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a b s t r a c t

In integer programming, {0, 1/2}-cuts are Gomory–Chvátal cuts that can be derived from the original
linear system by using coefficients of value 0 or 1/2 only. The separation problem for {0, 1/2}-cuts is
strongly NP-hard. We show that separation remains strongly NP-hard, even when all integer variables
are binary.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

We consider rational polyhedra P = {x ∈ Rn
: Ax ≤ b} with

A ∈ Zm×n and b ∈ Zm. Inequalities of the form

(λTA)x ≤ ⌊λTb⌋, (1)

with λ ∈ Rm, λTA ∈ Zn, and λTb ∉ Z are commonly referred to
as Gomory–Chvátal cuts; they were first mentioned in the work of
Gomory [13] and Chvátal [7]. Gomory–Chvátal cuts are valid for the
integer hull, PI = conv{x ∈ Zn

: Ax ≤ b}, of P . It is well known
that it suffices to consider λ-vectors with small coefficients (see,
e.g., [18]); more specifically,

P ′
:= {x : (λTA)x ≤ ⌊λTb⌋, λ ∈ Rm, λTA ∈ Zn

}

= {x : (λTA)x ≤ ⌊λTb⌋, λ ∈ [0, 1]m, λTA ∈ Zn
},

and this rational polyhedron is commonly referred to as the first
Gomory–Chvátal closure. Geometrically speaking, P ′ arises from
P by considering all inequalities that are valid for P and pushing
the associated hyperplanes towards PI until they contain some
integer point. In particular, P ′ is a stronger relaxation of PI than P ,
i.e., PI ⊆ P ′

⊆ P . There are several prominent explicit examples of
Gomory–Chvátal cuts in polyhedral combinatorics, including the
blossom inequalities of the matching polytope [10,7], the odd-
cycle inequalities of the stable set polytope [17], the simple comb
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inequalities of the symmetric traveling salesman polytope [15,4],
and the simpleMöbius ladder inequalities of the acyclic subdigraph
polytope [14,2], to name a few. Interestingly, the separation
problem for all these families of inequalities (or classes containing
them) can be solved in polynomial time. Moreover, all these cuts
can be derived as in (1) with λ ∈ {0, 1/2}m. This prompted Caprara
and Fischetti [2] to introduce the family of all {0, 1/2}-cuts,

F1/2(A, b) := {(λTA)x ≤ ⌊λTb⌋ : λ ∈ {0, 1/2}m, λTA ∈ Zn
},

and to analyze the computational complexity of the following
problem: Given A ∈ Zm×n, b ∈ Zm, and x̂ ∈ Qn with Ax̂ ≤ b, does
x̂ violate an inequality in F1/2(A, b)? This problem is, of course,
equivalent to the membership problem for the {0, 1/2}-closure of
P = {x ∈ Rn

: Ax ≤ b}, which is defined by the points in P that
satisfy all inequalities in F1/2(A, b). Caprara and Fischetti showed
that checking whether x̂ violates some inequality in F1/2(A, b) is,
in general, strongly NP-complete (and, therefore, the membership
problem is strongly coNP-complete). However, the polytopes of
interest in combinatorial optimization oftentimes have vertices
with coordinates 0 or 1; that is, P ⊆ [0, 1]n, which is not the
case for the instances that occur in Caprara and Fischetti’s proof.
This provides the motivation for our work, in which we study the
following problem.

Given A ∈ Zm×n and b ∈ Zm such that {x ∈ Rn
: Ax ≤ b} ⊆

[0, 1]n, and x̂ ∈ Qn with Ax̂ ≤ b, does x̂ violate an inequality in
F1/2(A, b)?

Our main result is that this problem is still strongly NP-complete,
and we give two different proofs for it, each of which is interesting
in its own right. One proof is a careful modification of Caprara
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and Fischetti’s proof, and the other one shows a slightly stronger
result in that the corresponding 0/1-polytopes that arise from our
reduction are of set-packing type. That is, P is of the form P =

{x ∈ Rn
+

: Ax ≤ 1}, where A ∈ {0, 1}m×n is a binary matrix,
and 1 denotes the all-1 vector with m entries. Before we present
the first proof in Section 2 and the second proof in Section 3, we
briefly discuss some other work related to {0, 1/2}-cuts.

1.1. Related work

Caprara and Fischetti’s original proof of their own hardness
result (published in [3]) was, in some sense, stronger than that
in [2], because it actually showed that checking whether a point
violates some inequality in F1/2(A, b) is strongly NP-hard, even
when the non-negativity constraints −xi ≤ 0 for all i = 1, . . . , n
are part of the system Ax ≤ b. A similar proof was later given
in [5]. ‘‘Maximally violated’’ {0, 1/2}-cuts, however, can always be
separated in polynomial time; in fact, this is truemore generally for
mod-k cuts, for any given k ≥ 2 [4]. A mod-k cut is an inequality of
the form (1) in which each component of λ is a multiple of 1/k. A
mod-k cut is maximally violated by a given point if the difference
between its left-hand side and its right-hand side is equal to
(k − 1)/k. Earlier, Caprara and Fischetti [2,3] had given a couple
of sufficient conditions under which the separation problem for
{0, 1/2}-cuts can be solved in polynomial time. Letchford [16] later
introduced a superclass of {0, 1/2}-cuts, so-called binary clutter
inequalities, which allowed him to describe broader classes of
special cases in which {0, 1/2}-cuts can be separated efficiently.
However, the computational complexity of separating {0, 1/2}-
cuts for systems Ax ≤ b with P = {x : Ax ≤ b} ⊆ [0, 1]n has
remained open, and is the subject of this paper.

2. A reduction from Decoding of Linear Codes

The following problem, known as Decoding of Linear Codes, is
NP-complete [12, Problem MS7].

Given amatrixQ ∈ {0, 1}r×t , a vector d ∈ {0, 1}r , and a positive
integer K , is there a z ∈ {0, 1}t with no more than K entries
equal to 1 such that Qz ≡ d mod 2?

Theorem 2.1. The membership problem for the {0, 1/2}-closure of
polytopes contained in the 0/1-hypercube is strongly coNP-complete.

Our reduction carefully modifies the proof of Caprara and
Fischetti in [2] so as to ensure that P ⊆ [0, 1]n.

Proof. Membership testing is clearly in coNP. We give a reduction
from Decoding of Linear Codes to show completeness. Let Q ,
d, and K describe an instance of Decoding of Linear Codes. We
construct the following instance of the membership problem for
the {0, 1/2}-closure:

A :=


Q T

dT 2It+1

2Ir 0
−2Ir 0
0 −3It+1

 , b :=


2 · 1t

1
2 · 1r

0r

0t+1

 ,

x̂ :=


0r

1t
−

1
2
w

1
2

 ,

where Il is the identity matrix in dimension l, 0l is the all-0 vector
in dimension l, 1l is the l-dimensional all-1 vector, w :=

1
K+1 · 1t ,

and the 0s in thematrix represent all-0 submatrices of appropriate
dimension. We first show that P = {x | Ax ≤ b} ⊆ [0, 1]r+t+1.
Consider row l of Ax ≤ b.
Case 1. (t + 1) + 1 ≤ l ≤ (t + 1) + r . We obtain the inequality
2xl−(t+1) ≤ 2 and, therefore, xl−(t+1) ≤ 1. Put differently, xl ≤ 1
for all 1 ≤ l ≤ r .
Case 2. (t+1)+r+1 ≤ l ≤ (t+1)+2r . We have−2xl−(t+1+r) ≤ 0
and, therefore, xl−(t+1+r) ≥ 0. We obtain xl ≥ 0 for all 1 ≤ l ≤ r .

The first t + 1 rows of A correspond to inequalities of the form∑r
j=1 qjixj + 2xr+l ≤ 2 for 1 ≤ l ≤ t and

∑r
j=1 djxj + 2xr+l ≤ 1

for l = t + 1. The non-negativity of the coefficients of Q and d
together with xj ≥ 0 for all j ∈ {1, . . . , r} implies that xr+l ≤ 1 for
all 1 ≤ l ≤ t + 1.

Finally, consider row lwith (t+1)+2r+1 ≤ l ≤ 2(t+1)+2r .
The corresponding inequalities are of the form−3xr+l−((t+1)+2r) ≤

0 and, therefore, xr+l ≥ 0 for all 1 ≤ l ≤ t + 1. It follows that
P ⊆ [0, 1]r+t+1. Moreover, b−Ax̂ = (w1, . . . , wt , 0, 2 · 1r , 0r , 3−
3
2w1, . . . , 3 −

3
2wt ,

3
2 )

T. In particular, x̂ ∈ P .
Note that x̂ violates a {0, 1/2}-cut if and only if there exists

µ ∈ {0, 1}2(t+1)+2r such that µTA ≡ 0 (mod 2), µTb ≡ 1 (mod
2), and µT(b − Ax̂) < 1. To have µTA ≡ 0 (mod 2), it is necessary
that µl = 0 for (t + 2) + 2r ≤ l ≤ 2(t + 1) + 2r . Furthermore,
µTb ≡ 1 (mod 2) if and only ifµt+1 = 1. Consequently, there exists
a µ ∈ {0, 1}2(t+1+r) with µTA ≡ 0 (mod 2) and µTb ≡ 1 (mod 2) if
and only if there exists a z ∈ {0, 1}t such that Qz ≡ d (mod 2) with
z ∈ {0, 1}t . Indeed, zl = µl for 1 ≤ l ≤ t , and the remaining µl for
the reverse direction can be chosen arbitrarily for those rows of A
that are equal to 0 (mod 2).

Note that wTz < 1 if and only if no more than K entries of
z are equal to 1. Thus, it remains to show that µT(b − Ax̂) < 1
if and only if wTz < 1 with z and µ as above. Assume first that
µT(b−Ax̂) < 1. Recall that b−Ax̂ = (w1, . . . , wt , 0, 2 ·1r , 0r , 3−
3
2w1, . . . , 3 −

3
2wt ,

3
2 )

T. Therefore, wTz < 1 for z ∈ {0, 1}t with
zl = µl for 1 ≤ l ≤ t . Conversely, let wTz < 1 for some z ∈ {0, 1}t .
Define µ ∈ {0, 1}2(t+1)+2r by µl := zl for 1 ≤ l ≤ t , µt+1 := 1,
and µl := 0 otherwise. Then 1 > wTz = µT(w1, . . . , wt , 0, 2 ·

1r , 0r , 3 −
3
2w1, . . . , 3 −

3
2wt ,

3
2 )

T
= µT(b − Ax̂). So there is a

violated {0, 1/2}-cut if and only if there is a solution to Decoding
of Linear Codes. �

3. Reduction from Exact 3-Cover

For a given n × m 0/1-matrix A, the intersection graph is an
undirected graph with vertex set V = {1, . . . , n}, and an edge
{i, j} if and only if there is at least one row of A with a 1 in the
ith and jth columns [17]. The edge {i, j} represents the fact that
xi and xj cannot take the value 1 simultaneously. The set-packing
problem amounts to the problem of finding a maximum weight
stable set (set of pairwise non-adjacent vertices) in the intersection
graph. Padberg [17] showed that every clique C (i.e., every set of
pairwise adjacent vertices) in the intersection graph yields a valid
clique inequality

∑
j∈C xj ≤ 1 for the set-packing polytope, and

that such an inequality induces a facet of that polytope if and only
if the clique is maximal.

In general, there may be many facet-inducing clique inequali-
ties which are not represented in the system Ax ≤ 1. Indeed, the
number of maximal cliques can be exponential in n andm. If, how-
ever, there is a one-to-one correspondence between the rows of A
and the maximal cliques of the intersection graph (i.e., the system
Ax ≤ 1 consists of the facet-inducing clique inequalities), then A is
said to be a clique matrix.

We will find it helpful to write the {0, 1/2}-cuts of a clique
matrix in a certain explicit form. Let t ≥ 1 be an odd integer, and let
C1, . . . , Ct bemaximal cliqueswhose associated clique inequalities
are to be used (receive a multiplier of 1/2) in the derivation of the
cut. For i = 1, . . . , n, let φi represent the number of these cliques
which contain i. That is, φi = |{k ∈ {1, . . . , t} : i ∈ Ck}|. Then, we
must use (set the multiplier to 1/2 for) a non-negativity inequality
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−xi ≤ 0 for each i ∈ V such that φi is odd. Thus, the cut takes the
form
n−

i=1

⌊φi/2⌋xi ≤ ⌊t/2⌋.

Multiplying by 2, we see that this is equivalent to
t−

k=1

−
i∈Ck

xi −
−
φi odd

xi ≤ t − 1.

Following [2], we define the slack variables sk := 1 −
∑

i∈Ck
xi for

k = 1, . . . , t . The cut can then be written as
t−

k=1

sk +

−
φi odd

xi ≥ 1.

Thus, we see that the {0, 1/2}-cut derived using cliques C1, . . . , Ct
is violated by a given x̂ if and only if

t−
k=1

ŝk +

−
φi odd

x̂i < 1, (2)

where ŝk equals the slack of the kth clique inequality, computed
with respect to x̂.

We recall the definition of the NP-complete decision problem
Exact 3-Cover [12, Problem SP2].

Let s be a multiple of 3, and let S1, . . . , Sq ⊂ {1, . . . , s} be such
that |Sk| = 3 for k = 1, . . . , q. Is there some R ⊆ {1, . . . , q}
with |R| = s/3 such that


k∈R Sk = {1, . . . , s}?

Theorem 3.1. Testingwhether a given x̂ ∈ P = {x | Ax ≤ b} violates
a {0, 1/2}-cut is strongly NP-complete, even when the corresponding
integer linear program is a set-packing problem, the matrix A is a
clique matrix, and the intersection graph of A contains only O(n)
maximal cliques.

Proof. Given an instance of Exact 3-Cover, we construct a graph
with 2s+2+q vertices and 2q+3maximal cliques (see Fig. 1). For
i = 1, . . . , s, we have two vertices, ui and vi. For k = 1, . . . , q we
have a vertexwk.We also add two further vertices, u∗ and v∗. Edges
are put into the graph so that there are 2q + 3 maximal cliques,
as follows. The vertices of type u will be mutually adjacent and
form the u-clique. The vertices of type v will likewise be mutually
adjacent and form the v-clique. The two vertices u∗ and v∗ will also
be connected by an edge, forming the 2-clique. For k = 1, . . . , q, we
connect wk to the three u-vertices representing Sk, thus forming
q cliques of cardinality 4. We will call these the upper 4-cliques.
Finally, for k = 1, . . . , q, we connect wk to the three v-vertices
representing Sk, thus forming q more cliques of cardinality 4. We
will call these the lower 4-cliques.

We now let A equal the clique matrix of this graph. (Note that
A has 2q + 3 rows and 2s + 2 + q columns.) We define a vector
x̂ ∈ P as follows. For i = 1, . . . , s, we set the component of x̂
corresponding to ui to 2/(3s+3), andwe do the same for vi. We set
the component of x̂ corresponding to u∗ to (s+3)/(3s+3), andwe
do the same for v∗. Finally, for k = 1, . . . , q, we set the component
of x̂ corresponding to wk to (3s − 6)/(3s + 3).

It is readily checked that the u-clique and the v-cliques have
slack 0, the 2-clique has slack (s − 3)/(3s + 3), and each of the
upper and lower 4-cliques have slack 3/(3s + 3).

If the φ coefficient of a given vertex is odd, then we say that
the vertex is exposed. Each w vertex is contained in exactly two
cliques (an upper 4-clique and a lower 4-clique). An exposed w
vertex contributes (3s − 6)/(3s + 3) to the left-hand side of (2).
Thus, there is at most one exposed w vertex.

Suppose there was exactly one exposedw vertex. As each upper
and lower 4-clique used contributes 3/(s+3) to the left-hand side
of (2), at most two of them could be used in the Gomory–Chvátal
derivation. In fact, exactly one would have to be used, otherwise
Fig. 1. Graph used in the proof.

there would be either zero or two exposed w vertices. Moreover,
the 2-clique could not be used either, because it would contribute
(s−3)/(3s+3) to the left-hand side of (2). Only the u and v cliques
remain, and the {0, 1/2}-cut becomes vacuous. Therefore, there are
no exposed w vertices.

Thus, we have shown that, if an upper 4-clique is used, the
corresponding lower 4-clique must be used as well. That is, the
4-cliques come in pairs. Then, in order for the number of cliques
used to be odd, we must use either one or three of the u-, v- and
2-cliques.

Supposeweuse the u-clique but not the v- or 2-cliques. The ver-
tex u∗ is exposed, contributing (s+3)/(3s+3) to the left-hand side
of (2). Suppose thatwe use K pairs. Each pair contributes 6/(3s+3)
to the left-hand side. Moreover, the number of exposed ui vertices
is at least s − 3K , and each contributes 2/(3s + 3) to the left-hand
side. Thus, the left-hand side is at least (s+3+6K+2s−6K)/(3s+
3) = 1, and the cut is not violated. By symmetry, we cannot use the
v-clique without using the u- and 2-cliques. Moreover, we cannot
use the 2-clique without using the u- and v-cliques, because this
would immediately contribute 1 to the left-hand side of (2).

In order to obtain a violated cut, then, we must use the u-, v-
and 2-cliques, together with a number of pairs. Suppose we use K
pairs. Each pair contributes 6/(3s + 3) to the left-hand side of (2),
and the 2-clique contributes (s− 3)/(3s+ 3). Moreover, the num-
ber of exposed u vertices is at least max{0, s − 3K}, and the same
holds for the number of exposed v vertices. Thus, the left-hand side
of (2) is at least

6K/(3s + 3) + (s − 3)/(3s + 3) + max{0, 4s − 12K}/(3s + 3).

It is readily checked that this is less than 1 if and only if K = s/3.
Thus, there is a violated {0, 1/2}-cut if and only if K = s/3 and
there are no exposed vertices at all. This is true if and only if, for
i = 1, . . . , s, vertex ui appears in exactly one of the s/3 upper
4-cliques and vertex vi appears in exactly one of the s/3 lower
4-cliques. Thus, there is a violated {0, 1/2}-cut if and only if there
is a solution to Exact 3-Cover. �

4. Concluding remarks

It is not difficult to see that finding a stable set of maximum
weight in graphs of the type used in the proof of Theorem 3.1
can be performed in polynomial time (by enumerating over all
possible choices of a u-vertex, and all possible choices of a v-
vertex). Therefore, the hardness result holds even if the associated
integer linear program itself is polynomially solvable. On the other
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hand, Caprara and Salazar [6] consider an interesting class of NP-
hard set-packing problems for which the separation of {0, 1/2}-
cuts is polynomially solvable. So the complexity of a class of integer
linear programs is not related to the complexity of the separation
problem for the associated {0, 1/2}-cuts. See also [5,9].

It is worth pointing out that the hardness proof of Section 3 can
easily be adapted to set-partitioning and set-covering problems.
This is interesting because Bienstock and Zuckerberg [1] have
recently shown that, in the case of set covering, one can separate
over all Gomory–Chvátal-cuts to an arbitrary fixed precision in
polynomial time.

Naturally, our results imply that it is NP-hard to optimize a
linear function over the {0, 1/2}-closure of a polyhedron P ⊆

[0, 1]n. This provides an interesting contrast to the fact that one
can optimize in polynomial time over the elementary closures
associated with lift-and-project, Sherali–Adams, Lovász–Schrijver,
and Lasserre cuts (see, e.g., [8]).

For Caprara and Fischetti’s second proof of their hardness result
(in [2]), it is not difficult to see that the {0, 1/2}-closure and
the Gomory–Chvátal closure coincide [11]. In particular, testing
membership (or separation) over the Gomory–Chvátal closure is
NP-hard in general. However, in spite of the results provided
herein, it remains unknown whether testing membership for the
Gomory–Chvátal closure remains NP-hard for rational polytopes
contained in the unit cube.
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