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We study theoretically the coherent electron focusing in graphene nanoribbons. Using semiclassical and
numerical tight-binding calculations we show that armchair edges give rise to equidistant peaks in the focusing
spectrum. In the case of zigzag edges at low magnetic fields one can also observe focusing peaks but with
increasing magnetic field a more complex interference structure emerges in the spectrum. This difference in the
spectra can be observed even if the zigzag edge undergoes structural reconstruction. Therefore transverse
electron focusing can help in the identification and characterization of the edge structure of graphene samples.
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I. INTRODUCTION

Transverse electron focusing is a versatile experimental
technique which has been used in metals to study the shape
of the Fermi surface and the scattering on various surfaces
and interfaces.1 The accessibility of the quantum ballistic
transport regime in two-dimensional electron gas �2DEG�
opened up the way to the experimental demonstration of the
coherent electron focusing2 in GaAs heterostructures as well.

The geometry of the coherent electron focusing is shown
in Fig. 1. The current is injected into the sample at a quantum
point contact called injector �I� in perpendicular magnetic
field. If the magnetic field is an integer multiple of a focusing
field Bfocus, electrons injected within a small angle around
the perpendicular direction to the sample edge can be fo-
cused onto a second quantum point contact �the collector,
denoted by C in Fig. 1� which acts as a voltage probe. There-
fore, if the collector voltage is plotted as a function of mag-
netic field one can observe equidistant peaks at magnetic
fields B= p�Bfocus�p=1,2 ,3 , . . .�. The first focusing peak
corresponds to electrons reaching the collector directly, i.e.,
without bouncing off the edge �see Fig. 1�. Subsequent peaks
correspond to trajectories bouncing off the edge p−1 times
before reaching the collector and therefore their presence can
attest to the specular nature of the scattering at the edge. In
other words, the p�2 focusing peaks can give information
on the scattering process taking place at the edge of the
sample.

The edge structure of graphene3 nanoribbons4–7 and
graphene flakes8 have recently attracted a lot of interest be-
cause it strongly influences the nanoribbons’ and flakes’ elec-
tronic and magnetic properties.9–14 Theoretically, the most
often studied edge structures are the armchair and zigzag
ones which have recently been observed experimentally as
well.4,6,7 Density-functional calculations suggested that other
types of edges might also be present, comprising pentagons
and heptagons of carbon atoms.13 Experimental evidence for
this type of edge reconstruction has indeed been found very
recently.15 The effect of the hydrogen concentration of the
environment on the edges has also been studied and further
possible edge structures identified.14 Experimentally how-
ever the identification and characterization of the edge struc-
ture has often been a challenge.6

In this paper we show that coherent electron focusing can
be used in ballistic graphene samples to study the properties
of the edge structure. We argue that in the case of armchair
edges one would see equidistant peaks in the focusing spec-
trum at integer multiples of a focusing field Bfocus. In con-
trast, for zigzag and reconstructed zigzag13 �reczag� edges
only the first few focusing peak would be identifiable and for
stronger magnetic fields a more complex interference struc-
ture would appear in the focusing spectrum. The presence or
absence of focusing peaks at stronger magnetic fields can
therefore discriminate between armchair and zigzag �reczag�
edges.

Our main results are summarized in Fig. 2. Using the
tight-binding model for graphene with nearest-neighbor hop-
ping we numerically calculated the transmission probability
T�B� from the injector to the collector as a function of the
magnetic field B for three different types of graphene nanor-
ibbons: armchair, zigzag, and zigzag with reconstructed
edges, denoted by zz�57� in Ref. 13. As Fig. 2 shows one can
indeed observe peaks in the focusing spectrum of these nan-
oribbons. �In the one-orbital per site approximation that we
used in the computations, the focusing spectrum of the rec-
zag nanoribbon is very similar to the zigzag ones, therefore
we only show the latter here.� In the case of the reconstructed
edge we took into account that the hopping between the at-
oms is different on the heptagons and pentagons than in the
bulk of the graphene. To obtain realistic nearest-neighbor
hoppings we employed ab initio calculations. �See Sec. IV
for the details of the ab initio method and some details of the

FIG. 1. �Color online� Schematic geometry of the transverse-
electron focusing setup. A graphene nanoribbon is contacted by an
injector �I� and a collector �C� probe and perpendicular �to the
graphene sheet� magnetic field is applied. Classical quasiparticle
trajectories leaving from the injector at normal direction, depending
on the magnetic field, can be focused onto the collector.
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numerical calculations can also be found here. Figure 4
shows how the hopping parameters changed at the edges of
reczag ribbons and the actual parameters of the calculations
are in Ref. 16�. We consider the case where there is a finite
carrier density in the sample, i.e., the Fermi energy is well
above of the Dirac point �this ensures that the semiclassical
approach we take in Secs. II and III is justified�. We will
focus on the transmission peaks which can be observed for
B /Bfocus�1 because they can give local information on one
of the edges �see Sec. II�. They should also be present if, e.g.,
a graphene flake is contacted by two probes, as long as the
edge between the probes is not disordered. The first peak in
the transmission for all three types of nanoribbons can be
found at B /Bfocus�1, where Bfocus=

2�kF

eL �kF is the Fermi
wave number �measured from the K point� and L is the dis-
tance between the injector and the collector�. While for arm-
chair edge there are well-defined peaks whenever B is integer
multiple of Bfocus �see Fig. 2�a��, in the case of zigzag edges
�both the ideal and the reconstructed one� a more complex
interference pattern emerges for B /Bfocus�6 showing many
oscillations but not a clear peak structure �Fig. 2�b��. These
results imply that �a� one can distinguish the armchair and
zigzag edges by their high magnetic field focusing spectrum;
�b� the difference in the focusing spectra persists even if the
zigzag edge undergoes structural reconstruction. We will ex-
plain the differences in the focusing spectra of armchair and
zigzag nanoribbons making use of the semiclassical theory
of graphene, introduced in Refs. 17 and 18.

The rest of the paper is organized as follows. First, in Sec.
II we discuss the boundary conditions for the semiclassical
theory on the edges of armchair and zigzag graphene nanor-
ibbons and derive the quantization condition for edge states
in magnetic field. The quantization condition then allows us
to calculate the band structure. Using this in Sec. III we show
that the focusing spectra of armchair and zigzag nanoribbons
are different in strong magnetic fields. We then turn to the
comparison of the results of numerical calculations and the
theoretical predictions. In Sec. IV we discuss some details of

the numerical calculations which underpin the theoretical ap-
proach presented in Secs. II and III. Finally, in Sec. V we
give our conclusions.

II. SEMICLASSICAL THEORY OF EDGE
STATES IN GRAPHENE

We start our discussion by establishing the link between
the theory of semiclassical approximations for graphene and
the boundary conditions for Dirac fermions on honeycomb
lattice. If the magnetic length lB=�� / �eB� is much larger
than the lattice constant of graphene, the general energy-
independent boundary condition has the form of a local re-
striction on the components of the wave function � at the

edge �E�.19,20 It can be cast into the following form: M̂�

=�, where the 4�4 matrix M̂ may be chosen as Hermitian

and unitary matrix: M̂ =M̂† and M̂2= Î. One can show20 that
demanding: �a� that the probability current normal to the
boundary be zero; �b� that the boundary should preserve the
electron-hole symmetry of the bulk; �c� and finally, assuming
that the boundary conditions do not break the time-reversal

symmetry, leads to the following form of the matrix M̂: M̂
= ��� � n��, where �= ��x ,�y ,�z�, �= ��x ,�y ,�z�, and �i, �i
are Pauli matrices acting in the sublattice and valley space,
respectively. Furthermore, � and n are three-dimensional
unit vectors, restricted to two classes: zigzaglike ��= 	 ẑ,
n= ẑ, where ẑ is the unit vector perpendicular to the plane of
the graphene sheet� and armchairlike �
z=nz=0�. Addition-
ally in both classes n�nE, where nE is a unit vector in the
plane of the graphene sheet and it is perpendicular to the
edge.

Let us now consider the reflection from an edge of a na-
noribbon in more details. It follows from the form of the
boundary conditions described earlier that the wave func-
tions �E

	 on the boundary is proportional to the eigenvectors
Z	 corresponding to the doubly degenerate unit eigenvalue

of the matrix M̂. In other words, �E
	=�	Z	eikx, where

�+��−� and Z+�Z−� correspond to isospin vector ��−��, �	

are amplitudes, and kx is the wave-vector component along
the �translationally invariant� edge. On the other hand, one
can show that in magnetic fields where lB�F=2� /kF �F is
the Fermi wavelength� the wave functions �E

	 can also be
written as a superposition of an incident �in and reflected
�out plane wave: �E

	=�in
	+ r̂	�out

	 , where r̂	 are reflection
amplitudes. By equating the two forms of �E

	 the coeffi-
cients r̂	 and �	 can be easily obtained for any boundary

condition described by the matrix M̂. For instance, in the
case of armchair edge, where the isospin vector can be pa-
rameterized as �= �cos � , sin � ,0� and n= �1,0 ,0�T, the

eigenvectors of M̂ with unit eigenvalues are

Za
	 =

1

2�e−i�/2	 1

	1



ei�/2		1

1

 � . �1�

The ansatz for �E
	 can also be written as

0 1 2 3 4 5 6 7 8 9
0

1

2

B/B
focus

T
(B

)

0 1 2 3 4 5 6 7 8 9
0

1

2

B/B
focus

T
(B

)

(b)

(a)

FIG. 2. The results of tight-binding calculations for the trans-
mission probability T�B� as a function of magnetic field. �a� For an
armchair; �b� for a zigzag nanoribbon. The black vertical lines in-
dicate the positions of the focusing peaks predicted by the semiclas-
sical theory, see Secs. II and III.
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�E
	 = �1

2� e−i�/2	ei�

1



	ei�/2	ei�

1

 � +

r̂	

2 � e−i�/2	e−i�

1



	ei�/2	e−i�

1

 �eikx,

�2�

where � is the incidence angle �measured from the x axis,
see Fig. 1�. Equating the two forms of �E

	, i.e., �E
	

=�	Z	eikx and Eq. �2� a straightforward calculation gives

r̂a
	 = exp�i��a

	�, where ��a
+ = �, ��a

− = � + � .

�3�

In the case of zigzag edges the boundary can be charac-
terized by a superlattice vector T=ma1+ la2, where m� l are
integers and a1, a2 are the lattice vectors of graphene.20 The

boundary condition is given by M̂ =�ml��z � �z�, where �ml
=sgn�m− l�, where sgn� . . . � is the sign function. After per-
forming analogous calculations as for the armchair edge one
finds that

r̂z
	 = exp�i��z

	�, where ��z
	 = � − � � �ml� . �4�

The physical meaning of Eqs. �2�–�4� is the following:
assuming specular reflection in classical picture the momen-
tum of the particle is rotated upon reflection. Since the qua-
siparticles in graphene are chiral, the change in the direction
of their momentum rotates the pseudospin as well and there-
fore it leads to a change in the phase of their wave function.
As one can see from Eqs. �3� and �4� this phase shift depends
on the type �armchair vs zigzag� of the edge as well. This
will be important when we use semiclassical quantization to
obtain the band structure of graphene armchair and zigzag
nanoribbons.

A second ingredient in the calculation of the edge states is
the semiclassical theory introduced in Refs. 17 and 18. As it
has been shown,17,18 one can introduce a classical Hamil-
tonian He�p ,r�=vF

��p−eA�2+V�r� for graphene to describe
the classical motion of electronlike quasiparticles. Here p
= �px , py� is the canonical momentum, A�r� is the vector po-
tential describing any external magnetic field and V�r� is
scalar potential which is taken to be zero throughout our
discussion, V�r�=0. If the edges of the graphene ribbon do
not break the translational invariance the system is integrable
because the longitudinal momentum px and the energy are
conserved �see Fig. 1 for the choice of the coordinate sys-
tem�. Using the Landau gauge A�y�= �By ,0 ,0�T for the vec-
tor potential to describe perpendicular magnetic field point-
ing into the −ẑ direction, the Hamiltonian He will not depend
on the x coordinate and the only nontrivial quantization con-
dition is related to the motion perpendicular to the graphene
edges �in the ŷ direction�. In general it can be written as

1

�
Sy + � + ��E

	 = 2�	n	 +
�

4

 , �5�

where Sy =�pydy is the classical action and the integration is
over one period of the motion perpendicular to the edges.
Furthermore, ��E

	 are the phase shifts coming from the re-
flections at the edges; n	 is a positive integer, � is the

Maslov index counting the number of caustic points and fi-
nally � is a Berry-phaselike quantity17,18 which can be cal-
culated from the equation d

dt��r�t��= 1
2 ��r�

d
dtr�z. Here the

classical trajectory r�t� of quasiparticles is given by17,18 d
dtr

=�pHe�p ,r�. One can show that in perpendicular magnetic
field ��r� is half of the deflection angle of the momentum of
the quasiparticles.

In Landau gauge the classical action Sy can be calculated
in the same way as in Ref. 18. The detailed presentation of
the semiclassical quantization of armchair and zigzag nanor-
ibbons in perpendicular magnetic field, discussing all the
possible classical orbits and the corresponding � and ��E

	

phases is left for a forthcoming publication. For our purposes
it will be sufficient to consider only those classical orbits
which correspond to skipping motion along the boundaries,
see, e.g., in Fig. 1. If the magnetic field is strong enough
such that the diameter of the cyclotron orbit is smaller than
the width of the nanoribbon �denoted by W in Fig. 1�, i.e., for

2Rc�W, where Rc=
EFlB

2

�vF
is the cyclotron radius at Fermi en-

ergy EF, one can show that only these skipping orbits corre-
spond to current-carrying states. The phase shift ��E

	 com-
ing from the reflection at the edge is given by Eqs. �3� and
�4� for armchair and zigzag edges, respectively. Considering
first armchair nanoribbons, using Eqs. �3� and �5� the semi-
classical quantization of skipping orbits reads

kFRc	�

2
+ �n

	 +
1

2
sin 2�n

	
 = 2�	n	 	
1

4

 , �6�

where kF=
EF

�vF
, �n

	 is the angle with the y axis under which
the cyclotron orbit is reflected from the boundary, and +�−�
corresponds to isospin ��−��. Moreover, n+=0. . .nmax

+

�n−=1. . .nmax
− �, where nmax

	 is the largest integer smaller than
1
2kFRc�

1
4 . This quantization conditions holds for both me-

tallic and insulating armchair nanoribbons. The physical
meaning of Eq. �6� is that the enclosed flux by the cyclotron
orbit and the edge of the nanoribbon is quantized and it must
equal h /e�n		1 /4�. It is interesting to note that for 2DEG
with hard wall boundary conditions the quantization condi-
tion for edge states looks very similar, except that one would
have to omit the 	 sign and on the right-hand side one
would have �n+ 3

4 �.
The semiclassical quantization for edge states in the case

of zigzag nanoribbon can be obtained in the same way as for
an armchair nanoribbon, the only difference is that instead of
Eq. �3� one has to use Eq. �4�. One finds that it is given by

kFRc	�

2
+ �n

	 +
1

2
sin 2�n

	
 − 
�ml	�

2
+ �n

	
 = 2�	n	 −
1

4

 .

�7�

Here 	 corresponds to the product 
�ml= 	1, where both 

and �ml can take on values 	1. The value of 
 depends on
the isospin: it is 1 �−1� if the isospin is �= ẑ��=−ẑ� and
�ml= 	1 is introduced before Eq. �4�. The range of the quan-
tum number n	 is the same as for the armchair case. One can
notice that as compared to Eq. �6� there is an extra term on
the left-hand side of Eq. �7�. The origin of the difference in
the focusing spectra of armchair and zigzag nanoribbons, to
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be discussed in Sec. III, can be traced back to this term in the
dispersion relation.

We have calculated the band structure for armchair and
zigzag nanoribbons in homogeneous perpendicular magnetic
field both semiclassically, using Eqs. �6� and �7�, and numeri-
cally in tight-binding approximation. As one can see in Fig. 3
the agreement between the semiclassical and the tight-
binding calculations is very good except for low energies
E /��c�1 /2. �The dispersionless state of a zigzag nanorib-
bon at zero energy cannot be described by semiclassics ei-
ther.� However, the dispersionless sections of the band struc-
ture corresponding to Landau levels at finite energies can be
calculated semiclassically.17,18 �We note that similar results
have been obtained in Ref. 21 using the Dirac-type Hamil-
tonian for graphene.�

III. MAGNETIC FOCUSING IN GRAPHENE
NANORIBBONS

Having obtained the quantization condition for edge states
in Eqs. �6� and �7�, the calculation of the magnetic fields
Bfocus, where the transmission between the injector and col-
lector is sharply peaked, follows the reasoning of Ref. 2. The
ballistic transport along the edges of a nanoribbon can be
understood in terms of the edge states described in Sec. II
because they are the propagating modes of this problem. If
the injector is narrow ��F� one can assume that it excites
these modes coherently. Therefore, as long as the distance
between the injector and the collector is smaller than the
phase coherence length, the interference of the edge states
can be important. For a given EF the interference of the edge
states, labeled by n	 in Eqs. �6� and �7�, is determined by the
phase factors exp�ikn

	L�. Here the wave numbers kn
	 are

given by kn
	=kF sin �n

	 and L is the distance between the
�very narrow� injector and collector. Both in the armchair
and in the zigzag case one can show that around n	

=nmax
	 /2, which corresponds to ��n

	��1, in good approxima-
tion the angles �n

	 depend linearly on n	.

Expanding Eq. �6� around �n
	=0 one finds that

kn
	L �

�L

Rc
	n	 	

1

4

 − Ca +

kFL

3
	�

4

nmax
	 − 2n	

nmax
	 
3

, �8�

where Ca= �
4 kFL. This result means that if L /2Rc is an inte-

ger �or equivalently, B /Bfocus is integer, where Bfocus=
2�kF

eL �
some edge channels, with quantum numbers n	 centered
around nmax

	 /2, can constructively interfere at the collector.
Other edge states, to which the linear expansion shown in
Eq. �8� cannot be applied, give rise to an additional interfer-
ence pattern which does not have a simple periodicity. The
expression for the focusing field Bfocus is formally the same
as for 2DEG �see Ref. 2� but the dependence of kF on the
electron density is different in the two systems.

Repeating the expansion for zigzag nanoribbons using Eq.
�7� we find that to linear order

kn
	L �

1

1 �
1

4�2

�L

Rc
	n	 +

1

4
	

1

4

 − Cz, �9�

where �=EF /��c is the filling factor and Cz=− �
4 kFL 1

1�
1

4�2

.

For nanoribbons where the cyclotron radius becomes smaller
than the width of the ribbon such that ��1 is satisfied and
therefore 1 / �1�

1
4�2 ��1 the focusing field Bfocus can be de-

fined in the same way as for armchair ribbons and the trans-
mission peaks are at the same focusing fields as in the arm-
chair case. However, according to Eq. �9� as � gets smaller
for increasing magnetic field �assuming fixed Fermi energy�
the focusing field for the two isospin index becomes slightly
different, moreover, the subsequent focusing fields for each
isospin index are no longer equidistant. �Examination of the
higher-order terms not shown in Eq. �9� reveals that also the
number of interfering edge channels becomes different for
the two isospin indices.� As a result, a more complex inter-
ference pattern is expected to appear than in the case of
armchair nanoribbon and a simple Bfocus can no longer be
defined.

Turning to the comparison of the numerical results shown
in Fig. 2 with the analytical predictions given in Eqs. �8� and
�9�, one should focus on the B /Bfocus�1 regime, where the
edge states are the current carrying modes. One can see that
the peak positions for the armchair nanoribbon are in very
good agreement with the prediction of the semiclassical
theory. Up to B /Bfocus�5 the focusing peaks are also clearly
discernible in the focusing spectra of zigzag nanoribbons but
for stronger magnetic fields a more complex interference pat-
tern emerges. The peak at B /Bfocus=7, for example, can
clearly be seen for the armchair case. In contrast, for the
zigzag edge a number of oscillations with similar amplitudes
can only be observed. The difference between focusing spec-
tra of the armchair on one hand and of the zigzag �and rec-
zag� edges on the other hand is even more noticeable in
stronger magnetic fields, i.e., for B /Bfocus�7. �Eventually, at
very strong magnetic fields the cyclotron radius of the qua-
siparticles would become comparable to the width of the
collector and the system would therefore be equivalent to a
Hall bar. We will not consider this regime here.� Note, that
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FIG. 3. Comparison of the results for the band structure ob-
tained from semiclassical quantization given by Eqs. �6� and �7�
�circles� and from numerical tight-binding calculations �solid lines�.
The energy is in units of ��c=�2

�vF

lB
. The magnetic field is given by

W / lB=8.97. �a� Armchair nanoribbon; �b� zigzag nanoribbon, in the
vicinity of the K point.
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for a typical electron density of ne=2.5�1016 1
m2 and assum-

ing L=1 �m the focusing field is Bfocus�0.37 T, which is
experimentally feasible.

In the case of the calculations presented in Fig. 2 the
width W of the nanoribbon was larger than L /2 �L is the
injector-collector distance�. This meant that for the Fermi
energy we used already the p=1 focusing peak could be
observed. For narrow ribbons however it can easily happen
that for given EF and W the first few peaks would not appear,
until for sufficiently strong field the cyclotron radius Rc be-
comes smaller than W and the condition 2� p�Rc=L is met
for some integer p. For narrow zigzag and reczag ribbons
therefore there might be no observable focusing peaks be-
cause for the magnetic fields, where Rc would become small
enough, the ��1 condition �see below Eq. �9�� is no longer
satisfied. There could be of course oscillations or peaks in
the transmission even in this case but those would not have
the simple periodicity that focusing peaks have.

IV. DETAILS OF THE NUMERICAL CALCULATIONS

Let us now briefly discuss some of the details of our nu-
merical calculations for the transmission probability T�B�
shown in Fig. 2. The injector and the collector were modeled
by heavily doped graphene and the transmission was calcu-
lated employing the Green’s-function technique of Ref. 22.
The graphene nanoribbons are assumed to be perfectly bal-
listic and infinitely long. This means that the left and right
ends of the nanoribbons act as drains which absorb any par-
ticles exiting to the left of right. To simulate the effect of
finite temperatures we used a simple energy averaging pro-
cedure in the calculation of the transmission curves: T�B�
=�T�B ,E��−

�f0�E�
�E �dE, where f0�E� is the Fermi function. The

actual results shown in Fig. 2 were calculated at T=1 K
temperature. As it can be expected, higher temperatures tend
to smear the curves while at lower ones an additional fine
structure appears.

For simple armchair and zigzag nanoribbons we assumed
that the hopping parameter between the atoms is the same
everywhere on the ribbons. In contrast, for the zz�57� edge
we took into account that the hopping parameter changes on
the pentagons and heptagons at the edges with respect to its
the bulk value. We calculated the hoppings with density-
functional tight-binding �DFTB� method, using the HOTBIT

code.23 This approach yields the hopping matrix elements as
two-center integrals for pseudoatomic orbitals that result
from a straightforward pathway of ab initio calculations, as
described in Ref. 24. The density-functional parameterization
yields a valid description of the covalent bonding in carbon
nanomaterials.25 Figure 4 shows the relative hoppings from
DFTB-optimized geometry. Note how the appearance of a
triple bond in the armrest parts affects also the �-electron
hopping due to the significant reduction in bond length.13 In
the one orbital per site approximation we employed here the
band structures of zigzag and reczag nanoribbons, apart from
the close vicinity of the Dirac point, are very similar �see
Fig. 5�. This explains why they have very similar focusing
spectra as well.

V. SUMMARY

In summary, we studied coherent electron focusing in
graphene nanoribbons using both exact quantum calculations
and in semiclassical approximation. We found that in the
case of armchair edges the transmission peaks are at integer
multiples of B /Bfocus whereas for zigzag edges such a simple
rule holds only when the filling factor � is much larger than
unity. For zigzag nanoribbons in stronger magnetic field,
when the filling factor is on the order of 1, a more complex
interference pattern can be observed in the transmission and
the emergence of this interference pattern can be understood
from semiclassical calculations. The presence of focusing
peaks at low magnetic fields can therefore attest to the qual-
ity of the edge structure while measurements at stronger
fields can discriminate between armchair and zigzag edges.
Our numerical calculations on zz�57� edges suggest that the
above conclusion holds even if the zigzag edge is structurally
reconstructed. Although we considered in our analytical cal-
culations nanoribbons whose both edges had perfect arm-
chair or zigzag structure, we expect that our findings are
more generally valid. Namely, they rely on the properties of
edges states localized at one of the edges therefore imperfec-
tions of the other edge should not affect the focusing peaks.

FIG. 4. The reczag edge. The numbers indicate the change in the
hopping parameter on particular bonds with respect to its bulk
value, �=−3.39 eV.
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FIG. 5. Comparison of the band structures of zigzag �solid line�
and reczag �circles� nanoribbons from tight-binding calculations at
the K point. The strength of the magnetic field is given by W / lB

=9.14.

EXPLORING THE GRAPHENE EDGES WITH COHERENT… PHYSICAL REVIEW B 81, 115411 �2010�

115411-5



Therefore this technique should be applicable to study the
edges of graphene flakes as well. Finally, an interesting
extension of our work would be to consider the focusing
spectrum of other proposed14 edge types and possibly taking
into account more than one orbital per site in the transport
computations.
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