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Abstract

We establish some scaling limits for a model of planar aggregation. The model is
described by the composition of a sequence of independent and identically distributed
random conformal maps, each corresponding to the addition of one particle. We study
the limit of small particle size and rapid aggregation. The process of growing clusters
converges, in the sense of Carathéodory, to an inflating disc. A more refined analysis
reveals, within the cluster, a tree structure of branching fingers, whose radial component
increases deterministically with time. The arguments of any finite sample of fingers,
tracked inwards, perform coalescing Brownian motions. The arguments of any finite
sample of gaps between the fingers, tracked outwards, also perform coalescing Brownian
motions. These properties are closely related to the evolution of harmonic measure on
the boundary of the cluster, which is shown to converge to the Brownian web.

1 Introduction

Consider an increasing sequence (Kn : n > 0) of compact subsets of the complex plane,
starting from the closed unit disc K0 centred at 0. Set Dn = (C ∪ {∞}) \ Kn and assume
that Dn is simply connected. Write Kn as a disjoint union K0 ∪ P1 ∪ · · · ∪ Pn. Think of Kn

as a cluster formed by attaching a sequence of particles P1, . . . , Pn to K0. By the Riemann
mapping theorem, there is a unique normalized conformal map Φn : D0 → Dn. Here, by
normalized we mean that Φn(z) = ecnz +O(1) as |z| → ∞ for some cn ∈ R. By a conformal
map D0 → Dn we always mean a conformal isomorphism, in particular a bijection. The
constant cn is the logarithmic capacity cap(Kn) and the sequence (cn : n > 0) is increasing.
We can write Φn = F1 ◦ · · · ◦ Fn, where each Fn is a normalized conformal map from D0 to a
neighbourhood of ∞ in D0. Moreover, any sequence (Fn : n ∈ N) of such conformal maps is
associated to such a sequence of sets (Kn : n > 0) in this way.
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Hasting and Levitov [8] introduced a family of models for random planar growth, indexed
by a parameter α ∈ [0, 2]. We shall study a version of the case α = 0, which may be described
as follows. Let P be a non-empty and connected subset of D0, having 1 as a limit point. Set
K = K0 ∪ P and D = (C ∪ {∞}) \ K. Assume that K is compact and that D is simply
connected. We think of P as a particle attached to K0 at 1. For example, P could be a disc
of diameter δ tangent to K0 at 1, or a line segment (1, 1 + δ]. We sometimes allow the case
where P has other limit points in K0, for example P = {z ∈ D0 : |z − 1| 6 δ}, but always
give 1 the preferred status of attachment point. Write F for the unique normalized conformal
map D0 → D and set c = cap(K). We assume throughout that F extends continuously to
the closure D̄0. This is known to hold if and only if K is locally connected. Let (Θn : n ∈ N)
be a sequence of independent random variables, each uniformly distributed on [0, 2π). Define
for n > 1

Fn(z) = eiΘnF (e−iΘnz), Φn = F1 ◦ · · · ◦ Fn. (1)

Write (Kn : n ∈ N) and (Pn : n ∈ N) for the associated sequences of random clusters and
particles.

Note that cap(Kn) = cn. Note also that Pn+1 = Φn(e
iΘn+1P ). Since harmonic measure

is conformally invariant, conditional on Kn, the random point Φn(e
iΘn+1) at which Pn+1 is

attached to Kn is distributed on the boundary of Kn according to the normalized harmonic
measure from infinity. However Pn+1 is not a simple copy of P , as would be natural in a model
of diffusion limited aggregation, but is distorted4 by the map Φn.

We obtain results which describe the limiting behaviour of the growing cluster when the
basic particle P has small diameter δ, identifying both its overall shape and the distribution
of random structures of ‘fingers’ and ‘gaps’. Some of these results are stated in Section 3. The
results are accompanied by illustrations of typical clusters for certain cases of the model. We
need some basic estimates for conformal maps, which are derived in Section 4. A simplifying
feature of the case α = 0 is that fact that, for Γn = Φ−1

n , the process (Γn(z) : n > 0) is
Markov, for all z ∈ D0. This enables us to do a fluid limit analysis in Section 5 for the
random flows Γn as the particles become small, showing that after adding n particles, the
cluster fills out a disc of radius ecn, with only small holes. In Section 6, we obtain some
further estimates which show that the harmonic measure from infinity on the boundary of
the cluster is concentrated near the circle of radius ecn and spread out evenly around the
circle. We also bound the distortion of individual particles. Section 7 reviews some weak
approximation theorems for the coalescing Brownian flow from [15]. These are then applied
to the flow of harmonic measure on the cluster boundary in Section 8. In conjunction with
the results of Section 6, this finally allows us to identify the weak limit of the fingers and gaps.

4If we suppose (unrealistically) that Φ′

n is nearly constant on the scale of P , then a rough compensa-
tion for the distortion would be achieved by replacing P in the definition of Pn+1 by a scaled copy of
diameter δn+1 = |Φ′

n(e
iΘn+1)|−1δ. More generally, we could interpolate between these models by taking

δn+1 = |Φ′

n(e
iΘn+1)|−α/2δ for some fixed α ∈ [0, 2]. This is the family proposed by Hastings and Levitov.
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2 Review of related work

There has been strong interest in models for the random growth of clusters over the last
50 years. Early models were often set up on a lattice, such as the Eden model [5], Witten
and Sander’s diffusion limited aggregation (DLA) [17], and the family of dielectric breakdown
models of Niemeyer et al. [13]. The primary interest in these and other related processes has
been in the asymptotic behaviour of large clusters.

Computational investigations of these lattice based models have revealed structures, of
fractal type, which in some cases resemble natural phenomena. However, such investigations
have also shown sensitivity to details of implementation, in particular to the geometry of the
underlying lattice. For example, in [1] and [12] different fractal dimensions are obtained for
DLA constructed with different lattice dependencies. This suggests that lattice-based models
may not be the most effective way to describe these physical structures. In addition, lattice
based models have proved difficult to analyse. There are few notable mathematical results,
with the exception of Kesten’s 1987 growth estimate for DLA [11], and there is much that
remains to be understood about the large-scale behaviour of these models and in particular
about the structure of fingers which is characteristically observed.

In 1998, Hastings and Levitov [8] formulated a family of continuum growth models in
terms of sequences of iterated conformal maps, indexed by a parameter α ∈ [0, 2]. They
argue, by comparing local growth rates, that their models share features with lattice dielectric
breakdown in the range α ∈ [1, 2], so that α = 1 corresponds to the Eden model, and α = 2
to DLA. Further exploration of this relation is discussed in the survey paper by Bazant and
Crowdy [2].

The Hastings–Levitov family of models has been discussed extensively in the physics lit-
erature from a numerical point of view. In their original paper, Hastings and Levitov found
experimental evidence of a phase transition at α = 1, and further studies can be seen in, for
example, [4] where estimates for the fractal dimensions of clusters are obtained, [9] where the
multifractal properties of harmonic measure on the cluster are explored, and [7] where the
dependence of the fractal dimension on α is investigated.

Although this conformal mapping approach to planar random growth processes has proved
more tractable than the lattice approach, there have been few rigorous mathematical results,
particularly in the case α > 0. Carleson and Makarov [3], in 2001, obtained a growth estimate
for a deterministic analogue of the DLAmodel. In 2005, Rohde and Zinsmeister [16] considered
the case α = 0 in the Hastings–Levitov family. They established a long-time scaling limit,
for fixed particle size and showed that the limit law was supported on clusters of dimension
1. They also gave estimates for the dimension of the limit sets in the case of general α,
and discussed limits of deterministic variants. Recently, Johansson Viklund, Sola and Turner
[10] studied an anisotropic version of the Hastings–Levitov model in the α = 0 case, and
established deterministic scaling limits for the macroscopic shape and evolution of harmonic
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measure on the cluster boundary.
In this paper, we also consider the case α = 0 but in the limiting regime where the particle

diameter δ becomes small and where the size of the cluster is of order 1 or larger. We obtain a
precise description of the macroscopic shape and growth dynamics of these clusters, as well as
a fine scale description of the underlying branching structure. In the process of obtaining these
results, we show that the evolution of harmonic measure on the cluster boundary converges to
the coalescing Brownian flow, also known as the Brownian web [6]. An early version of some
parts of the present paper, along with its companion paper [15], appeared in [14].

3 Statement of results

We state here our main results on the shape and structure of the Hastings–Levitov cluster.
Our main result on the harmonic measure flow, which cannot be stated so directly, is Theorem
8.1. For simplicity, we assume in this section that the basic particle P is either a slit (1, 1+ δ]
or a disc {|z − 1 − δ/2| 6 δ/2}, and that δ ∈ (0, 1/3]. We shall prove our results under some
general conditions (2),(10),(12) on the basic particle P , which can be readiliy checked for
the slit and disc models. We shall see that under one of these conditions (2) the logarithmic
capacity c = cap(K) = logF ′(∞) of K satisfies δ2/6 6 c 6 3δ2/4. Our first result expresses
that the cluster Kn is contained in a disc of approximate radius ecn and fills out that disc
with only small holes. Moreover, there is a rough correspondence between the time at which
a particle arrives and its distance from the origin.

Theorem 3.1. Consider for ε ∈ (0, 1] and m ∈ N the event Ω[m, ε] specified by the following
conditions: for all n 6 m and all n′ > m+ 1,

|z − ecn+iΘn| 6 εecn for all z ∈ Pn

and
dist(w,Kn) 6 εecn whenever |w| 6 ecn

and
|z| > (1− ε)ecm for all z ∈ Pn′ .

Assume that ε = δ2/3(log(1/δ))8 and m = ⌊δ−6⌋. Then P(Ω[m, ε]) → 1 as δ → 0.

This result is a special case of Theorem 6.5 below. Note that Ω[m, ε] is decreasing in m
and increasing in ε. We have made some effort to maximise the power 2/3 in this statement.
It will be crucial later that 2/3 > 1/2. We shall take particular interest in the case where
m is of order δ−2 and in the case where m is of order δ−3, when the diameter of the cluster
Km is of order 1 and δ−1 respectively. We have not attempted to optimise the power 8 in the
logarithm.
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In Figure 1, we present some realizations of the cluster when P is a slit5 (1, 1+δ], for various
values of δ. We observe in Figure 1(b), when δ = 1, that incoming particles are markedly
distorted and that particles arriving later tend to be larger. This effect is diminished when
we examine smaller values of δ. In Figure 1(e), the cluster is a rough disc, as predicted by
Theorem 3.1 but with some sort of internal structure. The colours label arrivals in different
epochs, showing that there is a close relationship between the time of arrival and the distance
from the origin at which a particle sticks, as in Theorem 3.1. Figure 1(f) focuses on the
motion of points on the boundary of the unit circle, under the inverse map Γn = Φ−1

n and
over a longer timescale than for the other simulations. This motion suggests the behaviour of
coalescing Brownian motions, which is confirmed in Theorem 8.1 below.

We now fix N ∈ N and state two results describing the internal geometry of the cluster
KN in terms of coalescing Brownian motions, which will follow from Theorems 3.1 and 8.1.
Define

K̃n = {z ∈ C : ez ∈ Kn}, D̃n = {z ∈ C : ez ∈ Dn}
and determine ρ = ρ(P ) ∈ (0,∞) by

ρ

2π

∫ 2π

0

(g(θ)− θ)2dθ = 1

where g is the unique continuous map (0, 2π) → (0, 2π) such that g(π) = π and G(eiθ) = eig(θ)

for all θ. We shall show in Proposition 4.3 that δ−3/C 6 ρ 6 Cδ−3 for an absolute constant
C < ∞. Note that KN has a natural notion of ancestry for its constituent particles: we
say that Pk is the parent of Pn+1 if Φn(e

iΘn+1) ∈ Pk. This notion is inherited by the covering
cluster K̃N and will allow us to identify path-like structures within the cluster. For Re(z) > 0,
denote by P̃0(z) the closest particle to z in K̃N , and recursively denote by P̃m(z) the parent
of P̃m−1(z) until m = m(z) when P̃m(z)(z) is attached to the imaginary axis, at a(z) say.
Consider the compact set

finger(z) = {a(z)} ∪
m(z)
⋃

m=0

P̃m(z).

We shall describe also the structure of the complementary set D̃N , using a choice of paths
in this set. The notion of ancestry is not available, so we look instead for paths in the gaps
which lead mainly outwards, that is to the right in the logarithmic picture. In order to
enforce this outwards property, we impose a condition of minimal length, which requires a
suitable completion of the set of paths. By a gap path we mean a rectifiable path (pτ )τ>0 in

5The normalized conformal mapG = F−1 : D → D0 can be obtained in this case as φ−1◦g1◦φ, where φ takes
D0 to the upper half plane H0 by φ(z) = i(z−1)/(z+1) and g1(z) =

√

(z2 + t)/(1− t) takes H = H0\(0, i
√
t]

toH0, where t = δ2/(2+δ)2. A straightforward calculation gives c = c(δ) = − logG′(∞) = − log(1−t) ≍ δ2/4.
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(a) The cluster after a few arrivals with
δ = 1.

(b) The cluster after 100 arrivals with
δ = 1.

(c) The cluster after 800 arrivals with
δ = 0.1.

(d) The cluster after 5000 arrivals with
δ = 0.04.

(e) The cluster after 20000 arrivals
with δ = 0.02.

(f) Trajectories of Γ̃n(e
2πix)/(2πi) for

δ = 0.02, with t = n/106.

Figure 1: The slit case of HL(0)
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C, parametrized by arc length, such that Re(pτ ) → ∞ as τ → ∞ and such that, for some
continuous map h : [0,∞)×[0, 1] → C and for all τ > 0, we have pτ = h(τ, 1) and h(τ, t) ∈ D̃N

for all t ∈ [0, 1). For R > 0, define LR(p) = inf{τ > 0 : Re(pτ ) = R}. Write p0(z) for the
closest point to z which is not in the interior of K̃N . Since D̃N is simply connected and KN is
compact, there exists a unique gap path p(z) starting from p0(z) and minimizing LR(p) over
all gap paths starting from p0(z), for all sufficiently large R. The path p(z) may be thought of
as a long piece of thread outside the cluster, with one end attached to p0(z) and drawn tight
by pulling from the right. Set

gap(z) = {pτ (z) : τ > 0}.

Note that, by minimality, for all τ1, τ2 > 0 with τ1 < τ2 and such that the open line segment
I = (pτ1(z), pτ2(z)) is contained in D̃N , we have pτ (z) ∈ I for all τ ∈ (τ1, τ2). These definitions
are illustrated in Figure 2. Both fingers and gaps depend implicitly on N , although we have
suppressed this in the notation.

0

2πi

T

w

z
gap(z)

gap(w)

finger(z)

finger(w)

Figure 2: Diagram illustrating fingers and gaps in K̃N (repeating periodically). This is only
a representation and in general the particles will be distorted both by the conformal mapping
and by the logarithmic transformation.

In order to capture the limiting fluctuations of the fingers and gaps we have to rescale.
We do this in two ways, defining horizontal and vertical scaling operators σ and σ̄ by

σ(r + iθ) = (δ∗r, θ), σ̄(r + iθ) = (r, θ/
√
δ∗), r > 0, θ ∈ R

7



where δ∗ = (ρc)−1. Note that δ/C 6 δ∗ 6 Cδ for an absolute constant C < ∞. Also
σ̄ = σδ∗ ◦ σ where σδ∗ is the diffusive scaling

σδ∗(s, x) = (s/δ∗, x/
√
δ∗), s > 0, x ∈ R.

The horizontal scaling identifies global random behaviour in the fingers and gaps over very
long time scales, whereas the vertical scaling identifies local fluctuations in the fingers and
gaps while the size of the cluster is of order 1.

Denote by S the space of closed subsets of [0,∞) × R, equipped with a local Hausdorff
metric. Define F,G : [0,∞)× R → S and F̄, Ḡ : [0,∞)× R → S by

F = σ ◦ finger ◦ σ−1, G = σ ◦ gap ◦ σ−1

F̄ = σ̄ ◦ finger ◦ σ̄−1, Ḡ = σ̄ ◦ gap ◦ σ̄−1.

Thus, for e = (s(e), x(e)),

F(e) = {σ(w) : w ∈ finger(s(e)/δ∗ + ix(e))}, G(e) = {σ(w) : w ∈ gap(s(e)/δ∗ + ix(e))}

F̄(e) = {σ̄(w) : w ∈ finger(s(e) + ix(e)
√
δ∗)}, Ḡ(e) = {σ̄(w) : w ∈ gap(s(e) + ix(e)

√
δ∗)}.

We consider F(e), F̄(e),G(e), Ḡ(e) as random variables in S.
We state first the long time result. Fix T > 0 and let E be a finite subset of [0, T ] × R.

Take N = ⌊ρT ⌋ so that KN is approximately a disc of radius eT/δ
∗

. Denote by νPE and ηPE the
respective laws of (F(e) : e ∈ E) and (G(e) : e ∈ E) on SE . Let (Be : e ∈ E) be a family
of 2π-coalescing Brownian motions, Be running backwards in time from x(e) at time s(e).
Thus Be = (Be

t : 0 6 t 6 s(e)) and for all e, e′ ∈ E, Be and Be′ are independent until (time
running backwards) their difference is an integer multiple of 2π, at which point it freezes. Let
(W e : e ∈ E) be a family of 2π-coalescing Brownian motions, with W e running forwards in
time from x(e) at time s(e). Denote by νE and ηE the laws on SE of the families of random
sets ({(t, Be

t ) : 0 6 t 6 s(e)} : e ∈ E) and ({(t,W e
t∧T ) : t > s(e)} : e ∈ E).

Theorem 3.2. We have νPE → νE and ηPE → ηE weakly on SE as δ → 0.

Thus, for small δ, we can construct on a common probability space, the cluster KN and
backwards and forwards 2π-coalescing Brownian motions, such that the union of fingers in K̃N

starting from points s(e)/δ∗ + ix(e), e ∈ E is, with probability close to 1, close in Hausdorff
metric to the set

⋃

e∈E{t/δ∗+iBe
t : 0 6 t 6 s(e)}, and hence the union of fingers inKN , starting

from points exp(s(e)/δ∗+ix(e)), e ∈ E looks approximately like the set
⋃

e∈E{exp(t/δ∗+iBe
t ) :

0 6 t 6 s(e)}. Similarly, the union of gaps in KN , starting from points exp(s(e)/δ∗ + ix(e)),
e ∈ E looks approximately like the set

⋃

e∈E{exp(t/δ∗ + iW e
t∧T ) : t ≥ s(e)}. A simulation of

⋃

e∈E{exp(t/δ∗ + iBe
t ) : 0 6 t 6 s(e)} and

⋃

e∈E{exp(t/δ∗ + iW e
t ) : s(e) 6 t 6 T} is shown in

Figure 3(a).
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For the local result we take now N = ⌊c−1T ⌋ so that KN is approximately a disc of radius
eT . Denote by ν̄PE and η̄PE the laws of (F̄(e) : e ∈ E) and (Ḡ(e) : e ∈ E) on SE . Let
(B̄e : e ∈ E) be a family of coalescing Brownian motions, B̄e running backwards in time from
x(e) at time s(e). Thus B̄e = (B̄e

t : 0 6 t 6 s(e)) and for all e, e′ ∈ E, B̄e and B̄e′ are
independent until (time running backwards) they collide, at which time they coalesce. Let
(W̄ e : e ∈ E) be a family of coalescing Brownian motions, with W̄ e running forwards in time
from x(e) at time s(e). Denote by ν̄E and η̄E the laws on SE of the families of random sets
({(t, B̄e

t ) : 0 6 t 6 s(e)} : e ∈ E) and ({(t, W̄ e
t∧T ) : t > s(e)} : e ∈ E).

Theorem 3.3. We have ν̄PE → ν̄E and η̄PE → η̄E weakly on SE as δ → 0.

Thus, for small δ, we can construct on a common probability space, the cluster KN and
backwards and forwards coalescing Brownian motions, such that the union of fingers in K̃N

starting from points s(e) + ix(e)
√
δ∗, e ∈ E is, with probability close to 1, close in Hausdorff

metric to the set
⋃

e∈E{t + iB̄e
t

√
δ∗ : 0 6 t 6 s(e)}, and hence the union of fingers in KN ,

starting from points exp(s(e)+ix(e)
√
δ∗), e ∈ E looks approximately like the set

⋃

e∈E{exp(t+
iB̄e

t

√
δ∗) : 0 6 t 6 s(e)}. Similarly, the union of gaps in KN , starting from points exp(s(e) +

ix(e)
√
δ∗), e ∈ E looks approximately like the set

⋃

e∈E{exp(t + iW̄ e
t∧T

√
δ∗) : t ≥ s(e)}. A

simulation of
⋃

e∈E{exp(t+ iB̄e
t

√
δ∗) : 0 6 t 6 s(e)} and

⋃

e∈E{exp(t+ iW̄ e
t

√
δ∗) : s(e) 6 t 6

T} is shown in Figure 3(b).
Theorems 3.2 and 3.3 are obvious corollaries of Theorem 8.2, which identifies also the

limiting joint law of fingers and gaps.

4 Some basic estimates

We derive in this section some estimates for quantities associated to the basic particle P . In
some special cases one could use instead an explicit calculation. By proving general estimates
we are able to demonstrate some universality for the small-particle limit. Recall that K =
K0 ∪ P and D = (C ∪ {∞}) \ K, with K compact and locally connected and D simply
connected in C ∪ {∞}. The following assumptions are in force throughout this section

δ ∈ (0, 1/3] and P ⊆ {z ∈ C : |z− 1| 6 δ} and 1+ δ ∈ P and P = {z̄ : z ∈ P}. (2)

Consider the map ψ(z) = z̄−1 on C∪{∞} by reflection in the unit circle S. Set P̂ = ψ(P )
and D̂ = ψ(D), D̂0 = ψ(D0). Define also P ∗ = P ∪ I ∪ P̂ , where I is the set of limit points of
P in S, and set D∗ = (C∪{∞})\P ∗. By the Riemann mapping theorem, there is a conformal
map Ĝ : D̂ → D̂0 and a constant c ∈ R such that Ĝ(z) = ecz +O(|z|2) as |z| → 0, and Ĝ and
c are unique. Moreover Ĝ extends to a conformal map G∗ : D∗ → (C ∪ {∞}) \ J for some

9



(a) An approximation of a finite set of fingers and
gaps in KN , with N = ⌊ρT ⌋, when T = 1 and
δ∗ = 0.05.

(b) An approximation of a finite set of fingers and
gaps in KN , with N = ⌊c−1T ⌋, when T = 1 and
δ∗ = 0.01.

Figure 3: Geometric illustration of Theorems 3.2 and 3.3, where fingers are denoted in dark
blue, and gaps in light blue.

interval J ⊆ S, with G∗ ◦ ψ = ψ ◦ G∗ on D∗. Write G for the restriction of G∗ to D. Then
G is a conformal map D → D0 and G(z) = e−cz + O(1) as |z| → ∞, The constant c is the
logarithmic capacity cap(K). The well known fact that c is positive will emerge in the course
of the proof of Proposition 4.1.

Note that D∗ is simply connected and G∗(z)/z 6= 0 for all z ∈ D∗. So we may choose a
branch of the logarithm so that log(G∗(z)/z) is continuous on D∗ with limit c at 0 and then,
for some constant C(K) <∞, we have

∣

∣

∣

∣

∣

log

(

Ĝ(z)

z

)

− c

∣

∣

∣

∣

∣

6 C(K)|z|, z ∈ D̂

and so
∣

∣

∣

∣

log

(

G(z)

z

)

+ c

∣

∣

∣

∣

6
C(K)

|z| , z ∈ D.

In fact the following stronger estimate holds.

10



Proposition 4.1. There is an absolute constant C <∞ such that
∣

∣

∣

∣

log

(

G(z)

z

)

+ cap(K)

∣

∣

∣

∣

6
C cap(K)

|z − 1| , |z − 1| > 2δ, z ∈ D.

Proof. Set H(z) = u(z) + iv(z) = log(G∗(z)/z). Then H is bounded and holomorphic on D∗

and H(z) → −c as |z| → ∞. Fix z ∈ C and let B be a complex Brownian motion starting
from z. Suppose that z ∈ D and consider the stopping time

T = inf{t > 0 : Bt 6∈ D}.

Then T < ∞ and |BT | > 1 almost surely, and |BT | > 1 with positive probability. Also
u(Bt) → − log |BT | as t ↑ T almost surely. Hence, by optional stopping,

u(z) = −E(log |BT |) < 0.

Set r = δ/(2− δ) and define P ∗
1 = {z ∈ C : |z − 1| 6 r|z + 1|}. Then set

D∗
1 = (C ∪ {∞}) \ P ∗

1 , P1 = P ∗
1 ∩D0, D1 = D∗

1 ∩D0, K1 = K0 ∪ P1.

Then P ∗ ⊆ P ∗
1 ⊆ {z ∈ C : |z − 1| 6 δ/(1− δ)}. The boundary of D1 consists of two circular

arcs, one contained in S, where u = 0, the other contained in P1, which we denote by A.
The normalized conformal map G1 : D1 → D0 can be obtained as φ−1 ◦ g1 ◦ φ, where φ
takes D0 to the upper half-plane by φ(z) = i(z − 1)/(z + 1) and g1(z) = (z + r2/z)/(1 − r2).
Hence we obtain G∗

1(z) = z(γz − 1)/(z − γ) for z ∈ D∗
1, where γ = (1 − r2)/(1 + r2), and

G1(A) = {eiθ : |θ| < θ0}, where θ0 = cos−1 γ. Set F1 = G−1
1 . Then u ◦ F1 is bounded and

harmonic on D0. Suppose now that z ∈ D0 and consider the stopping time

T0 = inf{t > 0 : Bt 6∈ D0}.

Then T0 <∞ almost surely and, by optional stopping,

u(F1(z)) = E(u(F1(BT0
))) =

1

2π

∫

|θ|6θ0

u(F1(e
iθ)) Re

(

z + eiθ

z − eiθ

)

dθ.

On letting |z| → ∞ we obtain

c = − 1

2π

∫

|θ|6θ0

u(F1(e
iθ))dθ > 0

so

u(F1(z)) + c =
1

2π

∫

|θ|6θ0

u(F1(e
iθ)) Re

(

2eiθ

z − eiθ

)

dθ.
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Hence, for z ∈ D1,

|u(z) + c| 6 2c

dist(G1(z), G1(A))
.

By an elementary calculation, we have |(G∗
1)

′(z) − γ| 6 6γ/7 whenever |z − 1| > 7δ/4 and
δ ∈ (0, 1/3]. Set A′ = {z ∈ C : |z−1| = 7δ/4}. Then dist(G1(z), G1(A)) > dist(G1(z), G1(A

′))
whenever |z − 1| > 7δ/4. By the mean value theorem, there is an absolute constant C1 < ∞
such that

dist(G1(z), G1(A
′)) > |z − 1|/C1, |z − 1| > 2δ.

Hence
|u(z) + c| 6 2C1c/|z − 1|, |z − 1| > 2δ, z ∈ D

and the same estimate extends to D∗ by reflection.
Then, by a standard estimate for harmonic functions (differentiate the Poisson kernel),

|∇v(z)| = |∇u(z)| 6 8C1c/|z − 1|2, |z − 1| > 2δ, z ∈ D (3)

and so

|v(z)| 6
∫ ∞

0

|∇v(z + s(z − 1)||z − 1|ds 6 8C1c/|z − 1|, |z − 1| > 2δ, z ∈ D,

giving the required bound.

Corollary 4.2. We have δ2/6 6 cap(K) 6 3δ2/4.

Proof. We use notation from the preceding proof. By uniqueness, we have G1 = G†◦G, where
G† is the normalized conformal map G(D1) → D0. Hence

cap(K) 6 cap(K) + cap(G(K1 \K)) = cap(K1) = log

(

1 + r2

1− r2

)

6
3δ2

4
.

Also, since 1+δ ∈ P , G = G‡ ◦G2, where G2 is the normalized slit map D2 = D0 \ (1, 1+δ] →
D0 referred to in Section 3 and G‡ is the normalized conformal map G2(D) → D0. Let
K2 = K0 ∪ (1, 1 + δ]. Then

cap(K) = cap(K2) + cap(G2(K \K2)) ≥ − log

(

1− δ2

(2 + δ)2

)

≥ δ2

6
.
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We shall do most of the analysis in logarithmic coordinates. Set D̃ = {z ∈ C : ez ∈ D} and
D̃0 = {z ∈ C : Re(z) > 0}. There are unique conformal maps G̃ : D̃ → D̃0 and F̃ : D̃0 → D̃
such that G̃(z) − z + c → 0 and F̃ (z) − z − c → 0 as Re(z) → ∞. Then F̃ and G̃ are
2πi-periodic and F̃ = G̃−1. Also G ◦ exp = exp ◦ G̃ and F ◦ exp = exp ◦F̃ . Proposition 4.1
and (3) provide the following estimates for G̃(z)

|G̃(z)− z + c| 6 Cc

|ez − 1| , |G̃′(z)− 1| 6 Cc|ez|
|ez − 1|2 , |ez − 1| > 2δ, z ∈ D̃. (4)

We introduce some further functions associated to G̃ and F̃ . Recall the definitions of I
and J from the start of this section. Since P is symmetric, we can write I = {eiθ : |θ| 6 p}
and J = {eiθ : |θ| 6 q} for some p ∈ [0, π) and q ∈ (0, π). Then there exist unique non-
decreasing right-continuous functions g+ and f+ on R such that the functions θ 7→ g+(θ)− θ
and θ 7→ f+(θ)− θ are 2π-periodic and such that

g+(θ) =

{

±q, ±θ ∈ (0, p]

Im(G̃(iθ)), |θ| ∈ (p, π]
, f+(θ) =

{

0, |θ| ∈ [0, q)

Im(F̃ (iθ)), |θ| ∈ (q, π]
. (5)

Here we have used the continuous extensions of G̃ and F̃ to certain intervals of the imaginary
axis. Define, for θ ∈ R

g0(θ) = g+(θ)− θ

and, for x ∈ (0, 1] such that x+ iθ ∈ D̃, define

gx(θ) = Im(G̃(x+ iθ))− θ.

Proposition 4.3. There is an absolute constant C <∞ such that, for α = Cδ and |θ| 6 π,

|g0(θ)| 6
α2

|θ| ∨ α

and the same estimate holds for |gx(θ)| when x ∈ (0, 1] and x+ iθ ∈ D̃. Moreover C may be
chosen so that

δ3/C 6
1

2π

∫ 2π

0

g0(θ)
2dθ 6 Cδ3,

1

2π

∫ 2π

0

|g0(θ)g0(θ + a)|dθ 6 Cδ4

a
log

(

1

δ

)

whenever a ∈ [δ, π].

Proof. The first estimate follows from the first estimate in (4), using the non-decreasing
property of g+ and the maximum principle to deal with the case where |ex+iθ − 1| < 2δ,
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and using cap(K) 6 3δ2/4. This leads directly to the upper bound in the second estimate
and the third estimate.

For the lower bound, note that

1

2π

∫ 2π

0

g0(θ)
2dθ >

1

π

∫ q

0

(q − θ)2dθ =
q3

3π

and q = πP∞(BT ∈ P ). We give an argument which uses neither the symmetry assumption
P = {z̄ : z ∈ P} nor the assumption 1 + δ ∈ P and instead assumes only that |z − 1| = δ
for some z ∈ P . This will be useful in Lemma 6.1. Denote by P (2) the union of P with its
reflection in the line ℓ joining z and 0. Denote by w the image of 1 under this reflection and
by A the shorter arc in the unit circle joining w and 1. Then, since P is connected, we have

2P∞(BT ∈ P ) > P∞(B hits P (2) before K0)

> P∞(B hits K0 in A) ∨ P∞(B hits ℓ before K0)

> (|w − 1| ∨ (|z| − 1))/(2π) > δ/(4π) (6)

which gives the claimed lower bound.

5 Fluid limit analysis for random conformal maps

Define conformal maps F̃n and Φ̃n on D̃0 by

F̃n(z) = F̃ (z − iΘn) + iΘn, Φ̃n = F̃1 ◦ · · · ◦ F̃n

where (Θn : n ∈ N) is the sequence of independent uniformly distributed random variables
specified in the Introduction. Write Γ̃n for the inverse map Φ̃−1

n : D̃n → D̃0. It will be
convenient to use the filtration (Fn : n > 0) given by Fn = σ(Θ1, . . . ,Θn). Recall that we
write c for the logarithmic capacity cap(K). Assumption (2) remains in force in this section.

For ε ∈ [2δ, 1] and m ∈ N, denote by Ω(m, ε) the event defined by the following conditions:
for all z ∈ D̃0 and all n 6 m, we have

|Φ̃n(z)− z − cn| < ε whenever Re(z) > 5ε

and
z ∈ D̃n and |Γ̃n(z)− z + cn| < ε whenever Re(z) > cn+ 4ε.

Note the round brackets – this is not the same event as Ω[m, ε], defined above. We shall
use the following estimate in the case where m = ⌊δ−6⌋ and ε = δ2/3 log(1/δ) when, using
the bound c 6 3δ2/4 from Corollary 4.2, it implies that Ω(m, ε) has high probability as
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δ → 0. The proof is based on a fluid limit approximation for each Markov process (Γ̃n(z) :
n > 0), optimized using explicit martingale estimates. Local uniformity in z is achieved by
combining the estimates for individual starting points with an application of Kolmogorov’s
Hölder criterion.

Proposition 5.1. There is an absolute constant C < ∞ such that, for all ε ∈ [2δ, 1] and all
m ∈ N,

P(Ω \ Ω(m, ε)) 6 C(m+ ε−2)e−ε3/(Cc).

Proof. It will suffice to consider the case where ε3 > c. Set M = ⌈cm/(2ε)⌉. Fix k ∈
{1, . . . ,M} and set R = 2(k + 1)ε. Consider the vertical line ℓR = {z ∈ C : Re(z) = R}.
Write N for the largest integer such that cN 6 R− 2ε. Consider the stopping time

T = TR = inf{n > 0 : z 6∈ D̃n or Re(Γ̃n(z)) 6 R− cn− ε for some z ∈ ℓR} ∧N.

Note that
Re(Γ̃T−1(z)) > ε > δ > log(1 + δ)

so z ∈ D̃TR
for all z ∈ ℓR. Consider the events

ΩR =

{

sup
n6TR, z∈ℓR

|Γ̃n(z)− z + cn| < ε

}

, Ω0(m, ε) =
M
⋂

k=1

Ω2(k+1)ε.

We shall show that there is an absolute constant C <∞ such that

P(Ω \ ΩR) 6 Cε−6/5e−ε3/(Cc) (7)

from which it follows that

P(Ω \ Ω0(m, ε)) 6 C(cm/ε+ 1)ε−6/5e−ε3/(Cc)
6 C(m+ ε−2)e−ε3/(Cc).

Note that, on ΩR, we have |Γ̃TR
(z)− z + cTR| < ε for all z ∈ ℓR, which forces TR = N and

so z ∈ D̃n whenever Re(z) > R and cn 6 R − 2ε. Then, since Γ̃n(z) − z + cn is a bounded
holomorphic function on D̃n, we have on ΩR

sup
cn6R−2ε,Re(z)>R

|Γ̃n(z)− z + cn| = sup
cn6R−2ε, z∈ℓR

|Γ̃n(z)− z + cn| < ε.

For n 6 m, we can choose k so that R − 4ε 6 cn 6 R − 2ε. Then, if Re(z) > cn + 4ε, then
Re(z) > R, so on Ω0(m, ε) we have z ∈ D̃n and |Γ̃n(z)− z + cn| < ε. Moreover, on Ω0(m, ε),
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the image Γ̃n(ℓR) lies to the left of ℓ5ε, and hence, if Re(w) > 5ε, we have w = Γ̃n(z) for some
Re(z) > R so that

|Φ̃n(w)− w − cn| = |z − Γ̃n(z)− cn| < ε.

We have shown that Ω0(m, ε) ⊆ Ω(m, ε), which implies the claimed estimate.
It remains to prove (7). The function G̃0(z) = G̃(z) − z is holomorphic, bounded and

2πi-periodic on D̃ with G̃0(z) → −c as Re(z) → ∞. Hence

1

2π

∫ 2π

0

G̃0(z − iθ)dθ = −c, Re(z) > δ.

Let q(r) = r ∧ r2. Then

|G̃0(z) + c| 6 C1c

Re(z)− δ
, |G̃′

0(z)| 6
2C1c

q(Re(z)− δ)
, Re(z) > 2δ,

where C1 is the absolute constant in (4). Set

Mn(z) = Γ̃n(z)− z + cn, z ∈ D̃n.

Then
Mn+1(z)−Mn(z) = G̃0(Γ̃n(z)− iΘn+1) + c.

So (Mn(z))n6T is a martingale for all z ∈ ℓR. For z ∈ ℓR and n 6 T − 1,

|Mn+1(z)−Mn(z)| 6
C1c

(Re(Γ̃n(z))− δ)
6

C1c

(R− cn− ε− δ)

and
N−1
∑

n=0

C2
1c

2

(R− cn− ε− δ)2
6

∫ R−2ε

0

C2
1cds

(R− s− ε− δ)2
=

C2
1c

ε− δ
6

2C2
1c

ε
.

So, by the Azuma-Hoeffding inequality, for all z ∈ ℓR,

P

(

sup
n6T

|Mn(z)| > ε/2

)

6 2e−ε3/(16C2
1 c). (8)

Fix z, z′ ∈ ℓR, define M̃n =Mn(z)−Mn(z
′) and set

f(n) = E

(

sup
k6T∧n

|M̃k|2
)

.

Note that |Γ̃n(z)− Γ̃n(z
′)| 6 |z − z′|+ |M̃n| so, for n 6 T − 1,

|M̃n+1 − M̃n| = |G̃0(Γ̃n(z)− iΘn+1)− G̃0(Γ̃n(z
′)− iΘn+1)| 6

2C1c(|z − z′|+ |M̃n|)
q(R− cn− ε− δ)

.
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Then, by Doob’s L2-inequality,

f(n) 6 4E
(

|M̃T∧n|2
)

6 4
n−1
∑

k=0

E(|M̃k+1 − M̃k|21{k6T}) 6 32C2
1c

2
n−1
∑

k=0

|z − z′|2 + f(k)

q(R− ck − ε− δ)2

so, by a Gronwall-type argument,

E

(

sup
n6T

|M̃n|2
)

= f(N) 6 |z − z′|2
(

exp

∫ ∞

ε−δ

32C2
1cds

q(s)2
− 1

)

.

Now, for r ∈ (0, 1],
∫ ∞

r

ds

q(s)2
=

1

3

(

2 +
1

r3

)

and ε/2 6 ε − δ 6 1 and ε3 > c. So we deduce the existence of an absolute constant
16C2

1 < C2 < ∞ such that f(N) 6 C2c|z − z′|2/ε3. Hence by Kolmogorov’s lemma, C2 may
be chosen so that, for some random variable M , with E(M2) 6 C2c/ε

3, we have

sup
k6T

|Mk(z)−Mk(z
′)| 6M |z − z′|1/3

for all z, z′ ∈ ℓR. So, by Chebyshev’s inequality, for any L ∈ N,

P

(

sup
k6T

|Mk(z)−Mk(z
′)| > ε/2 for some z, z′ ∈ ℓR with |z − z′| 6 π/L

)

6 (π/L)2/34C2c/ε
5.

On combining this with (8), we obtain

P(Ω \ ΩR) 6 Le−ε3/(C2c) + (π/L)2/34C2c/ε
5

from which (7) follows on optimizing over L.

We note two consequences of the event Ω(m, ε). First we deduce an estimate for the
normalized conformal maps Φn. On Ω(m, ε), for n 6 m and |z| = e5ε, we have

| log(e−cnΦn(z))− log z| < ε

and so
|e−cnΦn(z)− z| < εe6ε.

The last estimate then holds whenever |z| > e5ε by the maximum principle.
Second, we show that on the event Ω(m, ε), for n 6 m and R 6 cn, there is no disc of

radius 56ε with centre on the line ℓR = {z ∈ C : Re(z) = R} which is disjoint from K̃n.
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Since the sets K̃n are increasing in n, we may assume that R > c(n − 1). Fix y ∈ R and set
w = 6ε+ iy. Note that |Φ̃n(w)− (R + iy)| < ε+ |6ε+ cn− R| < 7ε+ c < 8ε. Here we have
used c 6 3δ2/4 6 δ/4 < ε. By Cauchy’s integral formula

Φ̃′
n(w) = 1 +

1

2πi

∫

|z−w|=ε

Φ̃n(z)− z − cn

(z − w)2
dz

so |Φ̃′
n(w)| 6 2. Then, by Koebe’s 1/4 theorem,

d(Φ̃n(w), ∂D̃n) 6 4|Φ̃′
n(w)|d(w, ∂D̃0) 6 48ε.

and so
d(R + iy, ∂D̃n) 6 56ε. (9)

6 Harmonic measure and the location of particles

In this section we obtain an estimate on the location of the particles Pn+1 = Φn(e
iΘn+1P ) in

the plane. From the preceding section, we know that Φn((1 + ε)eiθ) is close to (1 + ε)ecn+iθ

with high probability, when ε is suitably large in relation to the particle radius δ. This must
break down as ε → 0, at least when particles are attached at a single point, since the map
θ 7→ Φn(e

iθ) parametrizes the whole cluster boundary by harmonic measure. Nevertheless, we
shall show that the approximation breaks down only on a set of very small harmonic measure,
and in fact the whole of each particle Pn+1 is close to e

cn+iΘn+1, in a sense made precise below.
Throughout this section, we assume that condition (2) holds and we make also the following
non-degenerate contact condition

P ⊆ {z ∈ C : Re(z) > 1}. (10)

Lemma 6.1. There is an absolute constant C < ∞ with the following properties. Let D∗

be any simply connected neighbourhood of ∞ in D0 and set K∗ = C \ D∗. Denote by µ the
harmonic measure from ∞ in D∗ of K∗ \K0 and by N the number of connected components
of K∗ \K0. Then

P(K∗ ∩K1 6= K0) 6 CN
√
µ. (11)

Assume further that 16πµ 6 δ. Then

P(K∗ ∩K∞ 6= K0) 6 CN
√
µ/δ.

Proof. By the estimate (6), each of the N connected components of K∗ \K0 is contained in
a disc of radius 8πµ with centre on the unit circle. The non-degenerate contact assumption
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then allows us to choose C1 <∞ such that P1 intersects that component only if eiΘ1 lies in a
concentric disc of radius C1

√
µ. The estimate (11) follows.

Consider a complex Brownian motion B with B0 uniformly distributed on the circle of
radius 2 centred at 0, and independent of Θ1. Set r = 1 + δ/2 and note that K∗ ⊆ rK0. Set

T (K) = inf{t > 0 : Bt ∈ K}.
Note that, since Θ1 is uniformly distributed on [0, 2π), the events {T (rK0) 6 T (K1)} and
{T (K∗) < T (K0)} are independent. We use the estimate (6) and our assumption that 1+δ ∈ P
to obtain

P(T (rK0) 6 T (K1)) 6 1− δ/C1.

Note that, since T (rK0) 6 T (K∗), we have

{T (K∗) < T (K1)} ⊆ {T (rK0) 6 T (K1)} ∩ {T (K∗) < T (K0)}.
Hence

P(T (K∗) < T (K1)) 6 (1− δ/C)P(T (K∗) < T (K0)) = (1− δ/C1)µ.

Set
Hn = P(T (K∗) < T (Kn)|Fn)

and note that H0 = µ. By conformal invariance of Brownian motion, we have

Hn = P(T (K∗
n) < T (K0)|Fn)

where K∗
n = Γn(K

∗ \Kn) ∪K0, and moreover

E(Hn+1|Fn) = P(T (K∗
n) < T (K ′

1)|Fn)

where K ′
1 is an independent copy of K1. Since K∗

n ⊆ rK0, the argument of the preceding
paragraph applies to show that E(Hn+1|Fn) 6 (1 − δ/C1)Hn. Hence E(Hn) 6 (1 − δ/C1)

nµ
for all n.

On the event {K∗ ∩ Kn = K0}, the set K∗
n \ K0 has N connected components, and its

harmonic measure from ∞ in C \ K∗
n is Hn. Define P ′

1 = Γn(Pn+1). Then P ′
1 has the same

distribution as P1 and is independent of Fn. So the argument leading to (11) applies to give

P(K∗ ∩ Pn+1 6= ∅|Fn) = P(K∗
n ∩ P ′

1 6= ∅|Fn) 6 C1N
√

Hn.

Hence

P(K∗ ∩K∞ 6= K0) 6
∞
∑

n=0

P({K∗ ∩Kn = K0} ∩ {K∗ ∩ Pn+1 6= ∅})

6

∞
∑

n=0

C1NE(
√

Hn) 6 C2
1N

√
µ/δ.
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Write P̃ for the connected component of K̃ \ K̃0 near 0. Set

P̃n = Φ̃n−1(P̃ + iΘn), Ãn = Φ̃n−1(iΘn).

Then P̃n is a component of the 2πi-periodic set K̃n \ K̃n−1 and it is attached to K̃n−1 at
Ãn. For the next result, we shall use a further assumption on the particle P which allows
us to prove that none of the sets P̃n contain a certain size of fjord, even though they have
been distorted by the maps Φ̃n−1. The useful form of this assumption is expressed in terms
of harmonic measure. After stating this, we will give a geometrically more obvious sufficient
condition. We assume the following harmonic measure condition.

For all sequences (z1, w1, z2, w2) of points in ∂P , listed anticlockwise, and for any

interval I of ∂D0, if for i = 1 and i = 2 at least the 3/4 of the harmonic measure

on ∂D0 from wi is carried on I, then for either i = 1 or i = 2 at least 1/4 of the (12)

harmonic measure on ∂D0 from zi is carried on I.

This condition is implied by the following property of the image φ(P ), where φ is the
conformal map from D0 to the upper half-plane H0, as in footnote 4. For z = x + iy and
z′ = x′+ iy′ in H0, write S(z, z

′) for the smallest closed square in H0 containing all the points
x − y, x + y, x′ − y′, x′ + y′. Then the preceding harmonic measure condition is implied by
the following square condition. For all z, z′ ∈ ∂(φ(P )), at least one of the boundary arcs of
∂(φ(P )) from z to z′ is contained in S(z, z′). To see this, suppose I ⊆ R is an interval which
carries at least 3/4 of the harmonic measure on R starting from z, then (x − y, x + y) ⊆ I.
Hence, if the same is true for z′, then S(z, z′) ∩ R ⊆ I. Then, for any point w ∈ S(z, z′),
I carries at least 1/4 of the harmonic measure on R starting from w. We have used here
the fact that the harmonic measure on R starting from i places equal mass on the intervals
(−∞,−1), (−1, 0), (0, 1), (1,∞). It is easy to check the square condition for P = (1, 1+δ] and
P = {|z − 1 + δ/2| = δ/2}, when φ(P ) is also a slit or a disc.

Consider for ν ∈ [0,∞) the event

Ω(m, ε, ν) = {Re(z) > c(n ∧m)− εν for all z ∈ P̃n+1 and all n > 0} ∩ Ω(m, ε).

In conjunction with Proposition 5.1, the following estimate implies that, when m = ⌊δ−6⌋ and
ε = δ2/3 log(1/δ) and ν = (log(1/δ))2, the event Ω(m, ε, ν) has high probability as δ → 0.

Proposition 6.2. There exists an absolute constant C <∞ such that, for all ε ∈ [2δ, 1] and
ν ∈ [0,∞),

P(Ω(m, ε) \ Ω(m, ε, ν)) 6 Cm(m+ δ−1)e−ν/C .

Proof. We use the following Beurling estimate. There is an absolute constant A ∈ [1,∞) with
the following property. For any η ∈ (0, 1] and any connected set K in C joining the circles
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of radius η and 1 about 0, the probability that a complex Brownian motion, starting from 0,
leaves the unit disc without hitting K is no greater than A

√
η.

Fix n 6 m with εν 6 cn. Condition on Fn and on Ω(n, ε). For all z ∈ C with 0 6 Re(z) 6
cn, there exists w ∈ K̃n such that |z − w| 6 56ε. Set β = 56A2e2 and ν0 = ⌊ν/(2β)⌋. We
assume without loss that ν0 > 6. Define R(k) = cn − βεk and note that R(2ν0) > 0. Fix
k ∈ {0, 1, . . . , ν0 − 1} and z ∈ ℓR(k) and consider a complex Brownian motion B starting from

z. By the Beurling estimate, B hits ℓR(k+1) without hitting K̃n with probability no greater

than A
√

56/β = e−1. Then, by the strong Markov property, for all z ∈ ℓR(0), almost surely
on Ω(n, ε),

Pz(B hits ℓR(ν0) before K̃n|Fn) 6 e−ν0 6 e−ν/(2β)+1. (13)

There exists a family of disjoint open intervals ((θj, θ
′
j) : j = 1, . . . , Nn) in R/(2πZ) such that,

for wj = Φ̃n(iθj) and w′
j = Φ̃n(iθ

′
j), we have Re(wj) = Re(w′

j) = R(ν0) and
⋃

j(wj, w
′
j) +

2πiZ disconnects D̃n ∩ ℓR(2ν0) from ∞ in D̃n. We choose the unique such family minimizing
∑

j |wj − w′
j|. Then wj ∈ P̃k(j) for some k(j) 6 n for all j. We shall show that the integers

k(1), . . . , k(Nn) must all be distinct, so Nn 6 n.
Suppose k(j) = k(j′) = k0 + 1 for some distinct j and j′. Then there exist α < β < α′ <

β ′ < α+2π such that, for z = Φ̃k0+1(iα), z
′ = Φ̃k0+1(iα

′), w = Φ̃k0+1(iβ) and w
′ = Φ̃k0+1(iβ

′),
we have z, z′, w, w′ ∈ ∂P̃k0+1 and Re(z) = Re(z′) = R(2ν0) and Re(w) = Re(w′) = R(ν0).
Then, since we are on Ω(m, ε), we must have c(k0+1)+4ε > R(ν0), so ck0 > R(ν0)−4ε−c >
R(ν0 + 1). Hence there exists an interval I of ∂D̃k0 with endpoints p, p′ in ℓR(3ν0/2) such that

z, z′ are separated from ∂D̃k0 \ I by I ∪ [p, p′]. By a variation of the Beurling and strong
Markov argument above, all but e−ν0/2 of the harmonic measure on ∂D̃k0 starting from z is
carried on I, and the same is true for z′. Then, by conformal invariance of harmonic measure,
all but e−ν0/2+1 < 1/4 of the harmonic measure on iR starting from F̃k0+1(iα) is carried on
Γ̃k0(I), and the same is true for α′. So, by our harmonic measure condition, either more
than 1/4 of the harmonic measure on iR starting from F̃k0+1(iβ) is carried on Γ̃k0(I), or the
analogous statement holds for β ′. But, by the Beurling and strong Markov argument again,
no more than e−ν0/2+1 < 1/4 of the harmonic measure on ∂D̃k0 starting from w is carried on
I, and the same is true for w′. So, by conformal invariance, no more than 1/4 of the harmonic
measure on iR starting from F̃k0+1(iβ) is carried on Γ̃k0(I), and the same is true for β ′, a
contradiction.

Each path (Φ̃n(iθ) : θ ∈ (θj , θ
′
j)), together with the line segment [wj , w

′
j], forms the

boundary of a connected subset of D̃n. Denote by Sn the union of these subsets. Define
K∗

n = {eΓ̃n(z) : z ∈ Sn} ∪ K0 and D∗
n = (C ∪ {∞}) \ K∗

n. Then D∗
n is a simply connected

neighbourhood of ∞ in D0, the set K∗
n \K0 has Nn connected components and, by (13), the

harmonic measure from ∞ of K∗
n \K0 in D∗

n is no greater than e−ν/(2β)+1. So, on Ω(n, ε),

P((eiΘn+1P ) ∩K∗
n 6= ∅|Fn) 6 C1Nne

−ν/(4β)+1/2,
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where C1 is the absolute constant from Lemma 6.1. But, if eiΘn+1P does not meet K∗
n, then

Re(z) > cn − νε for all z ∈ P̃n+1. Of course this inequality holds also in the case where
cn < νε.

It remains to deal with the case where n > m+1. We may assume that ν > 2β log(16πe/δ)
or the estimate is trivial. Then, for µ = e−ν/(2β)+1, we have 16πµ 6 δ. So we can apply Lemma
6.1 with K∗ = K∗

m to obtain, on Ω(m, ε),

P(Re(z) 6 cm− εν for some z ∈ P̃n+1 and some n > m|Fm) 6 C1Nme
−ν/(4β)+1/2/δ.

The estimates we have obtained combine to prove the proposition.

Remark 6.3. An analogous result to Proposition 6.2 can be obtained by bounding the contri-
bution to the length of the cluster boundary made by each particle. This extends the class of
allowable basic particles beyond that specified by (12), but at the expense of a weaker bound
on the probability.

Suppose that (2) and (10) hold and that, in addition, ∂P is rectifiable, with length L, and
is given by β : [0, L] → ∂P , where the parametrization is by arc length. We assume further
that β is piecewise differentiable in such a way that there exist C(δ) ∈ (0,∞), k(δ) ∈ N and
0 = a0 < a1 < · · · < ak(δ) = L such that ri : (ai, ai+1) → (1, 1 + δ) given by ri(t) = |β(t)| is
differentiable with |r′i(t)| > C(δ) on (ai, ai+1) for all i = 0, . . . , k(δ)−1. Set r(δ) = k(δ)/C(δ).
Let ℓ̃n+1 be the contribution to the length of the boundary of ∂K̃n+1 that comes from particle
P̃n+1. Then

ℓ̃n+1 =

∫ L

0

|Φ′
n(β(t)e

iΘn+1)|
|Φn(β(t)eiΘn+1)|dt.

So, by a similar argument to that in the proof of Theorem 4 of [16],

E(ℓ̃n+1|Kn) =

k(δ)−1
∑

i=0

∫ 2π

0

∫ ai+1

ai

|Φ′
n(ri(t)e

iθ)|
|Φn(ri(t)eiθ)|

dtdθ

6 r(δ)

∫ 2π

0

∫ 1+δ

1

|Φ′
n(re

iθ)|
|Φn(reiθ)|

drdθ

6 C1r(δ)(cnδ)
1/2,

for some absolute constant C1 <∞. Therefore, if Nn is defined as in the proof of Proposition
6.2, for all ζ > 0, P(Nn > ζ) 6

∑n
j=1 P(ℓ̃j > ζνεn−1) 6 C1r(δ)δ

3/2n5/2/(ζνε). Hence, there
exists some absolute constant C <∞ such that

P(Ω(m, ε) \ Ω(m, ε, ν)) 6 Cζ(m+ δ−1)e−ν/C + Cr(δ)δ3/2m7/2/(ζνε).

On optimizing over ζ , it can be shown that there exists another absolute constant C < ∞
such that

P(Ω(m, ε) \ Ω(m, ε, ν)) 6 Cr(δ)1/2m7/4δ3/4ν−1/2ε−1/2(m+ δ−1)1/2e−ν/C .
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Define for z ∈ D̃0

N(z) = inf{n > 0 : z 6∈ D̃n}.
Denote by Ω(m, ε, ν, η) the subset of Ω(m, ε, ν) defined by the following condition: for all
z ∈ D̃0 ∩ K̃∞ with N(z) 6 m and all n 6 N(z)− 1, we have

| Im(Γ̃n(z)− z)| < ε+ 2η.

In conjunction with Propositions 5.1 and 6.2, the following estimate implies that, when m =
⌊δ−6⌋ and ε = δ2/3 log(1/δ) and ν = (log(1/δ))2 and η = δ2/3(log(1/δ))6, the event Ω(m, ε, ν, η)
has high probability as δ → 0.

Proposition 6.4. There is an absolute constant C < ∞ such that, for all ε ∈ [2δ, 1/6],
ν ∈ [0,∞) and η ∈ (0,∞),

P (Ω(m, ε, ν) \ Ω(m, ε, ν, η)) 6 Cm

η
exp

{

− η

Cδ
+
Cνεδ

c
(1 + log (1/δ))

}

.

Proof. Fix z ∈ D̃0 ∩ K̃∞ with N(z) 6 m. Write N0(z) for the maximum of 0 and the largest
integer such that cN0(z) 6 Re(z) − 4ε. Write N1 for the smallest integer such that cN1 >

(ν+4)ε. Then, on Ω(m, ε, ν), we have N(z)−1 6 N0(z)+N1 and, since Ω(m, ε, ν) ⊆ Ω(m, ε),
we have also | Im(Γ̃k(z)− z)| < ε for all k 6 N0(z).

We showed in Proposition 4.3 that, for some absolute constant C1 < ∞, for α = C1δ and
for all z ∈ D̃0 with Re(z) 6 1,

Im(G̃(z)) 6 g∗(Im(z))

where g∗(θ) = θ + g∗0(θ) and g
∗
0 is the 2π-periodic function given by

g∗0(θ) =
α2

|θ| ∨ α, θ ∈ (−π, π].

Then, for N0(z) 6 n 6 N(z)− 1,

Im(Γ̃n(z)) 6 Y (n0,y0)
n

where n0 = N0(z), y0 = Im(Γ̃n0
(z)) and where, recursively for n > n0, Yn = Y

(n0,y0)
n is defined

by
Yn0

= y0, Yn+1 = g∗(Yn −Θn+1) + Θn+1 = g∗0(Yn −Θn+1) + Yn.

Note that Re(Γn(z)) 6 Re(Γn0
(z)) 6 |Re(Γn0

) − Re(z) + cn0| + Re(z) − cn0 < 5ε + c < 1.

Hence, g∗0 is non-negative and g∗ is non-decreasing, so Y
(n0,y0)
n is non-decreasing in n and y0.

Set M = ⌈2π/η⌉ and h = 2π/M so that h 6 η. Consider the set of time-space starting
points

E = {(n0, jh) : n0 ∈ {0, 1, . . . , m}, j ∈ {0, 1, . . . ,M − 1}}
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and the event
Ω0 = {Y (n0,jh)

n0+N1
6 jh+ η for all (n0, jh) ∈ E}.

Note that |E| 6 Cm/η, so
P(Ω \ Ω0) 6 CmP(YN1

> η)/η

where Y = Y (0,0). Now

E(eY1/α) =
1

2π

∫ π

−π

eg
∗

0(θ)/αdθ = 1+
α(e− 1)

π
+

1

π

∫ π

α

(eα/θ−1)dθ 6 exp{(αe/π)(1+ log(π/α))}

so
P(YN1

> η) 6 exp{−η/α + (N1αe/π)(1 + log(π/α))}.
Choose j ∈ {1, . . . ,M} so that (j − 1)h 6 y0 6 jh. Then, for n 6 N(z)− 1, on Ω0,

Im(Γ̃n(z)) 6 Y (n0,jh)
n 6 jh+ η 6 Im(Γ̃n0

(z)) + 2η 6 Im(z) + ε+ 2η.

A similar argument allows us to bound the downward variation of Im(Γ̃n(z)) up to N(z)− 1.
Hence P(Ω(m, ε, ν) \ Ω(m, ε, ν, η) 6 2P(Ω \ Ω0) which gives the claimed estimate.

Theorem 6.5. Assume that the basic particle P satisfies conditions (2),(10) and (12). Con-
sider for ε0 ∈ (0, 1] and m ∈ N the event Ω[m, ε0] specified by the following conditions: for all
n 6 m and all n′ > m+ 1,

|z − ecn+iΘn| 6 ε0e
cn for all z ∈ Pn

and
dist(w,Kn) 6 ε0e

cn whenever |w| 6 ecn

and
|z| > (1− ε0)e

cm for all z ∈ Pn′.

Assume that ε0 = δ2/3(log(1/δ))8 and m = ⌊δ−6⌋. Then P(Ω[m, ε0]) → 1 uniformly in P as
δ → 0.

Proof. Set ε = δ2/3 log(1/δ) and ν = (log(1/δ))2 and η = δ2/3(log(1/δ))6. We have shown that
the event Ω(m, ε, ν, η) has high probability as δ → 0. We complete the proof by showing that,
for δ sufficiently small, the defining conditions for Ω[m, ε0] are all satisfied on Ω(m, ε, ν, η).

Fix n 6 m and z ∈ P̃n. On Ω(m, ε) we have Re(z) < cn+4ε and, restricting to Ω(m, ε, ν),
we have also Re(z) > c(n−1)−νε. Restricting further to Ω(m, ε, ν, η), we have | Im(Γ̃n−1(z)−
z)| < ε + 2η. But Γ̃n−1(z) ∈ P̃ + 2πiΘn, so |Γ̃n−1(z) − 2πiΘn| 6 δ. Hence, on Ω(m, ε, ν, η),
we have (since ν > 4)

|ez − ecn+2πiΘn| 6 ecn(eνε+c − 1) + ecn+νε+c(ε+ 2η + δ).
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We can choose δ sufficiently small that

(eνε+c − 1) + eνε+c(ε+ 2η + δ) 6 ε0.

Then on Ω(m, ε, ν, η) we have, for all z ∈ Pn,

|z − ecn+2πiΘn| 6 ε0e
cn.

Next, using (9), for 0 6 Re(w) 6 cn, on Ω(m, ε), there exists z ∈ K̃n with |z − w| 6 56ε.
Then ez ∈ Kn and

|ez − ew| 6 56εecn+4ε.

We can choose δ sufficiently small that

56εe4ε 6 ε0.

Then dist(w,Kn) 6 ε0e
cn whenever |w| 6 ecn and n 6 m.

Finally, for n > m + 1 and z ∈ P̃n, on Ω(m, ε, ν), we have Re(z) > cm − νε. Hence
|w| > ecm−νε > (1− ε0)e

cm for all w ∈ Pn.

7 Weak convergence of the localized disturbance flow

to the coalescing Brownian flow

We review in this section the main results of [15]. Denote by D̄ the set of all pairs f =
{f−, f+}, where f+ is a right-continuous, non-decreasing function on R and where f− is
the left-continuous modification of f+. Denote by D the subset of those f ∈ D̄ such that
x 7→ f+(x)− x is periodic of period 2π. Write id for the identity function id(x) = x and, for
f ∈ D̄, write f±

0 for the periodic functions f± − id. Denote by D∗ the subset of D where f0
is not identically zero but has zero mean

1

2π

∫ 2π

0

f0(x)dx = 0.

Here and below, we drop the ± where the quantity computed takes the same value for both
versions. Fix f ∈ D∗ and define ρ = ρ(f) ∈ (0,∞) by

ρ

2π

∫ 2π

0

f0(x)
2dx = 1.
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Let (Θn : n ∈ Z) be a sequence of independent random variables, all uniformly distributed
on [0, 2π). Define for each non-empty bounded interval I ⊆ R a pair of random functions
ΦI = {Φ−

I ,Φ
+
I } by

Φ±
I = f±

Θn
◦ · · · ◦ f±

Θm

where f±
θ (x) = f±(x − θ) + θ and where m and n are, respectively, the smallest and largest

integers in the rescaled interval ρI. If ρI ∩ Z = ∅ then ΦI = id. Write I = I1 ⊕ I2 if I1, I2 are
disjoint intervals with sup I1 = inf I2 and I = I1 ∪ I2. Note that the family Φ = (ΦI : I ⊆ R)
has the following flow property

Φ±
I2
◦ Φ±

I1
= Φ±

I , whenever I = I1 ⊕ I2. (14)

Moreover (see [15]), almost surely, for all I, Φ−
I is the left-continuous modification of Φ+

I , so
ΦI = {Φ−

I ,Φ
+
I } ∈ D. We call Φ the disturbance flow with disturbance f . For ε ∈ (0, 1], we

make the diffusive rescaling

Φε,±
I (x) = ε−1Φ±

ε2I(εx), x ∈ R

and call (Φε
I : I ⊆ R) the ε-scale disturbance flow with disturbance f .

In order to formulate a weak convergence result about these disturbance flows, we introduce
metrics on D and D̄ and then we define certain metric spaces which will serve as state-spaces
for Φ and Φε. First, define for f, g ∈ D

dD(f, g) = inf{ε > 0 : f+(x) 6 g+(x+ ε) + ε and g+(x) 6 f+(x+ ε) + ε for all x ∈ R}.

For f, g ∈ D̄, define

dD̄(f, g) =
∞
∑

n=1

2−n(dn(f, g) ∧ 1)

where

dn(f, g) = inf{ε > 0 : f+(x) 6 g+(x+ε)+ε and g+(x) 6 f+(x+ε)+ε for all x ∈ [−n, n− ε]}.

Then dD is a metric on D and the metric space (D, dD) is complete. In fact (D, dD) is isometric
to the set of periodic contractions on R with period 2π, with supremum metric, by drawing
new axes for the graph of f ∈ D at a rotation of π/4. Also, dD̄ is a metric on D̄ and the
metric space (D̄, dD̄) is complete. See [15].

Consider now a family φ = (φI : I ⊆ R), where φI ∈ D and I ranges over all non-empty
bounded intervals. Say that φ is a weak flow if,

φ−
I2
◦ φ−

I1
6 φ−

I 6 φ+
I 6 φ+

I2
◦ φ+

I1
, whenever I = I1 ⊕ I2. (15)
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Say that φ is cadlag if, for all t ∈ R,

dD(φ(s,t), id) → 0 as s ↑ t and dD(φ(t,u), id) → 0 as u ↓ t.

We write D◦(R,D) for the set of all cadlag weak flows. For the disturbance flow Φ, almost
surely, for all t ∈ R, for all sufficiently small ε > 0, we have Φ(t−ε,t) = Φ(t,t+ε) = id. So Φ takes
values in D◦(R,D). Define similarly D◦(R, D̄) and note that Φε takes values in D◦(R, D̄).

Fix φ ∈ D◦(R,D) and suppose that φ{t} = id for all t ∈ R. Then φ(s,t) = φ(s,t] = φ[s,t) =
φ[s,t] for all s, t ∈ R with s < t. Denote all these functions by φts and set φtt = id for all t ∈ R.
The map

(s, t) 7→ φts : {(s, t) ∈ R
2 : s 6 t} → D

is then continuous. We write C◦(R,D) for the set of such continuous weak flows φ and we
write C◦(R, D̄) for the analogous subset in D◦(R, D̄).

We can and do make D◦(R,D) and D◦(R, D̄) into complete separable metric spaces by
the choice of Skorokhod-type metrics, both denoted dD. The metrics dD have the following
two further properties. The associated Borel σ-algebras coincide with those generated by
the evaluation maps φ 7→ φ+

I (x) as x ranges over R and I ranges over bounded intervals in
R. Moreover, for any sequence (φn : n ∈ N) in D◦(R,D) and any φ ∈ C◦(R,D), we have
dD(φ

n, φ) → 0 if and only if dD(φ
n
I , φI) → 0 uniformly over subintervals I of compact sets in R.

In particular, C◦(R,D) is closed in D◦(R,D). Analogous statements hold in the non-periodic
case. However, the flow property (14) is not preserved under limits in dD. We refer to [15] for
the specification of dD.

The disturbance flow Φ with disturbance f is then a D◦(R,D)-valued random variable,
and the law of Φ is a Borel probability measure on D◦(R,D), which we denote by µf

A. The
ε-scale disturbance flow Φε is a D◦(R, D̄)-valued random variable, so the law of Φε is a Borel
probability measure on D◦(R, D̄), which we denote by µf,ε

A .
For e = (s, x) ∈ R2 and φ ∈ D◦(R,D), the maps

t 7→ φ−
(s,t](x) : [s,∞) → R, t 7→ φ+

(s,t](x) : [s,∞) → R

are cadlag. Hence we obtain a measurable maps Ze = Ze,+ and Ze,− on D◦(R,D) with values
in De = Dx([s,∞),R) by setting

Ze,±(φ) = (φ±
(s,t](x) : t > s).

The restrictions of Ze,± to C◦(R,D) then take values in Ce = Cx([s,∞),R). We define a
filtration (Ft)t>0 on D◦(R,D) by

Ft = σ(Ze
r : e = (s, x) ∈ R

2, r ∈ (−∞, t] ∩ [s,∞))
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and, for e = (s, x), e′ = (s′, x′) ∈ R2, we write T ee′ for the collision time

T ee′ = inf{t > s ∨ s′ : Ze
t − Ze′

t ∈ 2πZ}.

We make the same definitions for φ ∈ D◦(R, D̄), except to define as collision time

T̄ ee′ = inf{t > s ∨ s′ : Ze
t = Ze′

t }.

The space C◦(R,D) is a convenient state-space for the coalescing Brownian flow on the
circle where it has the following characterization (see [15, Theorem 6.1]). There exists a unique
Borel probability measure µA on C◦(R,D) such that, for all e = (s, x), e′ = (s′, x′) ∈ R2, the
processes (Ze

t )t>s and (Ze
tZ

e′

t −(t−T ee′)+)t>s∨s′ are continuous local martingales in the filtration
(Ft)t∈R. Moreover, for all e ∈ R

2, we have, µA-almost surely, Ze,+ = Ze,−.
Similarly, the space C◦(R, D̄) is a state-space for the coalescing Brownian flow (on the

line). There exists a unique Borel probability measure µ̄A on C◦(R, D̄) such that, for all
e = (s, x), e′ = (s′, x′) ∈ R

2, the processes (Ze
t )t>s and (Ze

tZ
e′

t −(t−T̄ ee′)+)t>s∨s′ are continuous
local martingales in the filtration (Ft)t∈R. Moreover, for all e ∈ R2, we have, µ̄A-almost surely,
Ze,+ = Ze,−.

We consider a limit where f becomes an increasingly well-localized perturbation of the
identity map. We quantify this localization in terms of the smallest constant λ = λ(f, ε) ∈
(0, 1] such that

ρ

2π

∫ 2π

0

|f0(x+ a)f0(x)|dx 6 λ, a ∈ [ελ, 2π − ελ].

We can now state Theorem 6.1 from [15]. We have

µf
A → µA weakly on D◦(R,D) uniformly in f ∈ D∗ as ρ(f) → ∞ and λ(f, 1) → 0 (16)

and

µf,ε
A → µ̄A weakly on D◦(R, D̄) uniformly in f ∈ D∗as ε→ 0

with ε3ρ(f) → ∞ and λ(f, ε) → 0. (17)

8 The harmonic measure flow

We return to the aggregation model. We assume throughout this section that condition (2)
holds. The boundary ∂Kn of the cluster Kn has a canonical parametrization by [0, 2π) given
by θ 7→ Φn(e

iθ). For θ1 < θ2, the normalized harmonic measure (from ∞) of the positively
oriented boundary segment from Φn(e

iθ1) to Φn(e
iθ2) is then (θ2 − θ1)/(2π). We consider the

related parametrization θ 7→ Φ̃n(iθ) : R → ∂K̃n. For m 6 n, each point z ∈ ∂K̃n has a
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unique ancestor point Amn(z) ∈ ∂K̃m, which is either z itself or the point of ∂K̃m to which the
particle containing z is attached, possibly through several generations. On the other hand,
each point in z ∈ ∂K̃m, except those points where particles are attached, has a unique escape
point Emn(z) ∈ ∂K̃n, which is either z itself or is connected to z by a minimal path in K̃n,
subject to not crossing any particles nor passing through any attachment points. If P is
attached at a single point, then Emn(z) = z for all z ∈ ∂K̃m. These definitions are illustrated
in Figure 4.

2 πi

0

z

E   (z)

w

mn

A   (w)mn

x = E   (x) mn

= A   (x)mn

Figure 4: Diagram illustrating ancestor points Amn(z) ∈ ∂K̃m for z ∈ ∂K̃n and escape points
Emn(z) ∈ ∂K̃n for z ∈ ∂K̃m, where K̃m is shown in red, K̃n \ K̃m is shown in white, and
attachment points are shown in blue.

We define the forwards and backwards harmonic measure flows on R, respectively, for
0 6 m < n by

ΦP
nm(x) = −iΓ̃n ◦ Enm ◦ Φ̃m(ix), ΦP

mn(x) = −iΓ̃m ◦ Amn ◦ Φ̃n(ix). (18)

We shall show that, when embedded suitably in continuous-time, these flows converge weakly
to the coalescing Brownian flow, as the diameter δ of the basic particle P tends to 0. Then, in
the same limiting regime, we shall deduce the behaviour of fingers and gaps in the aggregation
model.

First we give an alternative presentation of the flows. Recall the functions g+ and f+

defined at (5) and write g− and f− for their left-continuous versions. Then g = {g−, g+} ∈ D
and f = {f−, f+} = g−1. Since P is non-empty and is invariant under conjugation, g is
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not the identity function but is an odd function. Hence g ∈ D∗. Recall that the sequence
of clusters (Kn : n > 0) is constructed from a sequence of independent random variables
(Θn : n ∈ N), uniformly distributed on [0, 2π). Define fθ, gθ ∈ D for θ ∈ [0, 2π) as in Section
7. Then define for 0 6 m < n

ΦP,±
nm = g±Θn

◦ · · · ◦ g±Θm+1
, ΦP,±

mn = f±
Θm+1

◦ · · · ◦ f±
Θn
.

We can check (just as for the disturbance flow) that, almost surely, ΦP
nm = {ΦP,−

nm ,Φ
P,+
nm } ∈ D

and ΦP
mn = {ΦP,−

mn ,Φ
P,+
mn } ∈ D, with (ΦP

mn)
−1 = ΦP

nm. Moreover, a straightforward induction
shows that this definition agrees with the more geometric formulation in (18).

In formulating a limit statement, it is convenient to embed the harmonic measure flow in
continuous time. We do this in two ways. For a bounded interval I ⊆ [0,∞), set ΦP

I = ΦP
nm,

where m + 1 and n are respectively the smallest and largest integers in ρI. We set ΦP
I = id

if there are no such integers. Then (ΦP
I : I ⊆ [0,∞)) takes values in D◦([0,∞),D). Set

δ∗ = (ρc)−1 and define Φ̄P
I (x) = (δ∗)−1/2ΦP

n̄m̄((δ
∗)1/2x), where m̄ + 1 and n̄ are the smallest

and largest integers in c−1I. Then (Φ̄P
I : I ⊆ [0,∞)) takes values in D◦([0,∞), D̄).

Theorem 8.1. Assume that the basic particle P satisfies condition (2). Then the harmonic
measure flow (ΦP

I : I ⊆ [0,∞)) converges weakly in D◦([0,∞),D) to the coalescing Brownian
flow on the circle, uniformly in P as δ → 0. Moreover, the rescaled harmonic measure flow
(Φ̄P

I : I ⊆ [0,∞)) converges weakly in D◦([0,∞), D̄) to the coalescing Brownian flow on the
line.

Proof. The flow (ΦP
I : I ⊆ [0,∞)) is a disturbance flow with disturbance g and (Φ̄P

I : I ⊆
[0,∞)) is an ε-scale disturbance flow with disturbance g, where ε =

√
δ∗. From Corollary 4.2

we know that δ2/6 6 c 6 3δ2/4 and from Proposition 4.3, we have δ−3/C 6 ρ 6 Cδ−3. Hence
δ∗ = (ρc)−1 satisfies δ/C 6 δ∗ 6 Cδ for an absolute constant C < ∞. In particular ρ → ∞
and ε → 0 and ε3ρ > δ−3/2/C → ∞ as δ → 0. Also, from Proposition 4.3, for a ∈ [δ, π], we
have

ρ

2π

∫ 2π

0

|g0(θ)g0(θ + a)|dθ 6 Cδ

a
log

(

1

δ

)

so λ(g, 1) 6 λ(g, ε) → 0 as δ → 0. The result thus follows from (16) and (17).

We can now deduce the limiting joint distribution of fingers and gaps. Recall that S
denotes the space of locally compact subsets of [0,∞)× R, equipped with a local Hausdorff
metric. We have fixed T > 0 and a finite subset E of [0, T ]×R. Recall that we study the cluster
KN and have introduced in Section 3 associated path-like random sets finger(z) and gap(z),
along with rescaled sets F(e), F̄(e),G(e) and Ḡ(e). Write µP

E for the law of (F(e),G(e) : e ∈ E)
when N = ⌊ρT ⌋, considered as a random variable in (SE)2. Similarly, write µ̄P

E for the law
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of (F̄(e), Ḡ(e) : e ∈ E) when N = ⌊c−1T ⌋. Write µE for the law on (SE)2 of the family of
random sets

({(t,Φts(e)(x(e))) : t ∈ [0, s(e)]}, {(t,Φt∧T,s(e)(x(e))) : t > s(e)} : e ∈ E)

where Φ is a coalescing Brownian flow on the circle and where we set Φst = Φ−1
ts for s 6 t.

Write also µ̄E for the corresponding law when we replace Φ by a coalescing Brownian flow Φ̄
on the line.

Theorem 8.2. Assume that the basic particle P satisfies conditions (2),(10) and (12). Then
µP
E → µE and µ̄P

E → µ̄E weakly on (SE)2, uniformly in P as δ → 0.

Proof. We consider first the long time case. Given ε0 > 0, there exist ε > 0 and ε′ ∈ (0, ε/3]
such that, for any coalescing Brownian flow Φ = (Φts : 0 6 s 6 t 6 T ) on the circle, with
probability exceeding 1− ε0/3, for all e ∈ E and all t ∈ [0, T ], we have

Φts(e)(x(e))− ε0 6 Φts(e)(x(e)− 5ε)− 5ε, Φts(e)(x(e) + 5ε) + 5ε 6 Φts(e)(x(e)) + ε0

and, for all s, s′, t, t′ ∈ [0, T ] with |s− s′|, |t− t′| 6 3ε′ and all x ∈ R

Φts(x) 6 Φt′s′(x+ ε) + ε.

Note that these conditions imply 5ε 6 ε0. Here we have used some standard estimates
for Brownian motion and the fact that the map (s, t) 7→ Φts : [0, T ]2 → D is uniformly
continuous, almost surely. Here and below such inequalities are each to be understood as a
pair of inequalities, one for left-continuous versions and the other for right-continuous versions.

Then, by Theorem 8.1, and using a standard result on weak convergence, there exists a
δ0 > 0 such that, for all δ ∈ (0, δ0] and all basic particles P satisfying (2), for N = ⌊ρT ⌋, we
can construct, on some probability space, an HL(0) process ΦP = (ΦP

n : n 6 N) with basic
particle P and a coalescing Brownian flow Φ = (Φts : 0 6 s 6 t 6 T ) on the circle with the
following property. With probability exceeding 1− ε0/3, for all 0 6 m < n 6 N , for t = m/ρ
and s = n/ρ, and for all x ∈ R, we have

Φts(x− ε)− ε 6 ΦP
mn(x) 6 Φts(x+ ε) + ε.

Here (ΦP
mn : 0 6 m < n 6 N) is the backwards harmonic measure flow of ΦP (which

determines (Θn : 1 6 n 6 N) and hence ΦP uniquely).
Moreover, by Theorem 6.5, we may choose δ0 so that, with probability exceeding 1− ε0/3,

for all e ∈ E, writing z(e) = σ−1(e) = s(e)/δ∗ + ix(e) and σ(p0(z(e))) = (s0, x0), we have

|s0 − s(e)| 6 ε′/3, |x0 − x(e)| 6 ε

31



and, for all (s, x) ∈ [0, T ]× R, there exists w ∈ K̃N such that σ(w) = (t, y) satisfies

|s− t| 6 ε′/3, |x− y| 6 ε

and, for all n 6 N − 1 and all z ∈ P̃n+1, σ(z) = (s, x) satisfies

|s− n/ρ| 6 ε′/3, |x−Θn+1| 6 ε.

From this point on, we condition on the good event Ω0 of probability exceeding 1−ε0 where
all of the properties discussed above hold. Suppose that we fix j, k ∈ Z and m,n 6 N −1 and
w ∈ P̃m+1 +2πij and z ∈ P̃n+1 + 2πik, with P̃m+1 + 2πij an ancestor particle of P̃n+1 +2πik.
Write σ(w) = (t, y) and σ(z) = (s, x). Then we must have m = ρt′ 6 n = ρs′, with
|s− s′|, |t− t′| 6 ε′/3 and |y− (Θm+1 +2πj)|, |x− (Θn+1 +2πk)| 6 ε. Now ΦP

mn is continuous
and

Θm+1 + 2πj = ΦP
mn(Θn+1 + 2πk)

so

y 6 Θm+1 + 2πj + ε = ΦP
mn(Θn+1 + 2πk) + ε

6 Φt′s′(Θn+1 + 2πk + ε) + 2ε 6 Φt′s′(x+ 2ε) + 2ε 6 Φts(x+ 3ε) + 3ε.

and by a similar argument also y > Φts(x − 3ε) − 3ε. Here we have extended Φ by setting
Φts = Φt∧T,s∧T .

Fix e ∈ E and (t, y) ∈ F(e). Write (t, y) = σ(w) and P̃0(z(e)) = P̃n+1 + 2πik. We can
choose z ∈ P̃0(z(e)) with σ(z) = (s, x) and |s−s(e)| 6 ε′/3 and |x−x(e)| 6 ε. Set u = t∧s(e).
Then w and z are related as in the preceding paragraph and

t 6 t′ + ε′/3 6 s′ + ε′/3 6 s+ 2ε′/3 6 s(e) + ε′ 6 s(e) + ε0

so |t− u| 6 ε′. Hence

y 6 Φts(x+ 3ε) + 3ε 6 Φus(e)(x+ 4ε) + 4ε 6 Φus(e)(x(e) + 5ε) + 5ε 6 Φus(e)(x(e)) + ε0

and similarly
y > Φus(e)(x(e))− ε0.

Since (t, y) was arbitrary, we have shown that

F(e) ⊆ {(t, y) : t ∈ [0, s(e)] and |y − Φts(e)(x(e))| 6 ε0}
∪ {(t, y) : t ∈ [s(e), s(e) + ε0] and |y − x(e)| 6 ε0}

and, since F(e) is a connected set joining (s, x) to the imaginary axis, this implies for the
Hausdorff metric dH that

dH(F(e), {(t,Φts(e)(x(e))) : 0 6 t 6 s(e)}) 6 2ε0.
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We complete the proof by obtaining an analogous estimate for G(e). Recall that G(e) =
{σ(pτ ) : τ > 0} where p = p(z(e)) is the minimal length gap path starting from p0(z(e)), the
closest point to z(e) which is not in the interior of K̃N . Write σ(p0(z(e))) = (s0, x0).

First we show that minimal gap paths cannot backtrack too much. Suppose that t <
s(e)− ε′ and p makes an excursion left of the line {t/δ∗+ iy : y ∈ R}, with endpoints w−, w+,
say. Then the open line segment (w−, w+) must contain a point of K̃N , say w ∈ P̃m+1 +2πij.
Set σ(w) = (t, y). Then, since p cannot cross K̃N , there must exist z ∈ P̃n+1 + 2πik, an
ancestor particle of P̃m+1 + 2πij, with σ(z) = (s, x), say, and s > s0. But then

s(e) 6 s0 + ε′/3 6 s+ ε′/3 6 n/ρ+ 2ε′/3 6 m/ρ+ 2ε′/3 6 t+ ε′ < s(e)

which is impossible. Hence there is no such excursion and so

G(e) ⊆ {(s, x) : s > s(e)− ε′, x ∈ R}.

Consider (t, y) = σ(w) with w ∈ P̃m+1 + 2πij and m 6 N − 1 and t > s(e) − 3ε′ and
y > Φvs(e)(x(e))+ε0, where v = s(e)∨ t∧T . Note that t 6 T +ε′/3 and |v− t| 6 3ε′. Suppose

(s, x) = σ(z) with z ∈ P̃n+1 + 2πik and |s− s(e)| 6 ε′ and where P̃n+1 + 2πik is an ancestor
particle of P̃m+1 + 2πij. Then

x > Φst(y − 3ε)− 3ε > Φs(e)v(y − 4ε)− 4ε > x(e) + ε.

Hence F(t, y) does not meet the vertical half-line {(s0, x) : x 6 x0}.
Define

Φ(e) = {(t,Φt∧T,s(e)(x(e))) : t > s(e)}
and set I = [s(e)− 2ε′, T ]. There exists a continuous function (y(t) : t ∈ I) such that, for all
t ∈ I, setting v = s(e) ∨ t ∧ T , we have

y(t) > Φvs(e)(x(e)), d((t, y(t)),Φ(e)) = ε0 + ε+ 5ε′.

Define recursively a sequence τ0, . . . , τM by setting τ0 = s(e)−2ε′ and then taking τn+1 as the
supremum of the set

{τ ∈ [τn, T ] : |(τ, y(τ))− (τn, y(τn))| = ε′}
until n = M − 1 when this set is empty and we set τM = T . For n = 0, 1, . . . ,M , choose
wn ∈ K̃N with σ(wn) = (tn, yn) and |tn−τn| 6 ε′ and |yn−y(τn)| 6 ε. Note that t0 6 s(e)−ε′
and tM > T − ε′ and tn ∈ [s(e)− 3ε′, T + ε′] for all n. Set

B0 =
M−1
⋃

n=0

[wn, wn+1), B1 = {t/δ∗ + iyM : t > tM}, B = B0 ∪ B1.
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Then, for any w ∈ B0, for (t, y) = σ(w), we have |(t, y)− (τn, y(τn))| 6 ε+ 2ε′ for some n, so
ε0 + 3ε′ 6 d((t, y),Φ(e)) 6 ε0 + 2ε+ 7ε′ and so y > Φvs(e)(x(e)) + ε0, where v = s(e) ∨ t ∧ T .
The final inequality obviously extends to B.

Suppose p crosses B, and does so for the first time at τ(1). Consider first the case where
pτ(1) ∈ [wn, wn+1). Then, since wn and wn+1 are both connected to the imaginary axis in K̃N

and p cannot cross K̃N , it must eventually hit [wn, wn+1] again after τ(1), at time τ(2) say,
except possibly if pτ(1) = wn. If the open line segment (pτ(1), pτ(2)) contains a point w ∈ K̃N

with σ(w) = (t, y), then for all z ∈ finger(w) with σ(z) = (s, x) and |s − s(e)| 6 ε′ we have
x > x(e) + ε′. But this is impossible because w is disconnected from the imaginary axis by
{s0/δ∗ + ix : x 6 x0} ∪ {pτ : τ > 0}. Hence (pτ(1), pτ(2)) ⊆ D̃N , so pτ ∈ [pτ(1), pτ(2)] for all
τ ∈ (τ(1), τ(2)), contradicting our crossing assumption. In the case pτ(1) = wn, if p does not
return to [wn, wn+1], then it must hit [wn−1, wn] instead and this also leads to a contradiction
by a similar argument. The case where pτ(1) ∈ B1 also leads to a contradiction of minimality
by a similar argument. Hence p never crosses B. So, for all (t, y) ∈ G(e) with y > Φvs(e)(x(e)),
we have d((t, y),Φ(e)) 6 ε0 + 2ε + 7ε′ 6 2ε0. A similar argument establishes this estimate
also in the case y 6 Φvs(e)(x(e)). Since G(e) is a connected set joining (s0, x0) to {T} × R,
this implies

dH(G(e),Φ(e)) 6 2ε0.

We turn now to the local fluctuations. The argument is mainly similar. It becomes crucial
that Theorem 6.5 provides approximation on a scale just larger than δ2/3, allowing us to
transfer fluctuation results from Theorem 8.1 at scale δ1/2 to the cluster. There is also some
loss of compactness in the local limit which requires attention.

Given 0 < ε0 < 1/3, there exist ε > 0 and R ∈ [1,∞) and ε′ ∈ (0, ε/3] such that, for any
coalescing Brownian flow Φ̄ = (Φ̄ts : 0 6 s 6 t 6 T ) on the line, with probability exceeding
1− ε0/3, for all e ∈ E and all t ∈ [0, T ], we have

|Φ̄ts(e)(x(e))| 6 R

and

Φ̄ts(e)(x(e))− ε0 6 Φ̄ts(e)(x(e)− 5ε)− 5ε, Φ̄ts(e)(x(e) + 5ε) + 5ε 6 Φ̄ts(e)(x(e)) + ε0

and, for all s, s′, t, t′ ∈ [0, T ] with |s− s′|, |t− t′| 6 3ε′ and all |x| 6 2R

Φ̄ts(x) 6 Φ̄t′s′(x+ ε) + ε.

Uniform continuity of the map (s, t) 7→ Φ̄ts : [0, T ]
2 → D̄ now provides only local estimates in

x, hence the need for the cut-off R.
Then, by Theorem 8.1, there exists a δ0 > 0 such that, for all δ ∈ (0, δ0] and all basic

particles P satisfying (2), for N = ⌊c−1T ⌋, we can construct, on some probability space, an
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HL(0) process ΦP = (ΦP
n : n 6 N) with basic particle P and a coalescing Brownian flow

Φ̄ = (Φ̄ts : 0 6 s 6 t 6 T ) on the line with the following property. Write (ΦP
mn : 0 6 m < n 6

N) for the backwards harmonic measure flow of ΦP and set Φ̄P
mn(x) = (δ∗)−1/2ΦP

mn((δ
∗)1/2x).

With probability exceeding 1 − ε0/3, for all 0 6 m < n 6 N , for t = cm and s = cn, and for
all |x| 6 2R, we have

Φ̄ts(x− ε)− ε 6 Φ̄P
mn(x) 6 Φ̄ts(x+ ε) + ε.

Moreover, by Theorem 6.5, we may choose δ0 so that, with probability exceeding 1− ε0/3,
for all e ∈ E, writing z(e) = σ̄−1(e) = s(e) + i(δ∗)1/2x(e) and σ̄(p0(z(e))) = (s0, x0), we have

|s0 − s(e)| 6 ε′/3, |x0 − x(e)| 6 ε

and, for all s ∈ [0, T ] and all x ∈ R, there exists w ∈ K̃N such that σ̄(w) = (t, y) satisfies

|s− t| 6 ε′/3, |x− y| 6 ε

and, for all n 6 N − 1 and all z ∈ P̃n+1, σ̄(z) = (s, x) satisfies

|s− cn| 6 ε′/3, |x−Θn+1/
√
δ∗| 6 ε.

From this point on, we condition on the good event Ω0 of probability exceeding 1−ε0 where
all of the properties discussed above hold. Suppose that we fix j, k ∈ Z and m,n 6 N −1 and
w ∈ P̃m+1 +2πij and z ∈ P̃n+1 + 2πik, with P̃m+1 + 2πij an ancestor particle of P̃n+1 +2πik.
Write σ̄(w) = (t, y) and σ̄(z) = (s, x) and suppose that |x| + 2ε 6 2R. Then we must have
m = c−1t′ 6 n = c−1s′, with |s− s′|, |t− t′| 6 ε′/3 and |y − (Θm+1 + 2πj)/

√
δ∗|, |x− (Θn+1 +

2πk)/
√
δ∗| 6 ε, so

y 6 (Θm+1 + 2πj)/
√
δ∗ + ε = Φ̄P

mn((Θn+1 + 2πk)/
√
δ∗) + ε

6 Φ̄t′s′((Θn+1 + 2πk)/
√
δ∗ + ε) + 2ε 6 Φ̄t′s′(x+ 2ε) + 2ε 6 Φ̄ts(x+ 3ε) + 3ε.

and by a similar argument also y > Φ̄ts(x − 3ε) − 3ε. Here we have extended Φ̄ by setting
Φ̄ts = Φ̄t∧T,s∧T .

Fix e ∈ E and (t, y) ∈ F̄(e). Write (t, y) = σ̄(w) and P̃0(z(e)) = P̃n+1 + 2πik. We can
choose z ∈ P̃0(z(e)) with σ̄(z) = (s, x) and |s− s(e)| 6 ε′/3 and |x− x(e)| 6 ε. In particular
|x| + 2ε 6 |x(e)| + 3ε 6 2R. Set u = t ∧ s(e). Then w and z are related as in the preceding
paragraph and

t 6 t′ + ε′/3 6 s′ + ε′/3 6 s+ 2ε′/3 6 s(e) + ε′ 6 s(e) + ε0

so |t− u| 6 ε′. Hence

y 6 Φ̄ts(x+ 3ε) + 3ε 6 Φ̄us(e)(x+ 4ε) + 4ε 6 Φ̄us(e)(x(e) + 5ε) + 5ε 6 Φ̄us(e)(x(e)) + ε0
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and similarly
y > Φ̄us(e)(x(e))− ε0.

Since (t, y) was arbitrary, we have shown that

F̄(e) ⊆ {(t, y) : t ∈ [0, s(e)] and |y − Φ̄ts(e)(x(e))| 6 ε0}
∪ {(t, y) : t ∈ [s(e), s(e) + ε0] and |y − x(e)| 6 ε0}

and, since F̄(e) is a connected set joining (s, x) to the imaginary axis, this implies for the
Hausdorff metric dH that

dH(F̄(e), {(t, Φ̄ts(e)(x(e))) : 0 6 t 6 s(e)}) 6 2ε0.

We complete the proof by obtaining an analogous estimate for Ḡ(e). Recall that Ḡ(e) =
{σ̄(pτ ) : τ > 0} where p = p(z(e)) is the minimal length gap path starting from p0(z(e)), the
closest point to z(e) which is not in the interior of K̃N . Write σ̄(p0(z(e))) = (s0, x0).

Suppose that t < s(e)− ε′ and p makes an excursion left of the line {t + i
√
δ∗y : y ∈ R},

with endpoints w−, w+, say. Then the open line segment (w−, w+) must contain a point of
K̃N , say w ∈ P̃m+1+2πij. Set σ̄(w) = (t, y). Then, since p cannot cross K̃N , there must exist
z ∈ P̃n+1+2πik, an ancestor particle of P̃m+1+2πij, with σ(z) = (s, x), say, and s > s0. But
then

s(e) 6 s0 + ε′/3 6 s+ ε′/3 6 cn + 2ε′/3 6 cm+ 2ε′/3 6 t+ ε′ < s(e)

which is impossible. Hence there is no such excursion and so

Ḡ(e) ⊆ {(s, x) : s > s(e)− ε′, x ∈ R}.

Consider (t, y) = σ̄(w) with w ∈ P̃m+1 + 2πij and m 6 N − 1 and t > s(e) − 3ε′ and
|y| + 3ε 6 2R and y > Φ̄vs(e)(x(e)) + ε0, where v = s(e) ∨ t ∧ T . Note that t 6 T + ε′/3

and |v − t| 6 3ε′. Suppose (s, x) = σ̄(z) with z ∈ P̃n+1 + 2πik and |s− s(e)| 6 ε′ and where
P̃n+1 + 2πik is an ancestor particle of P̃m+1 + 2πij. Then

x > Φ̄st(y − 3ε)− 3ε > Φ̄s(e)v(y − 4ε)− 4ε > x(e) + ε.

Hence F̄(t, y) does not meet the vertical half-line {(s0, x) : x 6 x0}.
Define

Φ̄(e) = {(t, Φ̄t∧T,s(e)(x(e))) : t > s(e)}
and set I = [s(e)− 2ε′, T ]. There exists a continuous function y(t) : I → R such that, for all
t ∈ I, setting v = s(e) ∨ t ∧ T , we have

y(t) > Φ̄vs(e)(x(e)), d((t, y(t)), Φ̄(e)) = ε0 + ε+ 5ε′.
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Define recursively a sequence τ0, . . . , τM by setting τ0 = s(e)−2ε′ and then taking τn+1 as the
supremum of the set

{τ ∈ [τn, T ] : |(τ, y(τ))− (τn, y(τn))| = ε′}
until n = M − 1 when this set is empty and we set τM = T . For n = 0, 1, . . . ,M , choose
wn ∈ K̃N with σ̄(wn) = (tn, yn) and |tn−τn| 6 ε′ and |yn−y(τn)| 6 ε. Note that t0 6 s(e)−ε′
and tM > T − ε′ and tn ∈ [s(e)− 3ε′, T + ε′] and |yn|+ 3ε 6 2R for all n. Set

B0 =

M−1
⋃

n=0

[wn, wn+1), B1 = {t+ i
√
δ∗yM : t > tM}, B = B0 ∪ B1.

Then, for any w ∈ B0, for (t, y) = σ̄(w), we have |(t, y)− (τn, y(τn))| 6 ε+ 2ε′ for some n, so
ε0 + 3ε′ 6 d((t, y), Φ̄(e)) 6 ε0 + 2ε+ 7ε′ and so y > Φ̄vs(e)(x(e)) + ε0, where v = s(e) ∨ t ∧ T .
The final inequality obviously extends to B.

Suppose p crosses B, and does so for the first time at τ(1). Consider first the case where
pτ(1) ∈ [wn, wn+1). Then, since wn and wn+1 are both connected to the imaginary axis in K̃N

and p cannot cross K̃N , it must eventually hit [wn, wn+1] again after τ(1), at time τ(2) say,
except possibly if pτ(1) = wn. If the open line segment (pτ(1), pτ(2)) contains a point w ∈ K̃N

with σ̄(w) = (t, y), then for all z ∈ finger(w) with σ̄(z) = (s, x) and |s − s(e)| 6 ε′ we have
x > x(e) + ε′. But this is impossible because w is disconnected from the imaginary axis by
{s0 + i

√
δ∗x : x 6 x0} ∪ {pτ : τ > 0}. Hence (pτ(1), pτ(2)) ⊆ D̃N , so pτ ∈ [pτ(1), pτ(2)] for all

τ ∈ (τ(1), τ(2)), contradicting our crossing assumption. In the case pτ(1) = wn, if p does not
return to [wn, wn+1], then it must hit [wn−1, wn] instead and this also leads to a contradiction
by a similar argument. The case where pτ(1) ∈ B1 also leads to a contradiction of minimality
by a similar argument. Hence p never crosses B. So, for all (t, y) ∈ Ḡ(e) with y > Φ̄vs(e)(x(e)),
we have d((t, y), Φ̄(e)) 6 ε0 + 2ε + 7ε′ 6 2ε0. A similar argument establishes this estimate
also in the case y 6 Φ̄vs(e)(x(e)). Since Ḡ(e) is a connected set joining (s0, x0) to {T} × R,
this implies

dH(Ḡ(e), Φ̄(e)) 6 2ε0.
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