ((x*,/*_i,i, gt-i,i))
contradicts Lemma 6(ii). It follows that (x*, (Lk)*) is almost abelian, and hence that
x*g* = g* for every g* e (Lk)*.

Put efj =flj, e$j=fZj + glj,..., e*-ij =/*_!./+ sJt_2j, cjy = g*_w. It is easy to check
that the multiplication table for these elements is that given for an almost nilpotent Lie
algebra, that {e^;: 1 ^ m ^ k — 1, 1 =y = rm) is a linearly independent set, and that (L*)*
is spanned by {ejy:l^/ = rk). The only problem is that the latter set may be linearly
dependent.
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Suppose that E A,e£ = 0 and that Art =£ 0. Then

( 1 \ rk

7=1 ; y=i

and
(i A,<) = i A,(e*y + c:+1J) (lSmgfc-2),

l / ;=1

so replace e£;- by S Ay-ê - for each I i m ^ < : - 1 . Continuing in this way produces the

desired basis.

Proof of Theorem 2. Let L be almost nilpotent of index n and denote the standard
basis as in the definition. We claim that L is /-isomorphic to the nilpotent Lie algebra L*
with the same basis elements (though we shall add a 'star' when referring to them as
elements of L*) and multiplication given by

r*p* — — p*r* — p * fnr 1 < i < H — 1 1 < i < r
x etj— e:jX —ei+ij i o r i = t = n i , i = y = r 1 + 1

(all other products being zero). Then the obvious non-singular linear transformation from
L to L* (namely, JC-»JC*, ey>-»e,*) is a lattice isomorphism.

To prove this we use induction on the dimension of L. The result is clear if L is one
dimensional, so suppose that it holds for Lie algebras of dimension strictly less than dim L
which are almost nilpotent. It suffices to show that U is a subalgebra of L if and only if U*
is a subalgebra of L*.

This clearly holds if U is a maximal subalgebra of L, since L*/F(L*) is abelian, and
L/F(L) is almost abelian and of the same dimension as L*/F(L*). Now the maximal
subalgebras of L are either abelian (and equal to N, the nilradical) or are almost
nilpotent, whilst the maximal subalgebras of L* are either abelian (and equal to N*) or
are of the same form as L. So the case where U is not maximal is dealt with by the
inductive hypothesis.

The proofs of Corollaries 3 and 4 are straightforward.
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