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We study theoretically the effect of spin-orbit coupling and sublattice asymmetry in graphene on the spin
polarization of photoelectrons. We show that sublattice asymmetry in graphene not only opens a gap in the band
structure, but in the case of finite spin-orbit interaction it also gives rise to an out-of-plane spin polarization of
electrons close to the Dirac point of the Brillouin zone. This can be detected by measuring the spin polarization
of photoelectrons, and therefore spin-resolved photoemission spectroscopy can reveal the presence of a band gap
even if it is too small to be observed directly by angle-resolved photoemission spectroscopy because of the finite
resolution of measurements or because the sample is p-doped. We present analytical and numerical calculations
on the energy and linewidth dependence of photoelectron intensity distribution and spin polarization.
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I. INTRODUCTION

There is growing evidence that in addition to its
extraordinary electronic properties,1 graphene might also be
an exciting material for spintronics, a technology that would
be based on the spin of electrons rather than on their charge.
The impetus to study spin-related phenomena in graphene
comes from two directions: (i) the experiments of Tombros
et al. (Ref. 2) showed that it was possible to inject spin
into mono- and few-layer graphene and measure spin signals
in a spin-valve setup, and (ii) the recent observation3,4 of
band splitting in graphene due to spin-orbit interaction (SOI).
Although the intrinsic SOI5 is expected to be weak in graphene
(not exceeding6–9 ≈ 50 μeV), the breaking of the inversion
symmetry by an external electric field or by the presence
of a substrate can result in a substantial externally induced
SOI. In particular, Varykhalov et al. (Ref. 3) reported a
spin-orbit interaction induced band splitting of ≈ 13 meV
in a quasi-free-standing graphene on Ni(111)/Au substrate.
The spin-orbit coupling was identified as Rashba-type SOI5,10

(RSOI) and it was attributed to the high nuclear charge of
the gold atoms that were intercalated between the Ni substrate
and the graphene layer to break the strong carbon-nickel bonds
and make the graphene layer quasi-free-standing. The fact that
gold intercalation can decouple graphene from the nickel sub-
strate was also supported by density-functional calculations,11

and that it may induce sizable Rashba-type SOI was indicated
by the computations of Ref. 9. Furthermore, gold intercalation
was used to decouple graphene grown on Ru(0001) substrate12

where a band-gap opening at the Dirac point of the graphene
band structure was observed as well. The appearance of the
gap was ascribed to the breaking of the symmetry of the two
carbon sublattices in graphene. A gap opening in the graphene
band structure was also found when the strong nickel-graphene
bonds were passivated by potassium intercalation.13 Besides
metal surfaces (for a review, see Ref. 14), intensive research
effort, both theoretical15–17 and experimental (see, e.g., Refs. 4,
16, and 18–20; earlier developments are reviewed in Ref. 21),
is directed toward studying graphene on SiC substrate. These

experiments show, therefore, that substrates can induce SOI
and/or open a band gap in monolayer graphene.

Angle-resolved photoemission spectroscopy (ARPES) is
an important experimental technique that provides direct
information on the bulk and surface electronic band structure
of solid-state materials (see, e.g., Refs. 22 and 23). ARPES
has also become a major tool to study graphene on various
substrates.3,4,12,13,18,20,24–30 By also measuring the spin po-
larization of the photoelectrons (the so called spin-resolved
ARPES or SARPES technique31) and using a sophisticated
data-analysis method,32 one may observe band splittings
smaller than the intrinsic linewidth of regular ARPES exper-
iments, providing a powerful tool to measure spin-resolved
electronic bandstructure. Indeed, SARPES measurements
were used in the experiments of Refs. 3 and 4 to investigate
the spin-dependent band splitting in graphene.

Our work is motivated by the fact that, as mentioned
above, substrates can induce RSOI and/or an open band
gap in monolayer graphene. Therefore, the interplay of the
two effects, i.e., the RSOI and sublattice asymmetry-induced
band gap opening, may be important in some systems. We
note that small band gaps (by which we mean a few tens
of meV) are not easily detected by ARPES because of the
finite experimental resolution (10–50 meV) and because of the
finite intrinsic linewidth in the measurements. We theoretically
demonstrate that broken carbon sublattice symmetry coupled
with RSOI induces a finite out-of-plane spin polarization in
monolayer graphene, therefore SARPES measurements could
detect small band gaps even if conventional ARPES cannot. We
study the constant-energy angular maps and the spin-resolved
momentum distribution curves (MDC’s)31,32 of photoelectrons
as a function of initial-state energy and line broadening for
finite RSOI and sublattice asymmetry-induced band gaps.
Our work is therefore complementary to Ref. 33, in which a
similar study was published for zero SOI, and also to Ref. 34,
which focused on the effect of RSOI on photoelectrons but the
sublattice asymmetry was not considered and the dependence
of the MDC’s on initial-state energy and line broadening was
not discussed in detail.
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The rest of the paper is organized in the following way: In
Sec. II, we show that if both RSOI and sublattice asymmetry
are present, then the quasiparticles in monolayer graphene
acquire a nonzero out-of-plane spin polarization in a part of
the Brillouin zone. We then show in Sec. III how the spin
polarization of quasiparticles (both in and out of plane) is
related to the spin polarization of photoelectrons. Using these
results in Sec. IV, we present a numerical study on the initial-
state energy and intrinsic line-broadening dependence of fixed-
energy ARPES angular maps and spin-resolved MDC’s, and
we point out the signatures of sublattice asymmetry. Finally,
in Sec. V we discuss the possible experimental relevance
of our work and give a short summary. Some details of the
calculations in Sec. III can be found in Appendix A.

II. RSOI AND SUBLATTICE ASYMMETRY IN GRAPHENE
MONOLAYER

In a previous publication,35 we showed that starting from
the tight-binding Hamiltonian suggested in Ref. 5 to describe
RSOI in monolayer graphene, one can arrive at the following
Hamiltonian in the continuum limit at the K point of the
Brillouin zone (BZ):

HRSO =

⎛⎜⎝ 0 vF p̂− 0 −vλp̂+
vF p̂+ 0 3iλR 0

0 −3iλR 0 vF p̂−
−vλp̂− 0 vF p̂+ 0

⎞⎟⎠ . (1)

[The BZ of graphene with the high symmetry points �, K , and
K ′ is shown in Fig. 1(a).] HRSO in Eq. (1) is written in the basis
{|A ↑〉, |B ↑〉, |A ↓〉, |B ↓〉} ({A,B} denoting the two triangu-
lar sublattice of graphene’s honeycomb lattice and {↑, ↓} is the
basis in spin Hilbert space). The parameters appearing in the
Hamiltonian (1) are as follows: vF = 3γ0a0/(2h̄), where a0 is
the bond length between the carbon atoms, γ0 is the hopping
amplitude between next neighbor carbon atoms, and vλ =
3λRa0/(2h̄), where λR gives the strength of the RSOI in the
tight-binding model of Ref. 5. Furthermore, p̂± = p̂x ± ip̂y

and p̂x,p̂y are momentum operators. The Hamiltonian (1)
differs from the Hamiltonian put forward in Ref. 10 by the
terms vλp̂±. Like the terms ±3iλR , they appear because
of the spin-orbit interaction and they lead to trigonal warping
of the bands at low energies, i.e., close to the K point of the
BZ. Note that for wave numbers far from the K point, there
is another kind of trigonal deformation of the bands, which is
a lattice effect [see, e.g., Fig. 6(b)]. It turns out that one can
understand35 all the salient features of the spin polarization
at low energies already without taking into account the vλp̂±
term because it gives higher-order corrections in the wave
vector k = (kx,ky) [measured from the K point]. Therefore, in
our analytical calculations, we use the following Hamiltonian:

HRSO,AB =

⎛⎜⎜⎝
�
2 vF p̂− 0 0

vF p̂+ −�
2 3iλR 0

0 −3iλR
�
2 vF p̂−

0 0 vF p̂+ −�
2

⎞⎟⎟⎠, (2)

where the terms ±�/2 account for a possible breaking of the
symmetry of the sublattices A and B.
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FIG. 1. (Color online) (a) Schematic of the hexagonal Brillouin
zone of graphene with the � point and vectors K, K′ pointing to the
corresponding corners of the Brillouin zone. The coordinate system
that we use in the momentum space is also shown. (b) Schematic
of the energy bands near the K point of the BZ, as obtained from
Eq. (3) for � = 0 (solid) and � �= 0 (dashed). The energy splitting
between the spin-split bands is 3λR for � = 0. If � �= 0, a band gap
of � opens at k = 0. The (μ,ν) indices corresponding to a given
band are also indicated. (c) Solid (dashed) line: expectation value of
the z component of the spin as a function of k = |k| (in units of the
carbon-carbon bond length a0) in the upper valance band (μ = −1,
ν = 1) calculated from Eq. (7) [Eq. (8)]. The interplay of sublattice
asymmetry and RSOI leads to a finite 〈Sz〉. The width of the peak, as
defined in the figure, is independent of the asymmetry parameter �

[see text below Eq. (8)].

The eigenvalues of Hamiltonian (2) are

εμν(k) = μ

2

√
4v2

Fh̄2k2 + �2 + 18λ2
R − ν18N (k), (3)

where k = |k| and

N (k) = |λR|
√

4

9
v2

Fh̄2k2 + λ2
R . (4)

The index μ = 1(−1) corresponds to conductance (valance)
bands, whereas ν = 1 for the low-energy bands touching at
k = 0 (for � = 0) and ν = −1 for the spin-split bands5,10,34

[a schematic of the band structure is shown in Fig. 1(b)]. In
the case of AB asymmetry, i.e., for � �= 0, a gap opens in the
spectrum at the Dirac point (k = 0).

The RSOI leads to a particular spin polarization of the
bands.5,34 The expectation value of the three components
of the quasiparticle spin in an eigenstate |�μ,ν(k)〉 of the
Hamiltonian (2) can be calculated as

μ,ν〈Sx,y,z〉 = Tr(Qμ,νŜx,y,z). (5)

Here Qμ,ν(k) = |�μ,ν(k)〉〈�μ,ν(k)| is a 4 × 4 projector, and
a convenient way to calculate these projectors can be found in
Appendix A. The operator Ŝx,y,z is given by Ŝx,y,z = h̄

2 (I2 ⊗
σx,y,z), where I2 is the 2 × 2 identity matrix acting in the
pseudospin space and σx,y,z are Pauli matrices acting in the
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quasiparticles’ spin space. The expectation values of the spin
components are found to be (in units of h̄

2 )

μ,ν〈Sx〉 = ν
−2h̄vF kyλR

3N (k)
, μ,ν〈Sy〉 = ν

2h̄vF kxλR

3N (k)
, (6)

and

μ,ν〈Sz〉 = μν
�λ2

R

2N (k)|εμν(k)| . (7)

The x and y components of the spin polarization are inde-
pendent of the sublattice asymmetry [Eqs. (6)], and we obtain
the same results as in Refs. 5,10,34 and 35, i.e., the in-plane
component of the spin shows rotational symmetry around
the K point, it is perpendicular to the wave vector k and
its magnitude depends on k, vanishing at k = 0. One can see
from Eq. (7) that compared to the case of equivalent sublattices
(� = 0) where the spin has only in-plane components for all
bands,5,10,34,35 the interplay of sublattice asymmetry and RSOI
leads to finite z spin polarization of electrons in the vicinity
of the K point. For the ν = 1 bands exactly in the K point
(k = 0), the spins are fully polarized and perpendicular to
the graphene sheet: μ,1〈Sz〉 = μ = ±1, while for the ν = −1
bands the spin z component points in the opposite direction
to that in the ν = 1 bands and it can be significantly smaller:
μ,−1〈Sz〉 = −μ�/

√
�2 + 36λ2

R . (We note that μ,ν〈Sz〉 is the
expectation value of the spin z component averaged over a
unit cell and not on individual carbon atoms within the unit
cell, which was discussed in Ref. 36.) At the K ′ point, the other
(inequivalent) point of the graphene BZ where the valence
and conductance bands touch for � = 0, the spin polarization
is exactly opposite that at the K point, as required by the
time-reversal symmetry. Expanding the right-hand side of
Eq. (7), assuming that h̄vF k 
 λR , we find for the ν = 1
bands

μ,1〈Sz〉 ≈ μ

(
1 − 2h̄2v2

F k2

9λ2
R

)
, (8)

which one can use to give an estimate of the wave-number
range where the spin z component is nonzero. Figure 1(c)
shows the z polarization computed using Eq. (7) and its
approximation from Eq. (8). Estimating the width of the
peak by the k values where Eq. (8) becomes zero, we find
�kS = 3

√
2λR/h̄vF , which is independent of the asymmetry

parameter �. Taking vF ≈ 106m/s and, e.g., λR ≈ 20 meV,
we find that �kS ≈ 0.01 Å−1.

III. THEORETICAL DESCRIPTION OF SARPES FOR
GRAPHENE

In this and the next section, we will analyze the effects
of sublattice asymmetry on the SARPES spectra performing
both analytical and numerical calculations. As in most of the
relevant graphene literature,33,34,37 we assume that the emitted
photoelectrons can be characterized by a simple plane wave of
momentum p, spin σ , and energy Ep,σ = p2

2me
(however, see,

e.g., Ref. 30 for the limitations of this assumption). The flux

of photoelectrons emitted from an initial state of momentum
h̄(K + k) and energy εμν(k) in band (μ,ν) is found to be

μ,νI ∝ Tr (Q̃μ,ν(k))

δp‖/h̄−(K+k+G),0 δ(h̄ω + εμν(k) − Ep,σ − W ). (9)

[Some details of the calculations leading to Eqs. (9) and (14)
below are given in Appendix A.] Here Q̃μ,ν(k) is a 2 × 2
projector onto the photoelectron spinor:

Q̃
μ,ν

ij (k) =
2i∑

k=2i−1

2j∑
l=2j−1

[UQμ,ν(k)U †]kl, (10)

where Qμ,ν was introduced after Eq. (5) and the unitary matrix
U is given by

U =

⎛⎜⎜⎝
1 0 0 0
0 e−iGτ 0 0
0 0 1 0
0 0 0 e−iGτ

⎞⎟⎟⎠ . (11)

Here G is an arbitrary reciprocal-lattice vector and τ is a
vector pointing from lattice site B to site A in the unit
cell of graphene. In the following, we will always take
G = 0, since we will concentrate on one BZ. The Kronecker
δ in Eq. (14) expresses momentum conservation (p‖ is
the component of the momentum of photoelectrons parallel
with the graphene surface). Finally, the Dirac δ function in
Eq. (14) ensures the energy conservation (W being the work
function of graphene). We do not address the question of
dynamical processes that lead to energy broadening but use
a phenomenological approach by introducing a Lorentzian
δ(ε) → �2

ε2+�2 (see Ref. 38) in the figures of Sec. IV with
the parameter � representing the value of the broadening. To
keep the formulas uncluttered, we suppress henceforth the
Kronecker and Dirac δ functions expressing the momentum
and energy conservation; they should be understood to appear
on the right-hand side of Eqs. (12)–(15) below.

Using the explicit form of the quasiparticle spinors, calcu-
lations detailed in Appendix A yield

μ,νI ∝
(

1 − vFh̄ky

[
N (k) − νλ2

R

]
N (k)εμν(k)

)
. (12)

As in previous theoretical works33,34,37 (which, however, did
not consider either RSOI33,37 or sublattice asymmetry34), we
find a strongly anisotropic photoelectron intensity [see, e.g.,
numerical results in Fig. 2(a)] that originates from sublattice
interference,33 and therefore it is present39 even if λR = 0.
Such anisotropy was observed experimentally3,4,24,25,29 too.
Indeed, Eq. (12) for large wave numbers (h̄vF k � |λR|) can
be approximated by

μ,νI ∝
(

1 − vFh̄ky

εμν(k)

)
(13)

from where it is easy to see that the intensity is minimal in the
region where ky � |kx |,|�|/(h̄vF ),|λR|/(h̄vF ) and μky > 0.
[By introducing the parametrization (kx,ky) = k (sin θ, cos θ ),
one can see that μ,νI takes a similar form to the result of Ref. 34,
although in our notation the indices μ,ν have slightly different
meaning.] Since the intensity of photoelectrons tends to vanish
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FIG. 2. (a) Intensity distribution; (b) and (c) spin polarization of
photoelectrons emanating from the upper valance band (μ = −1,
ν = 1) for momenta close to the K point. In (b), the vector plot of
the in-plane component of the spin polarization is shown. In (c), the
density plot of the z component of spin indicates the regions in the BZ
where the out-of-plane polarization is finite. We used � = 40 meV
and λR = 66 meV in these calculations.

in this region, the authors of Refs. 4 and 34 called this region a
dark corridor. For k → 0, in contrast, the intensity is isotropic.
[We note that as the recent experiment of Gierz et al. showed
(Ref. 30), the angular distribution of photoelectron intensity
also depends on the energy and polarization of the incident
light. Our calculations should be relevant for p-polarized
incident light.]

In terms of Q̃μ,ν , the expectation value of an operator Ô,
which gives the result of a measurement on photoelectrons
coming from band (μ,ν), is given by

μ,ν〈O〉(p) = Tr (ÔQ̃μ,ν(k))/Tr (Q̃μ,ν(k)). (14)

We make use of Eq. (14) to calculate the photoelectron spin-
polarization vector (Px,Py,Pz) = 2

h̄
(〈ŝx〉,〈ŝy〉,〈ŝz〉) where the

operator ŝx,y,z = σx,y,z acts on the photoelectron spin. Using
Eqs. (14) and (12), we find for the components of the
polarization that

μ,νPx ∝ νλR

{
3
2λ2

R+ 2
3vFh̄ky[vFh̄ky −εμν(k)]

}− 3
2λRN (k)

N (k)εμν(k)−vFh̄ky

[
N (k)−νλ2

R

] ,

(15a)

μ,νPy ∝ ν

2
3vFh̄kx λR(εμν(k) − vFh̄ky)

N (k)εμν(k) − vFh̄ky

[
N (k) − νλ2

R

] , (15b)

and
μ,νPz ∝ ν

1
2�λ2

R

N (k)εμν(k) − vFh̄ky

[
N (k) − νλ2

R

] . (15c)

It is immediately clear from Eq. (15c) that, similarly
to Bloch electrons, photoelectrons also acquire a finite z

polarization due to the interplay of sublattice asymmetry and
RSOI. The magnitude of μ,νPz is largest at the Dirac point
for the ν = 1 bands, where it reaches the value of unity. For
the ν = −1 bands, the photoelectron polarization is smaller:
μ,−1Pz(k = 0) = −�/

√
�2 + 36λ2

R . In fact, as the density plot
in Fig. 2(c) shows for the upper valence band, −1,1Pz(k) is finite
everywhere in the dark corridor and is very small outside it
(the plots for other bands are similar and thus not shown).
This suggests that in a constant energy SARPES measurement,
the easiest way to observe the finite z polarization is to
use energies close to the Dirac point, otherwise one would
have to collect data from the dark corridor, which is difficult
due to the low photoelectron intensity and spin-detector
efficiency.

Regarding the in-plane component of the photoelectron
spin, Ref. 34 has found that in the case of equivalent sublattices
it exhibits a rather peculiar behavior, especially in and close
to the dark corridor, where the photoelectron spin is rotated
with respect to the quasiparticle spin. Moreover, Ref. 34 also
showed that the in-plane spin polarization of photoelectrons
is not zero in the K point, even though the mean spin of
Bloch electrons is zero there [see Eqs. (6)]. We find from
Eqs. (15a) and (15b) that the breaking of the AB symmetry
does not alter significantly this picture of the in-plane po-
larization, thus we will only discuss it briefly. An example
of the photoelectron in-plane spin polarization is shown in
Fig. 2(b) for the upper valence band. One can clearly observe
that the spins are rotated in the dark corridor [at ky < 0, kx ≈ 0;
see Fig. 2(a), where the intensity map is shown for the same
band]. In contrast to the in-plane spin of quasiparticles, the
corresponding spin component of photoelectrons, therefore,
does not show rotational symmetry around the K point.

The opening of a small gap at the Dirac point due to
the AB symmetry-breaking effect of a substrate is not easy
to detect in an ARPES measurements because of the finite
energy resolution of the experiments and because of the energy
broadening of the bands. In the next section, we investigate
the possibility of detecting the sublattice asymmetry through
photoelectron spin polarization. To this end, we compute
the intensity maps and spin polarization distributions of
photoelectrons at given energies.

IV. NUMERICAL (S)ARPES CALCULATIONS

In this section, we discuss the results of numerical calcula-
tions of constant-energy intensity maps and spin polarizations
along certain directions in the BZ. In Ref. 35, we showed
that the Hamiltonian of monolayer graphene for finite RSOI
is formally the same as the Hamiltonian of bilayer graphene,
if certain weak hopping amplitudes in the latter system can be
neglected. The aim of this section is twofold. First, we point
out both the similarities and the differences in the constant
energy ARPES intensity maps of monolayer graphene with
RSOI and bilayer graphene. Secondly, we show photoelectron
spin-polarization calculations along certain directions in the
BZ (spin-resolved MDC’s) and relate them to the fixed energy
ARPES intensity maps. In the calculation of spin-resolved
MDC’s, we assume that the background is small and disregard
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its influence on the line shapes.31 Since the AB asymmetry
does not break the particle-hole symmetry of the Hamiltonian,
we only show calculations for energies in the valence bands.
We assume strong RSOI and use λR = 66 meV corresponding
to ≈ 200 meV spin-splitting of the bands.4

We start the discussion with intensity maps taken at energies
close to the Dirac point. In the derivation of Eq. (12), we
neglected those terms in the graphene Hamiltonian that cause
trigonal warping of the bands for low energies if RSOI is
finite [see the discussion below Eq. (1)]. This approximation is
useful to understand the main features of the spin polarization,
but for strong RSOI the neglected terms do cause a noticeable
change in the fixed-energy intensity maps. In the calculations
shown below, therefore, we take these terms into account as
well.

In Figs. 3(c) and 3(d), only a small broadening of the
lines is assumed. Because of the strong RSOI (λR = 66 meV),
small �, and low energy (E = −37 meV), the photoelectrons
come predominantly from the upper valence band. One
can observe the following important features: similarly to
monolayer graphene with zero RSOI (Refs. 33 and 37), there
is a characteristic angular variation in the intensity that is due
to sublattice interference. In particular, in Fig. 3(c) one can
see a low intensity region (the “dark corridor“) around kx ≈ 0
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FIG. 3. (Color online) Constant energy (S)ARPES calculations
close to the Dirac point. (a) and (b)Schematic band structure at
the K point of the BZ for zero and finite sublattice asymmetry,
respectively. Dashed lines indicate a constant energy cross section at
E = −37 meV, where the photoelectron intensity maps in (c) and (d)
are obtained. (c) and (d) Constant energy intensity maps for � = 0
and 40 meV, respectively. The dashed lines indicate the direction
in k space along which the spin-polarization curves in (e) and (f)
are calculated. (e) and (f) The x (dashed), y (dashed-dotted), and z

(solid) component of the photoelectron spin polarization for cross
sections shown in (c) and (d), respectively (left axis). The dotted
lines indicate the intensity profile along the same cross section (right
axis). Subfigures in the left (right) column correspond to sublattice
anisotropy parameter � = 0 (� = 40 meV). Other parameters of the
figure are λ = 66 meV and � = 12.5 meV.

and ky < 0. Nevertheless, as a consequence of spin-pseudospin
entanglement34 at these low energies, the intensity distribution
is more isotropic in the case of finite RSOI than it is for
λR = 0. Figure 3(d) shows that the main effect of finite
sublattice asymmetry on the intensity maps is that it reduces the
intensity anisotropy clearly seen in Fig. 3(c). Comparing, e.g.,
Figs. 3(c) and 4(c), one can also notice that in the former
figure, there is a slight trigonal distortion in the intensity
contour. This distortion, which is caused by the terms vλp̂± in
the Hamiltonian (1), can only be seen for strong RSOI
and close to the charge neutrality point. Note that it is
different from the trigonal distortion observable for energies
far from the Dirac point (see Fig. 6), which is a lattice
effect.

Figures 3(e) and 3(f) show the spin polarization as a
function of momentum along the direction indicated by dashed
line in Figs. 3(c) and 3(d), respectively. As evidenced by the
peaks in the x polarization component Px (and also noted in
Ref. 34), in contrast to Bloch electrons, the spin polarization of
photoelectrons is not necessarily transversal to the momentum
k. One can also see that Py changes sign as the kx = 0 line
is crossed. The out-of-plane component of the photoelectron
spin is zero if no sublattice asymmetry is assumed [Fig. 3(f)],
but Pz is finite if � �= 0, as in Fig. 3(e). This means that
through SARPES measurements in systems where RSOI is
nonzero, the AB asymmetry can be detected even if the sample
is slightly p-doped, i.e., states around the Dirac point are not
directly available by ARPES.

In Fig. 4, the constant energy maps are calculated at E =
−110 meV, i.e., not in the close vicinity of the charge neutrality
point. As the schematic Figs. 4(a) and 4(b) show, because of the
large spin-splitting (and a small broadening of � = 16.7 meV)
assumed, all the photoelectrons would still originate from the
same band as in the previous case. The intensity maps in
Figs. 4(c) and 4(d) resemble closely the corresponding maps of
monolayer graphene (see, e.g., Fig. 2 in Ref. 33). In particular,
one can observe an almost complete suppression of intensity
in the dark corridor and the disappearance of the trigonal
distortion of the intensity maps, apparent in Figs. 3(c) and
3(d). Furthermore, comparing Figs. 4(c) and 4(d), one can see
that the presence of a small asymmetry gap [� = 40 meV
in Fig. 4(d)] would be practically undetectable in an ARPES
measurement at this energy. Nevertheless, as Figs. 4(f) and
4(h) show, if � �= 0 there is a small but finite z polarization
component. Comparison of Figs. 4(f) and 4(h) illustrates the
feature shown in Fig. 2(c): Pz(k) is largest in the dark corridor,
therefore in a constant energy measurement it is larger if the
direction in the k space is chosen such that it is closer to
the dark corridor [Fig. 4(f) is calculated for ky = −0.007 Å−1

with maximal polarization of Pmax
z = −0.12, whereas ky =

−0.14 Å−1 in Fig. 4(h) and Pmax
z = −0.17]. Note that even in

the case of Fig. 4(h), the curve is not actually calculated in the
dark corridor. The ARPES intensity peaks (shown by dotted
line) for this cross section are roughly 40% of the maximum
intensity that can be found at this energy [black arc close to
the upper edge of Fig. 4(d)]. On the other hand, the in-plane
components of the spin polarization are practically the same
for the � = 0 [Figs. 4(e) and 4(g)] and � �= 0 [Figs. 4(f) and
4(h)] cases.
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FIG. 4. (Color online) Constant energy (S)ARPES calculations
for low energies and small broadening �. (a) and (b) Schematic
band structure at the K point of the BZ for zero and finite sublattice
asymmetry, respectively. Dashed lines indicate a constant energy
cross section at E = −110 meV where the photoelectron intensity
maps in (c) and (d) are obtained. (c) and (d) Constant energy
intensity maps for � = 0 and 40 meV, respectively. The dashed line
at ky = −0.007 Å−1 (ky = −0.014 Å−1) indicates the direction in
k space along which the spin-polarization curves in (e) and (f) [(g)
and (h)] are calculated. (e) and (g) [(f) and (h)] The x (dashed),
y (dashed-dotted), and z (solid) component of the photoelectron
spin polarization for the two cross sections shown in (c) [(d)]
(left axis). The dotted lines indicate the intensity profile along the
same cross section (right axis). Subfigures in the left (right) column
correspond to sublattice anisotropy parameter � = 0 (� = 40 meV).
Other parameters of the figure are λ = 66 meV and � = 16.7 meV.

In ARPES measurements, the energy broadening is often
quite substantial. To see the effects of broadening on the
SARPES spectra, we repeated the calculations shown in
Fig. 4 for a larger broadening parameter. The results for
� = 83.5 meV are presented in Fig. 5. Although the ARPES
fixed-energy contours are significantly blurred due to the
large � [Figs. 5(c) and 5(d)], the broadening would actually
lead to a bigger out-of-plane spin-polarization amplitude [see
Figs. 5(f) and 5(h)], hence it would make the detection of the
z spin polarization easier [cf. Figs. 4(f) and 4(h)]. This happens
because for large broadening, electrons having energies closer
to the Dirac point can also contribute and they have a larger
spin z component. Other noticeable feature in Figs. 5(e)–5(h)
compared to Figs. 4(e)–4(h) is that one can clearly see that
Py changes sign three times for small kx values. This is not
apparent in, e.g., Figs. 4(e) and 4(f) because of the small
amplitude of these oscillations there.
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FIG. 5. (Color online) The effects of the broadening parameter
� on the (S)ARPES spectra. As in Fig. 4, all calculations are for
E = −110 meV. (a) and (b) The same as in Fig. 4. (c) and (d)
Constant energy intensity maps for � = 0 and 40 meV, respectively.
The dashed line at ky = −0.007 Å−1 (ky = −0.014 Å−1) indicates
the direction in k space along which the spin polarization curves
in (e) and (f) [(g) and (h)] are calculated. (e) and (g) [(f) and
(g)] The x (dashed), y (dashed-dotted), and z (solid) component
of the photoelectron spin polarization for the two cross sections
shown in (c) [(d)] (left axis). The dotted lines indicate the intensity
profile along the same cross section (right axis). Subfigures in the
left (right) column correspond to sublattice anisotropy parameter
� = 0 (� = 40 meV). Other physical parameters of the figure are
λ = 66 meV and � = 83.5 meV.

Finally, we consider the constant-energy intensity maps and
spin polarizations at energy E = −660 meV, i.e., quite far
from the Dirac point. For these calculations, we used the tight-
binding Hamiltonian of Ref. 5. Since this energy is larger than
the spin-splitting 3λR = 200 meV used in our calculations,
both valence bands contribute to the ARPES and SARPES
spectra. We assume for simplicity that the broadening � is the
same for both bands and present calculations with two different
�’s, the first one being much smaller than the spin-splitting of
the bands, while the second one is comparable to it. As E � �

in this case, the ARPES and SARPES spectra are practically
the same for � = 0 or � �= 0, therefore we only show results
for � = 0.

If the broadening is moderate, as in Fig. 6(b), there
are two discernible ringlike patterns, each corresponding to
photoemission from states in one of the two bands. The rings
show slight trigonal distortion, but in contrast to Fig. 3(c), this
is a lattice effect and would also be observable33 for λR = 0.
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FIG. 6. (Color online) Constant energy (S)ARPES calculations
far from the Dirac point. (a) Schematic band structure at the K

point. The dashed line indicates a constant energy cross section at
E = −660 meV where the photoelectron intensity maps in (b) and (c)
are obtained. (b) and (c) Constant energy intensity maps for � = 50
and 134 meV, respectively. The dashed lines at ky = 0.035 Å−1

(ky = −0.035 Å−1) indicate the direction in k space along which the
spin polarization curves in (d) and (e) [(f) and (g)] are calculated.
(d) and (f) [(e) and (g)] The x (dashed), y (dashed-dotted), and
z (solid) component of the photoelectron spin polarization for the
two cross sections shown in (b) [(c)] (left axis). The dotted lines
indicate the intensity profile along the same cross section (right axis).

The double ringlike pattern is reminiscent of the intensity
maps found for bilayer graphene at high energies,33,40 but
an important difference is that in Fig. 6(b), both rings have
approximately the same intensity. The similarities between
the ARPES maps of the two systems are due to the similar
band structures (for a discussion of the relation between the
Hamiltonians of monolayer graphene with RSOI and bilayer
graphene, see Ref. 35). The difference in the intensity patterns
stems from the fact that there are four carbon atoms in the unit
cell of bilayer while there are only two in monolayer graphene,
therefore the transition matrix elements in the photoemission
calculations are different.

If the broadening is substantial, as in Fig. 6(c), the two
rings are no longer easily discernible (and they may even
completely overlap). Nevertheless, as the dashed-dotted curves
in Figs. 6(e) and 6(g) demonstrate, the y component of the spin
polarization changes sign as a function of kx roughly in the
middle of the intensity peak (dotted line). This is an indication
that two bands are involved in the photoemission, as the sign of
μ,νPy is different for the ν = 1 and −1 bands [see Eq. (15b)].

Furthermore, comparison of Figs. 6(e) and 6(g) [Figs. 6(d)
and 6(f)] shows that the overall shape and the number of sign
changes in μ,νPy do not depend on whether it is calculated
for a positive or negative ky = const value [see Fig. 6(b) or
6(c) for the cross sections along which Figs. 6(d)–6(g) were
obtained]. In contrast, for μ,νPx the number of sign changes in
the low intensity region (small |kx | values) is affected by the
choice of the ky , as, e.g., the comparison of Figs. 6(e) and 6(g)
can illustrate.

V. DISCUSSION AND SUMMARY

We would first like to comment briefly on the experimental
relevance of our results. As mentioned in the Introduction, a
significant spin-orbit coupling was found in a gold intercalated
Ni(111)/graphene system3 and the SOI was attributed to the
presence of the gold atoms. Spin-resolved MDC’s were not
shown, however, in Ref. 3. Subsequently, Ref. 12 proved that
gold intercalation can decouple graphene from the Ru(0001)
surface as well. Another notable recent development is that
gold intercalation has also been used for the Si face of
SiC substrate18 where the strong covalent bonds between
the SiC(0001) and the first graphitic layer were suppressed
by this method, resulting in a slightly p-doped graphene
that was only weakly influenced by the substrate. SARPES
measurements were not published in Refs. 12 and 18, although
it would be interesting to know if gold can induce SOI in these
systems as well. The Ru(0001)/gold/graphene system appears
to be particularly interesting from our point of view because
ARPES measurements indicate a band gap > 100 meV, so
that if RSOI is nonzero in this system, then a finite out-of-
plane polarization of photoelectrons should be measurable. A
qualitatively similar polarization to the one predicted by this
model, with an “abrupt rotation of the spin” at the K point
of the BZ, was measured when thallium was deposited on the
Si(111) surface,41 although Ref. 41 explained the effect by
the presence of a local effective magnetic field. Finally, we
note that Ref. 4 reported a large and anisotropic spin splitting
in graphene, including a nonzero out-of plane polarization
component, but the origin of this effect seems to be unclear at
the moment.

In summary, we studied the effect of RSOI and substrate-
induced sublattice asymmetry on the spin polarization of
quasiparticles and of photoelectrons in graphene. The breaking
of AB sublattice symmetry opens a gap in the band structure
of graphene at the K point of the BZ. If RSOI is finite, the
interplay of the two effects induces a nonzero out-of-plane
component of spin polarization of quasiparticles in part of the
BZ. RSOI also affects the intensity and spin distribution of
photoelectrons, hence it can be studied with the (S)ARPES
technique. For strong RSOI, the fixed-energy intensity maps
taken at low energies, close to the K point of the BZ, show
a characteristic trigonal deformation. This deformation of the
intensity map survives the switching-on of an AB symmetry
breaking potential given by the asymmetry parameter �, as
long as � is much smaller than the RSOI-induced band
splitting. Our spin-resolved MDC calculations also show that
an important sign of the simultaneous presence of RSOI and
sublattice asymmetry is if nonzero out-of-plane photoelectron
spin polarization can be measured. It is important, however,
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especially if � and RSOI are small, to choose the energy
at which the spin-resolved MDC’s are taken as close as
possible to the Dirac point, because for energies far from
it, the out-of-plane polarization remains finite only in the
“dark corridor,” where the low photoelectron intensity would
hinder the observation of this effect. A carefully chosen
cross-section in the momentum space or a large intrinsic energy
broadening may, however, facilitate the observation of the spin
z polarization in MDC’s even at higher energies. Meanwhile,
the in-plane components of photoelectron polarization remain
qualitatively the same regardless of whether � is zero or
not. If the fixed-energy intensity map is obtained at energies
larger than the energy separation of two spin-split bands
and their intrinsic energy broadening � is small compared
to their RSOI-induced energy splitting, then the resulting
ARPES calculation shows a double ringlike structure. For
large �, the two rings may not be discernible any more,
but SARPES measurements can nevertheless reveal the true
band structure because of the sign changes in the polarization
components.
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APPENDIX A: OUTLINE OF THE THEORETICAL SARPES
CALCULATIONS

Here we briefly describe the calculation leading to
Eq. (14). The Hamiltonian of the interaction between the
Bloch electrons and the electromagnetic field in the dipole
approximation37 is given by

Ĥint ∝ −h̄

i
A∇ , (A1)

where A = A0e
i(q·r−ωt) is the vector potential. The transition

probability between an initial Bloch electron state |k,(μ,ν)〉
and a photoelectron state |p,σ 〉 will be proportional to
| (Hint)

p,σ

k,(μ,ν) |2 δ(h̄ω + εμν(k) − Ep,σ − W ), where the pho-
toexcitation matrix element is

(Hint)
p,σ

k,(μ,ν) = 〈p,σ |Ĥint|k,(μ,ν)〉. (A2)

Explicit expression for (Hint)
p,σ

k,(μ,ν) can obtained by assuming
that the wave function of a photoelectron given by a plane wave

|p,σ 〉 ∝ eip·r/h̄|σ 〉 and the wave function of a Bloch electron
is

|k,(μ,ν)〉= 1√
N (k)

∑
j={A,B},σ ′={↑,↓}

×
[
ψ

μν

jσ ′(k)|σ ′〉
(

1√
N

N∑
n=1

ei(k+K)·Rj
n�

(
r − Rj

n

))]
.

(A3)

Here Rj
n are vectors pointing to sublattice sites j = {A,B}

in unit cell n, N is the number of unit cells in the sample,
ψ

μν

jσ ′(k) are the amplitudes of Bloch electrons on sublattice j

with momentum k and spin σ ′, and finally �(r) is a pz atomic
orbital. The photoexcitation matrix element then reads

(Hint )
p,σ

k,(μ,ν) ∝
√

N�p(A · p)
[
ψ

μ

Aσ (k)+eiGτψ
μ

Bσ (k)
]
. (A4)

In Eq. (A4), �p is the Fourier transform of the atomic
orbital �(r), and G = m1b1 + m2b2 is a reciprocal-lattice
vector that is given in terms of primitive lattice vectors b1 =
(2π/a0,2π/

√
3 a0), b2 = (2π/a0, − 2π/

√
3 a0), and integers

m1,m2. Furthermore, τ ≡ RB
n − RA

n , and p‖ is the projection
of momentum p onto the plane of graphene. By defining

|�(μ,ν)
p 〉 =

∑
σ={↑,↓}

(Hint)
p,σ

k,(μ,ν) |p,σ 〉, (A5)

the expectation value of an operator Ô with respect to the
photoelectron state emanating from an initial Bloch state of
momentum h̄(K + k) and energy εμν(k) in band (μ,ν) can be
calculated as

μ,ν〈O〉(p) =
〈
�

(μ,ν)
p

∣∣Ô∣∣�(μ,ν)
p

〉〈
�

(μ,ν)
p

∣∣�(μ,ν)
p

〉 δp‖/h̄−(K+k+G),0

× δ(h̄ω + εμν(k) − Ep,σ − W ). (A6)

Equation (14) then follows from Eqs. (A4) and (A6). We
note that a convenient way of calculating the projectors
Qμ,ν(k), which are necessary to evaluate Eqs. (9) and (14) [see
Eq. (10)], is to make use of the following: if one denotes by Ej ,
j = 1, . . . ,nd , nd � N the distinct eigenvalues of an N × N

Hermitian matrix H , then the projector onto the ηth eigenstate
is given by the expression

Qη =
∏

η �=j (H − Ej Î )∏
η �=j (Eη − Ej )

, (A7)

which does not necessitate the calculation of the eigenvectors.
In the mathematical literature, the projectors Qη are known
as Frobenius covariants.42 In terms of the projectors Qj and
eigenvalues Ej , the matrix H is given by H = ∑nd

j=1 EjQ
j .
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