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Abstract

Sequencing the human genome has made vast amounts of potentially useful genetic data

accessible. An important challenge in statistics is to develop methodology to extract infor-

mation from this data. In this thesis, developments are made in two methodological areas

that have wide applications in genetics.

First, probabilistic methods to deal with the label switching problem in Bayesian mix-

ture models are introduced. Mixture models are used in situations where populations may

consist of a number of sub-populations, or as a semi-parametric modelling tool. The label

switching problem can prevent meaningful interpretation of the output of Markov Chain

Monte Carlo samplers. Specifically, inference on attributes specific to sub-populations can

be difficult. Such attributes play an important role in understanding genetic effects. We

introduce probabilistic relabelling strategies as a natural way of overcoming the label switch-

ing problem, and compare with existing strategies. The comparisons demonstrate that the

advantages offered by probabilistic strategies come without loss in parameter estimation

ability.

Second, we introduce direct effect testing (DET), which is a novel method that distin-

guishes direct from indirect effects between binary predictors and a binary response. DET

consists of two stages: the first stage finds effects, the second stage infers the uncertainty

in determining which predictors cause which effects. The method is useful when it is of

interest to recover direct effects between a large number of predictors and the response.

This is a common goal in genetics, where we are interested in the effects of variations in the

genome on the prevalence of a phenotype. This work includes detailed simulations, com-

paring the ability of a number of methods at recovering direct effects. DET outperforms

existing methods at recovering direct effects in situations where there is high correlation

between predictors, and matches their performance when the correlation is moderate or

small.
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Chapter 1

Introduction

1.1 Recent Advances in Genetics

The study of genetics has entered a new era. We have progressed over the last decade

from knowing the expressions and chemical make-up of a few genes, to sequencing the

entire human genome (?). The human genome is mostly homogeneous, with over 99% of

its make-up identical for all humans. The interest lies in the remaining 1% or so of the

genome that is different from one person to another, as this contributes to human diversity.

Diversity of the human species is in itself an interesting and worthwhile topic of study,

but for obvious reasons the real interest lies in understanding why some people are more

susceptible to certain diseases than others. Whilst it is well known that environmental

factors are important (for example, ‘smoking causes lung cancer’ ?), here we are interested

in how disease susceptibility can be affected by genetic differences. There is a very large

number of these genetic differences, hence the Aristotelian school of thought, advocating

the understanding of underlying scientific processes, is problematic to apply. The answer

lies with evidence based learning and statistics, but that is not to say that statistics has all

the answers. The pace of advance in genetics has been so great that statisticians are still

trying to catch up in providing methods to understand the vast quantities of data that can

now be collected.

All of this means that the development of statistical methods to interpret genetic data

is a rich growth area in current and future scientific research. Two particular areas are
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addressed in this thesis. First, progress is made in dealing with the population structure,

or relatedness, between participants in a genetic study, through developments in the theory

of mixture models. Second, methods that handle situations where the number of predictors

greatly exceeds the number of observations are developed, through the new method of direct

effect testing.

1.2 Genetics and Single Nucleotide Polymorphisms

This section gives a very brief outline of the genetics needed to understand this thesis. It is

not intended to be complete, see Chapter 2 of ? for a more detailed account.

The human genome is built out of a four letter alphabet. Each letter corresponds to a

base, also known as a nucleotide. Sequences of these bases contain genetic information. The

four letters used in the alphabet are abbreviations of the chemical names of the bases; the

names are adenine (represented by A), guanine (G), cytosine (C) and thymine (T ). The

human genome has 23 pairs of linear sequences of bases called chromosomes. Of these, 22

are called autosomes, and the remaining one is a sex chromosome. Except for reproductive

cells, all cells in the human body contain 46 chromosomes, consisting of the 22 pairs of

autosomes and a pair of sex chromosomes. Sex chromosomes are of two types, X and Y.

Females have a pair of X chromosomes and males have one X and one Y chromosome. A

section of a chromosome may be represented as a string of letters, for example,

. . .AAGTTGCAAATGTTAGT . . .

There is some diversity between chromosomes, which is the source of genetic differences

between humans. If a particular chromosome of one human is compared with the same

chromosome of another human, they will be almost identical. Differences occur when there

is more than one possible base at a particular location on the chromosome; such locations

are called single nucleotide polymorphisms (SNPs). Suppose the following two sequences
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are small sections of the chromosomes of two individuals:

. . .AAGTTGCAAATGTTAGT . . .

. . .AAGTTGCATATGTTAGT . . .

The position highlighted in both sequences is a SNP, because different bases are found in

each individual. Usually, the more common base is seen as the standard one (called the

wild type), and the less common base is considered a mutation. Indeed, since chromosomes

occur in pairs, these chromosomes could also have been drawn from the same individual.

This means that the mutation can occur on one of the chromosomes in the pair (a single

mutation) or both chromosomes in a pair (a double mutation).

Following completion of the human genome sequencing in 2001, the HapMap project

has set out to identify SNPs, and to date approximately 3 million have been found (?).

Recent work has focussed on associations between these SNPs and disease; the fundamental

question is, do certain SNPs reduce or increase the risk of a certain disease? ? have

recently carried out a large study that has identified many SNPs that are associated with

specific diseases. In different sub-populations, different SNPs may be responsible for the

same disease. Therefore a study must either take participants from only one sub-population

(for example, ?), or take account of the sub-population structure using a method such as

mixture modelling (for example, ?).

Finally for genetic background, we discuss linkage disequilibrium, which is formally de-

fined as a population association between the bases at two locations (?). It refers to the

correlated behaviour of SNPs. Typically, these correlations are spatial, as SNPs that are

nearby on the genome are often closely related, but there can also be long range correlations.

Consider two nearby SNPs, S1 and S2 say. Suppose that SNP S1 can use the bases A and T ,

and SNP S2 can use the bases C and G. If SNP S1 takes base A, then SNP S2 usually takes

base C; if SNP S1 takes base T , then SNP S2 usually takes base G. Hence, SNPs S1 and

S2 are correlated, and we say they are in linkage disequilibrium. This correlation between

the two SNPs has a major advantage but also a major disadvantage. The advantage is that

redundancy in the information carried by SNPs S1 and S2 means that only one of them
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needs to be measured when collecting a genetic sample. The disadvantage is that if an effect

were found on SNP S1, say, it would be very difficult to tell whether the truly influential

SNP really is SNP S1, or is actually SNP S2. The occurrence of linkage disequilibrium is

explained by the way in which organisms reproduce (see ?).

1.3 Focus of Thesis

This work focuses on the development of two distinct statistical techniques of current interest

for genetic data.

We first consider finite Bayesian mixture models. Mixture models are thought to have

been first used by ?, and are now widely used in genetics. They can be used to model sub-

populations within a data set, which may arise when collecting human participants for a

genetic study (for example, ?). These sub-populations may be different ethnic groups, males

and females, or even represent unknown heterogeneity. Another use of mixture models is

to allow semi-parametric modelling in situations where the underlying distribution of the

data may not be known. Mixture models are introduced in Chapter ??, and in particular

the label switching problem, occurring in Bayesian mixture models, is introduced. The

label switching problem then provides the focus of ?, which is presented in Chapter ??.

In ?, existing methods to deal with the label switching problem are considered, and new

probabilistic algorithms are introduced; the new and existing methods are then compared.

The second area considered is the recovery of direct effects from amongst a large number

of predictors. Potential predictors in genetics include the 3 million SNPs that are available

(?). With so many predictors under consideration, it is desirable to collect large samples to

fully understand the statistical connections. High cost and low availability of participants,

however, prohibits this. This leads to situations in which the number of predictors, p, is

much larger than the number of observations, n. This so-called ‘p � n’ problem causes

traditional statistical methods, such as standard linear regression, to fail. Therefore, many

new methods have been developed to deal with this problem, which are reviewed in Chapter

??.

An issue closely related to the ‘p� n’ problem is that neighbouring SNPs on the genome
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are often highly correlated (in linkage disequilibrium) with each other; this means that if

the state of one SNP is known, the states of neighbouring SNPs can be predicted with high

confidence. This correlation between neighbours causes a problem called multicollinearity.

The multicollinearity issue, besides potentially causing similar kinds of degeneracies as the

‘p� n’ problem, can lead to consistency being impossible to achieve. For example, consider

two SNPs that are perfectly correlated, one of which possessing a true effect on some disease;

then it is impossible to determine which of the two SNPs possesses the effect. This is less

of an issue if the goal is to produce a good predictive model — in which case it is irrelevant

whether the correct SNPs are included, provided accurate predictions can be made. The

interest here, however, is in identifying the correct SNPs, which means that the uncertainty

caused by issues such as multicollinearity must be dealt with. The appropriate way to deal

with such uncertainty, we believe, is to provide a list of potential SNPs for the true origin

of each effect, along with a list of probabilities that each of these SNPs is the true origin.

The ‘p � n’ issue and the multicollinearity issue have inspired the development of

the new method of direct effect testing (DET). DET is introduced and described in ?,

presented here in Chapter ??, and its performance is illustrated and compared with existing

methods. A follow-up comparison paper is given in Chapter ?? (?), where we analyse the

DET method further. Further extensions of the DET method that have not yet been written

for publication are presented in Chapter ??.

Both the probabilistic relabelling algorithms and the DET approach have applications

outside of genetics, and we discuss these in Chapter ??, which also includes discussion of

the future directions of this work.
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Chapter 2

Bayesian Mixture Models

2.1 Introduction and Notation

Finite mixture modelling is a tool to model population heterogeneity, and a form of semi-

parametric modelling. The applicability of mixture models has increased in the last 30

years, due to advances in methods for handling missing data and the exponential increase

in available computing power. The missing data problem in mixture models can be solved

using the EM algorithm (?); this allows robust, reliable maximum likelihood estimation in

the presence of missing data. The EM algorithm can also be used in a Bayesian framework,

by penalising the likelihood according to the desired prior (?). In the Bayesian setting,

however, the real breakthrough came with the application of Markov chain Monte Carlo

(MCMC) methods to mixture models (see, for example, ?). MCMC allows for exploration

of posterior and predictive surfaces of mixture models, both in great detail and with high

efficiency.

Mixture models consider the population of observations as consisting of a number of sub-

populations. Observations within a sub-population are assumed to be homogeneous, whilst

observations in different sub-populations are assumed to be heterogeneous. To illustrate

this idea, we introduce an example data set. The galaxy data was collected by ?, and is now

commonly used as an illustration of mixture models, and a test data set for new techniques.

Figure ?? includes a histogram displaying the velocities at which 82 galaxies are travelling

away from our own. There were 83 galaxies in the original paper, but one of the galaxies is
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commonly omitted from the data set (see ?, and the references therein). The motivation for

fitting a mixture model to this data set is that the galaxies are thought to be arranged into

clusters, and within each cluster the velocities of the galaxies follow a given distribution.

A normal distribution is often assumed, although student-t distributions, for example, have

also been considered (?). In Figure ?? a density estimate arising from fitting a normal

mixture distribution (assuming that there are four clusters) to the galaxy data is overlaid.
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Figure 2.1: Histogram of the velocities of 82 galaxies, with normal mixture density added

In this Chapter we will begin by introducing MCMC, for the reader less familiar with the

technique (Section ??). We then introduce the method of Bayesian estimation of a mixture

model by MCMC techniques (Section ??), before briefly introducing the label switching

problem (Section ??), which is the subject of the paper following in Chapter ??. First, the

notation for this part of the thesis is introduced.

Suppose Y1, . . . , Yn is a random univariate sample of size n, taken from a population
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with probability density function (pdf)

p(Y ) = π1f1(Y ) + π2f2(Y ) + . . .+ πKfK(Y ), (2.1)

with K ≥ 1 (although K = 1 is a degenerate case), πk > 0 (k = 1, 2, . . . ,K),
∑K

k=1 πk = 1,

and each fk(·) is a pdf itself (k = 1, 2, . . . ,K). Then the population has a finite mixture

distribution, and p(·) is a finite mixture density function; π = (π1, . . . , πK)′ is the vector of

mixing weights and the fk’s are called the component densities. It is commonly assumed

that the fk’s all have the same distributional form, with mixture-specific parameters θk and

global parameters η. Under these assumptions, Equation (??) becomes

p(Y |γ) =
K∑
k=1

πkfk(Y |θk,η),

where γ = (π′;θ′1, ...,θ
′
K ;η′)′, the vector of all defined parameters.

A convenient parameterisation is to introduce latent variables, Zi, for i = 1, . . . , n, where

‘Zi = k’ means that observation Yi comes from sub-population k. Each Zi is therefore

distributed a-priori

Zi ∼ Multinomial
(
1, (π1, ..., πK)′

)
,

where 1 denotes the unitary vector of length K. The distribution of each Yi, conditional on

the value of the corresponding latent variable Zi, is then the density of the corresponding

component,

Yi|(Zi = k) ∼ fk(·|θk).

This interpretation can be verified by integrating out the Zi’s. When mixture distributions

are used semi-parametrically, the Z-variables do not have the same real-world interpretation

as in the sub-population modelling case, but are useful tools in calculation nonetheless.

Previously, mixture model inference was carried out with a fixed number of components

K (see, for example, ?). If K was unknown, it was necessary to repeat the inference for

different values of K then compare the resulting models to make a choice for K, using

a model selection technique such as Akaike’s information criterion (AIC) (?) or Schwarz’s
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information criterion (BIC) (?). The introduction of variable dimension samplers for mixture

models (??) mean it is now possible to treat K directly as an additional unknown parameter.

?, ? and ? are all good introductions to mixture models and their applications.

2.2 Bayesian Inference by MCMC

It is assumed that the reader is familiar with the Bayesian paradigm (otherwise see ?, for

an introduction). Recall that Bayesian inference involves postulating a prior distribution

for each parameter in the model, representing available knowledge (or ignorance) before the

data is collected. A posterior distribution q(γ|Y1, . . . , Yn) is then calculated by combining

the prior information with the information obtained from the data (i.e. the likelihood).

Often, we then wish to perform inference on the posterior expectation of a function h(γ),

which involves calculating

E
[
h(γ)

]
=
∫
h(γ)q(γ|Y1, . . . , Yn)dγ. (2.2)

It is not always possible to evaluate such an integral analytically. To solve this problem,

one can instead draw a sequence of realisations γ(1), . . . ,γ(R) from the posterior distribution

q(γ|Y1, . . . , Yn), for some large number R, then approximate Equation (??) by taking the

ergodic average

E[h(γ)] ≈ 1
R

R∑
r=1

h(γ(r)).

The ergodic theorem ensures that this approximation converges almost surely to the required

expectation as R → ∞. A popular method of generating the sequence γ(1), . . . ,γ(R) is

Markov chain Monte Carlo (MCMC). The idea of MCMC is to construct an ergodic Markov

chain that has the posterior distribution as its stationary distribution.

One algorithm to construct a Markov chain with the appropriate stationary distribution

is the Gibbs sampler (see, for example, ?), which works according to the following procedure.

For simplicity, suppose that there are p parameters, denoted by γ1, . . . , γp. Let γ−j denote

the vector of all parameters except γj .

1. Initialise all parameters (typically by drawing their values from their priors, but other
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initialisations are possible).

2. For j = 1, . . . , p, update the parameter γj by drawing a new value from the full con-

ditional distribution q(γj |γ−j ;Y1, . . . , Yn). Often, the one-dimensional full conditional

distributions are tractable, despite the full posterior distribution being intractable.

3. Record all new values of the parameters.

4. Iteratively repeat steps 2 and 3, a large number of times R.

In an attempt to ensure that only realisations of the parameter vector γ that are drawn

from the posterior distribution are retained, the first few realisations, believed to have

been drawn before the Markov chain was in equilibrium, are discarded. The discarded

realisations are known as burn-in. Besides this, using Markov chains results in serially

correlated observations (since every realisation depends on the previous realisation). To

alleviate this problem, the recorded values for γ can be thinned, that is, only every few

values are retained. See ? for a more in-depth discussion of the issues surrounding the use

of MCMC.

In this work, we have run the Gibbs sampler for 60000 iterations, and discarded a burn-

in of 10000 realisations. We use a thinning factor of 10, i.e. only the values from every tenth

iteration are retained.

2.3 MCMC and Bayesian Mixture Models

In this thesis we focus on mixture model inference in a Bayesian setting, using Gibbs sam-

pling. A common method for conducting such inference is by using the latent variable

structure given in Section ??. This was first introduced by ?.

For purposes of illustration, we will now give a specific example. It is assumed that the

component densities (fk’s) are normal, and the ‘random beta model’ of ? is used to construct

a hierarchical Bayesian model, which is specified below. The random beta model assumes

that none of the parameters are known in advance. For a given number of components K,
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the distribution of the mixture model is given by

Yi|(γ,K) ∼
K∑
k=1

πkN(µk, σ2
k),

so the observations follow a mixture of normal distributions. Conditional on its latent

variable, Zi, each Yi (i = 1, . . . , n) is then distributed according to the corresponding normal

distribution from the mixture distribution,

Yi|(γ,K, Zi = k) ∼ N(µk, σ2
k).

As this is a Bayesian model, prior distributions are needed for all the parameters. Indeed,

a hyper-parameter, φ, is introduced that is used in the priors for the parameters of the model,

but has a prior distribution itself. The priors for the random beta model are given by

µk ∼ N(ξ, κ−1),

σ−2
k |φ ∼ Gamma(α, φ),

φ ∼ Gamma(g, h),

π ∼ Dirichlet(δ).

To provide values for the constants in the priors, if R is the range of the data, we choose

α = 2, g = 0.2, h = 10/R2, κ = 4/R2, δ = 1, the unitary vector of length K, and ξ as the

midpoint of the minimum and maximum values of the data. These choices are in line with

the values used by ?, see their paper for further discussion. These priors are hence designed

to be non-informative. It is impossible to place improper priors on any of the parameters,

since in the case of mixture models this will generate an improper posterior. The improper

posterior can arise because there is a positive probability of a component being empty (i.e.

containing no observations), in which case it is solely the prior that generates the posterior

for any parameters specific to that component (?).

The full conditional distributions for the Gibbs sampler are then as follows (where ‘|γ−’
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is used to denote conditioning on all remaining variables in γ):

Zi|γ− ∼ Multinomial
(
1, (τi1, ..., τiK)′

)
,

φ|γ− ∼ Gamma
(
Kα+ g,

∑
σ−2
k + h

)
,

σ−2
k |γ− ∼ Gamma

(
α+

nk
2
, φ+

∑
i:Zi=k

(Xi − µk)2

2

)
,

µk|γ− ∼ N

(
κξ + σ−2

k

∑
i:Zi=k

Xi

σ−2
k nk + κ

, (σ−2
k nk + κ)−1

)
,

π|γ− ∼ Dirichlet
(
(δ1 + n1, ..., δK + nK)′

)
,

where the Zi’s are the latent allocation variables, τik ∝ πk × likelihood(Yi|Zi = k), and nk

is the number of observations allocated to the kth component.

The number of components K is also treated as an object of inference in most situations;

the choice of prior for K, however, is a delicate issue (?). Since the priors for the model

components do not depend on K, updating K does not affect the updates to the other

parameters within each fixed value of K. We will use a Poisson(1) prior on the number of

components K, which is argued for in ?. The number of components K will be updated

using the birth-death sampler suggested by ?, which we now briefly outline.

The components of the mixture model are viewed as point processes on the space [0, 1]×

Θ, where each mixing weight πk is in the interval [0, 1] and the mixture-specific components

θk belong to the parameter space Θ. Denoting the current situation of the point process

by x, where there are currently K components,

x =
{

(π1,θ1), . . . , (πK ,θK)
}
.

A birth adds a new component to the mixture model, causing the point process to move

to a new location

xb = x ∪ (πK+1,θK+1) =
{(
π1(1− πK+1),θ1

)
, . . . ,

(
πK(1− πK+1),θK

)
,
(
πK+1,θK+1

)}
,

where the mixing weight of the new component, πK+1, is drawn from a Beta(1,K) distribu-
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tion and the mixture-specific parameters for the new component are drawn from their prior

distributions. Births occur at a fixed rate λb.

The death of the kth component causes the point process to move to a new location

xd = x \ (πk,θk) =
{(

π1

1− πk
,θ1

)
, . . . ,

(
πK

1− πk
,θK

)}
.

The death of the kth component occurs at a variable rate δk(x), given by

δk(x) = λb
L {x \ (πk,θk)}

L(x)
q(K − 1)
Kq(K)

,

where L denotes the likelihood and q(·) is the prior on K. ‘Useful’ components are unlikely

to die, whereas ‘useless’ components will be killed very quickly. The death rates depend on

the current state of the point process, x, so are updated after each new birth or death.

This birth-death process is run for a fixed time on each iteration of the MCMC, to

update the number of components K. Without loss of generality, the length of the birth-

death process can be fixed to one time unit. In this work the birth-death process was

initialised at the beginning of each MCMC sampler with one component, K = 1. The birth

rate was chosen to be λb = 2. For further explanations, and proofs of the validity of the

birth-death procedure, see ?. Alternative algorithms for updating K include the reversible

jump MCMC procedure described in ?.

The MCMC procedure for mixture model inference is then as follows on each iteration:

1. Run the birth-death process to update the number of components K.

2. Update the Zi’s by sampling from their full conditional distributions, which can be

thought of as allocating the observations to components.

3. Update the hyper-parameter φ.

4. Update the component-specific parameter vectors π = (π1, . . . , πK)′, µ = (µ1, . . . , µK)

and σ2 = (σ2
1, . . . , σ

2
K).
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2.4 The Label Switching Problem

Label switching refers to the fact that the order that the component densities are in can

change during an MCMC run. For example, if there are two components (K = 2), the

chain may begin with k = 1 corresponding to what we intuitively think of as the first

component, and k = 2 the second component. Then at some point during the MCMC

the roles could be reversed, so that k = 1 now corresponds to our notion of the second

component, and k = 2 the first component. Label switching becomes a problem when

one is interested in obtaining component-specific information from an MCMC sample on a

mixture distribution. Examples of component-specific information we may require include

the posterior distributions of the parameters of each component. Formally, label switching

occurs because for any possible permutation ν(·), of the component labels {1, 2, . . . ,K}, the

likelihood of the mixture distribution satisfies

p(Y |γ) =
K∑
k=1

πkf(Y |θk,η) =
K∑
k=1

πν(k)f(Y |θν(k),η). (2.3)

If the prior distributions are also exchangeable (i.e. containing no component-specific in-

formation), the posterior distribution inherits the same property, and hence possesses K!

symmetric modes. This is a problem as an MCMC sampler may move from one of these

modes to another between iterations, resulting in a label switch.

The label switching problem is described more formally in Chapter ??, whereas here a

simple illustration of the problem is presented. Suppose 200 realisations are generated from

the two component mixture distribution

0.5
{
N(0, 1) +N(4, 1)

}
,

so that µ1 = 0 is the true value of the mean of the first component, and µ2 = 4 is the true

value of the mean of the second component.

Figure ?? gives 1000 iterations of the output of the MCMC sampler for the component

means µ1 and µ2. The top panel of the Figure demonstrates what happens when we ignore

the possibility of label switching. Many times during the sampler, the roles of the first
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and second component have switched. This makes any component-specific inference, such

as calculating parameter estimates, impossible. The lower panel of the figure shows the

paths of the component means after an algorithm to ‘relabel’ the output from the MCMC

has been applied, in an attempt to remove any label switches that have occurred. In fact,

the relabelling algorithm applied here was a simple identifiability constraint (see Section

??). In this example it is obvious at any given iteration which component is which, so the

relabelling could easily have been carried out by eye.
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Figure 2.2: Graphs showing the paths of µ1 (black line) and µ2 (grey line) for 1000 iterations
of an MCMC sampler. Top panel — no relabelling; bottom panel — after relabelling.

The label switching problem is far more pronounced in situations where the mixture
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components are harder to distinguish, because we cannot identify if or when a label switch

has occurred. Hence, advanced algorithms are needed to deal with the label switching issue

in an automated yet sensible way. Such algorithms are called ‘relabelling’ algorithms. In

Chapter ??, which is the paper ?, we review existing relabelling algorithms, introduce new

probabilistic algorithms and compare the performance of all the algorithms.
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Chapter 3

Probabilistic Relabelling Strategies

for the Label Switching Problem in

Bayesian Mixture Models

Abstract

The label switching problem is caused by the likelihood of a Bayesian mixture model being

invariant to permutations of the labels. The permutation can change multiple times between

Markov chain Monte Carlo (MCMC) iterations making it difficult to infer component-specific

parameters of the model. Various so-called ‘relabelling’ strategies exist with the goal to

‘undo’ the label switches that have occurred to enable estimation of functions that depend

on component-specific parameters. Most existing approaches rely upon specifying a loss

function, and relabelling by minimising its posterior expected loss. In this paper we develop

probabilistic approaches to relabelling that allow estimation and incorporation of the un-

certainty in the relabelling process. Variants of the probabilistic relabelling algorithm are

introduced and compared to existing loss function based methods. We demonstrate that

the idea of probabilistic relabelling can be expressed in a rigorous framework based on the

EM algorithm.

Keywords: Bayesian, Identifiability, Label switching, MCMC, Mixture model.
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3.1 Introduction

Mixture models have been used as tools to model heterogeneity for over 100 years. De-

velopments in Markov chain Monte Carlo (MCMC) methods (see, for example, ?) opened

the door for mixture models in a Bayesian framework as they allow efficient exploration of

posterior and predictive surfaces of these models. The use of these Bayesian mixture models

has given rise to new problems, particularly when estimating component-specific parameters

of the model and interpreting marginal posterior densities.

The label switching problem arises as the components of the Bayesian mixture model

can be ordered arbitrarily. During one run of an MCMC sampler, the order of components

can change multiple times between iterations. To obtain a meaningful interpretation of the

components it is necessary to account for these changes, which has been called relabelling

(for example, ?). Various functions of interest, such as recovery of the full mixture posterior

and its associated moments, may be invariant to the labelling permutations. For this type

of inference, the label switching problem need not concern us. On many occasions, however,

it is of interest to infer parameters that are specific to individual components of the mixture

model. This may be because the components of the model have some interpretation, in the

sense of a one-to-one correspondence to true components in the population, or alternatively

we may be using mixture models to carry out semi-parametric density estimation, and the

purpose of the relabelling is to provide coherent estimates of the components that make up

the density estimate. In either case, we must find methods to ‘relabel’ the results of an

MCMC run so that the components are in the same order at each iteration.

A wide array of strategies exist in the literature for ‘relabelling’ MCMC output in an

attempt to remove the label switching problem — we divide them here into three categories.

Identifiability constraints involve relabelling the output of the MCMC sampler so that the

posterior obtained satisfies a constraint on the component parameters. The constraint is

chosen such that exactly one relabelling satisfies the constraint at each iteration of the sam-

pler. Deterministic relabelling algorithms select a relabelling at each iteration of the MCMC
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output that minimizes the posterior expectation of some loss function. Naturally, a variety

of loss functions have been considered by different authors. Probabilistic approaches are a

relatively new idea in which one acknowledges that there is uncertainty in the relabelling

that should be selected on each iteration of the MCMC output. In contrast, both identifia-

bility constraints and deterministic relabelling algorithms assume that the relabelling that

has been carried out is ‘correct’.

The contribution of this paper is to develop and extend the idea of probabilistic re-

labelling, which was introduced originally in ?. We frame probabilistic relabelling as an

application of the EM algorithm, where the missing data is the order that the components

are in at each iteration of the MCMC. Two novel probabilistic algorithms based on the

stochastic EM (SEM) are developed.

We will proceed, in Section ??, by briefly describing some of the relabelling algorithms

currently available, before we introduce new strategies for probabilistic relabelling. Section

?? evaluates the performance of the strategies on observed as well as simulated data. We

conclude with a discussion of the advantages and disadvantages of the various methods and

some future directions in Section ??.

3.2 Relabelling Strategies

Suppose n observations Y1, . . . , Yn are taken from aK-component mixture distribution where

all the components have the same distributional form, with mixture-specific parameters

θ = (θ′1, . . . ,θ
′
K)′, global parameters η and mixing weights π = (π1, . . . , πK)′, summarized

by γ = (π′;θ′1, . . . ,θ
′
K ;η′)′. The mixture distribution for a single observation Yi is then

given by

p (Yi|γ) =
K∑
k=1

πkfk (Yi|θk,η) ,

with K ≥ 1, πk > 0 (k = 1, 2, . . . ,K),
∑K

k=1 πk = 1 and fk(·|θk,η) is a density function

parametrized by θk and η. For convenience we introduce latent variables Z = (Z1, . . . , Zn)′,
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where ‘Zi = k’ indicates membership of the observation Yi to class k, with for i = 1, . . . , n,

Zi
i.i.d.∼ Multinomial

(
1,π

)
,

where 1 denotes the unitary vector of length K. Conditional on belonging to class k,

observation Yi will be distributed according to fk(·|θk,η),

Yi|(Zi = k) ∼ fk(·|θk,η).

Each Zi is then an unknown categorical variable that denotes the sub-population from

which observation Yi originates. Bayesian inference can be conducted on such a model

using MCMC (?). This proceeds, on each iteration r, by drawing a vector of component

memberships Z(r), and parameter estimates γ(r), from the posterior. Throughout this pa-

per, for ease of illustration we will assume that each fk(·) is a normal distribution with mean

µk and variance σ2
k. For the priors we will use the hierarchical ‘random beta’ model in ?,

following their suggestions on the hyper-parameter choices. For the number of components

K we use a Poisson(1) prior as argued for in ?.

Let SK denote the set of all permutations on {1, 2, . . . ,K}. The label switching problem

arises because the likelihood

p (Y1, . . . , Yn|γ) =
n∏
i=1

{
K∑
k=1

πν(k)fν(k)

(
Yi|θν(k),η

)}

is identical for all ν ∈ SK . If exchangeable priors are used (containing no component-

specific information) then the posterior has the same property, resulting in the posterior

surface having K! symmetric modes, each associated with a different labelling permutation

ν ∈ SK . This is problematic because each iteration of the MCMC sampler r, r = 1, . . . , R,

has an associated permutation ν(r) ∈ SK . Then for r1 6= r2, it may be that ν(r1) 6= ν(r2), i.e.

the sampler can move from one mode to another between iterations. This makes an ergodic
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average estimate of a component-specific parameter, for example,

E[θ1] ≈ 1
R

R∑
r=1

θ
(r)
1 , (3.1)

somewhat meaningless. Indeed, if the chain is in equilibrium, then the estimate of E[θk]

should be the same for all k, since such a chain explores equally all the symmetric modes.

The idea of relabelling the MCMC output is to account for the permutations ν(r), r =

1, . . . , R, in such a way that an ergodic average estimate such as Equation (??) is made

meaningful. Of course, we generally have limited data, and can never say with certainty

whether we truly have agreement ν(r1) = ν(r2), for r1 6= r2. Indeed, in our view the ν(r)s

are themselves parameters with associated uncertainty. Define a relabelled posterior, q∗(·),

as the posterior density that we obtain when we attempt to account for the permutations

ν(r), r = 1, . . . , R, across the iterations of an MCMC sampler. This is not unique — firstly

there are K! versions of it that correspond to applying a permutation ν to the entire output

of an MCMC to yield an equivalent answer. Secondly, we accept that it is not possible to

find the ‘correct’ relabelled posterior due to the uncertainty in estimating the ν(r)s — we

approximate this by the various relabelling methods considered in this paper. A version of

the relabelled posterior is then useful when one conducts component-specific inference.

3.2.1 Identifiability Constraints

The first efforts to deal with the label-switching problem involve placing an Identifiabil-

ity Constraint (IC) on the parameter space (see, for example, ?). The idea is to define a

restricted parameter space A such that there exists a unique permutation ν∗ ∈ SK that

satisfies
(
θ′ν∗(1), . . . ,θ

′
ν∗(K)

)′
∈ A, for component-specific parameters θk, k = 1, . . . ,K. The

simplest example in the normal distribution case is the constraint µ1 < µ2 < . . . < µK , or

the same constraint on the mixture proportions or component variances. More sophisticated

alternatives can be found, for example, in ?.

This approach is simple and works well in many situations. Proposition 3.1 of ? demon-

strates that the relabelling for such a strategy can be carried out after the MCMC has run,
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provided the priors are exchangeable. ? notes that use of the IC leads, asymptotically in n,

to the correct marginals for the true parameter vector θ being recovered, provided θ ∈ A.

Nevertheless, for finite n it is found that the parameter estimates are ‘pushed apart’; that is,

the difference between the parameters of adjacent components is typically over-estimated

(?). This is a consequence of the fact that we are effectively imposing a-priori that the

joint prior of θ must satisfy the constraint, despite originally imposing exchangeable priors,

suggesting we know nothing to distinguish the components of the mixture model. Moreover,

it can be difficult to find a sensible subspace, A, when the mixture-specific parameters are

multidimensional.

3.2.2 Deterministic Relabelling Algorithms

The idea of the relabelling algorithm is that we believe that the permutations ν(r1) and ν(r2)

match (for r1 6= r2; r1, r2 ∈ {1, 2, . . . , R}) when a characteristic about the r1
th iteration un-

der permutation ν(r1) is ‘close’ to that characteristic of the r2
th iteration under permutation

ν(r2). There is a vast literature on the application of such algorithms to the label switching

problem, all considering different characteristics about each iteration on which to measure

closeness, and how one does measure closeness. ? and ? give methods where the character-

istic is the estimates of the parameters on each iteration r, θ(r). ? produces a method in

which the characteristic is the matrix of allocation probabilities of the observations to each

component of the mixture, P (r) whilst ? measure closeness in the allocation vector Z(r).

Call the characteristic on which we measure closeness C, and the measure of closeness

between two characteristics at iterations r1 and r2 as L(C(r1), C(r2)), which is a loss function

that is large when the discrepancy between C(r1) and C(r2) is large. When we apply a

permutation ν(r) to iteration r we will write ν(r)(C(r)).

We are not interested per se in pairwise closeness, but closeness of the characteristics

across the entire MCMC sample, {C(1), . . . , C(R)}, as we wish the entire sample to be

relabelled ‘correctly’. To take this into account in an efficient manner, many of the relabelling

algorithms adopt a K-means style approach, which can be described in a general manner

as follows:
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1. Choose C to minimize
∑R

r=1 L
{
C, ν(r)(C(r))

}
. In the K-means analogy, view C as

the centroids of the clusters. In common with this analogy, C is usually calculated as

the ergodic average of the characteristics C(r), r = 1, . . . , R.

2. For r = 1, . . . , R choose ν(r) to minimize L
{
C, ν(r)(C(r))

}
, which is equivalent to

allocating the observations to the clusters. ? demonstrates that it is usually possible

to achieve this quickly, using a variant of the transportation algorithm.

3. Repeat 1 and 2 until an optimal solution is reached.

The algorithm should be run from multiple starting positions (initial permutations of the

MCMC iterations) as it is only guaranteed to converge to a local maximum rather than

the global maximum (see, for example, ?). The approach corresponds to minimising the

approximate posterior expectation of the loss function L, with the approximation arising

from averaging over the MCMC output. The iterative nature of the algorithm means that

it must be run after the MCMC has completed.

ICs and relabelling algorithms have very similar goals, in that they assign meaning to

each of the components. For example, under the IC considered above when we talk about the

first component we mean ‘the component with the smallest mean’. Relabelling algorithms

attempt to give components meaning by enforcing some form of stable behaviour between

iterations of the MCMC. If the goal of the inference is parameter estimation, it seems

sensible to use an algorithm that stabilises the relabelled posterior of the parameters, using

for example the algorithm of ?. ?, however, takes the opposing view that one should relabel

using a different feature than the one of statistical interest, for example, relabel based on

component allocations when interested in parameter estimates.

A separate class of algorithms are the label invariant loss function approaches introduced

by ?. Here, the idea is to measure closeness between iterations of the MCMC without

relying on labelling information. For example, one could consider pairwise comparison of

the allocation of observations to components (?).
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3.2.3 Probabilistic Relabelling Algorithms

Probabilistic relabelling was first introduced by ?. The idea is that the permutation ν(r)

that is associated with the rth iteration of the MCMC sampler is unknown. Therefore, the

permutation can be viewed as having the discrete density gr(ν(r);γ,Y ) over ν(r) ∈ SK ,

conditional on the data, Y = (Y1, . . . , Yn)′, and the full vector of parameters, γ. ? then

shows, using the strong law of large numbers, that one can estimate a quantity of interest

h(·) via

h(γ) =
1
R

R∑
r=1

∑
ν(r)∈SK

h
{
ν(r)(γ(r))

}
ĝr(ν(r); γ̂,Y ), (3.2)

where ν(r)(γ(r)) represents the parameter vector with the component-specific parameters

permuted by ν(r). The function of interest h(·) may depend additionally or alternatively on

the allocation vector Z.

To use this approach we need a way to estimate gr(·), and we also need to know in

advance the vector of true parameters γ. ? gives various suggestions on how each of these

issues may be dealt with. For example, the parameters γ can be derived by averaging over

a small number of iterations from the MCMC, determined by eye not to have switched

labels. The permutation densities gr(·) are derived by estimating the posterior surface of

the relabelled posterior using again a small number of iterations where the labels are deemed

not to have switched. This uses a normal approximation, and the idea of estimating the

relabelled posterior to deal with label switching was first suggested by ?.

Next we introduce a novel approach to probabilistic relabelling, in which gr(·) and γ

are estimated in an iterative fashion. An EM-type approach is adopted, where the missing

data are the permutations {ν(r), r = 1, . . . , R} applied at each stage. The permutation

densities, gr(·), are estimated by conditioning only on the data, Y , the current estimate of

the parameters, γ, and the current allocation vector, Z(r). Letting Srk = {i : z(r)
i = k} be

the set of indices of the observations belonging, before permutation, to the kth parameter

at iteration r, we calculate

ĝr(ν(r); γ̂,Y ,Z(r)) ∝
K∏
k=1

∏
i∈Srk

π̂ν(k)fν(k)

(
Yi|θ̂ν(k), η̂

)
, (3.3)
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where the right hand side corresponds to the allocated likelihood. So rather than using a

normal approximation to the surface of the relabelled posterior, gr(·) is estimated based on

the allocated likelihood of the data under each permutation, the current estimate of the

parameters (permuted according to the permutation under consideration) and the current

allocation vector Z(r). Finally ĝr(·) is normalised to sum to one over all possible permuta-

tions. A detailed derivation of Equation (??) is given in the Appendix.

The usual application of the EM algorithm (?) to the mixture problem views the avail-

able data as the observations, and the missing data the membership of the observations

to the various components. The framework introduced here, on the other hand, can be

interpreted as an EM algorithm where the available data are the output from the MCMC

sampler, and the missing data are the permutations {ν(r), r = 1, . . . , R} applied at each

stage. One could loosely consider the approaches suggested by ? as corresponding to a

single iteration of such an EM algorithm, with sensible starting values chosen. We propose

now a variety of extensions and alternatives that stem from placing probabilistic relabelling

in this framework. We suggest first an iterative EM algorithm, which proceeds, after ini-

tialising estimates of the parameters γ using, for example, an IC, by:

E Step Estimate the densities {gr(·), r = 1, . . . , R} using the current estimate of γ, via

Equation (??).

M step Update estimates of γ using Equation (??), with appropriate choices of h(·). For

example, the estimate of the component weight π1 may be updated by

π̂1 =
1
R

R∑
r=1

∑
ν(r)∈SK

π
(r)
1 ĝr(ν(r); γ̂,Y ,Z(r)).

As with all EM-type algorithms, convergence to the global maximum is not guaranteed

— local modes or saddle points may instead be found. Therefore it is advised to use

multiple starting points (different estimates of γ). We call this EM approach ‘EMP’ (EM

based probabilistic relabelling).

A popular alternative to the EM algorithm is the stochastic EM algorithm (SEM) (?).

This introduces an extra step ‘the S step’, where the missing data is simulated from its
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estimated density. This constitutes drawing ν(r) multinomially from the discrete density

gr(·). The randomness that this modification introduces helps to avoid the algorithm getting

caught in local modes, and provides faster convergence. Additionally, the convergence of

the SEM does not depend on the starting position (?). A SEM-type probabilistic relabelling

strategy is as follows:

E step Estimate the densities {gr(·), r = 1, . . . , R} using the current estimate of γ, via

Equation (??).

S step Simulate values for the permutations {ν(r), r = 1, . . . , R} by drawing multinomially

from the corresponding densities gr(·), calling these simulated permutations ν̃(r), r =

1, . . . , R.

M step Update estimates of γ by taking ergodic averages over the sample after accounting

for the permutations ν̃(r), r = 1, . . . , R. For example, the estimate of the component

weight π1 may be updated by

π̂1 =
1
R

R∑
r=1

π
(r)
1 ,

after the inverse of ν̃(r) has been applied at each r.

We call this approach ‘SEMP’ (SEM based probabilistic relabelling).

A final alternative that we suggest acknowledges that γ is itself unknown. We con-

sider estimating the permutation densities gr(·), r = 1, . . . , R, without conditioning on γ by

integrating γ out with respect to its relabelled posterior, q∗(γ):

ĝr(ν(r);Y ,Z(r)) ∝
∫ K∏

k=1

∏
i∈Srk

π̂ν(k)fν(k)

(
Yi|θ̂ν(k), η̂

)
q∗(γ)dγ̂,

and approximate the integral by the Monte Carlo estimate over the MCMC sample

ĝr(ν(r);Y ,Z(r)) ∝ 1
R

R∑
r=1


K∏
k=1

∏
i∈Srk

π
(r)
ν(k)fν(k)

(
Yi|θ(r)

ν(k),η
(r)
) . (3.4)

This leads to the algorithm:
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E step Estimate the densities {gr(·), r = 1, . . . , R} using the current estimate of the rela-

belled posterior density of γ, via Equation (??).

S step Simulate values for the permutations {ν(r), r = 1, . . . , R} by drawing multinomially

from the corresponding densities gr(·), calling these simulated permutations ν̃(r), r =

1, . . . , R.

M step Estimate the relabelled posterior density, q∗(γ), using the output from the MCMC

and the current estimates ν̃(r), r = 1, . . . , R.

The M step is, therefore, fundamentally different from a usual EM or SEM algorithm —

we estimate an entire posterior rather than point estimates of the parameters. We call this

approach ‘SEMUP’ (SEM based unconditional probabilistic relabelling).

3.2.4 Comments

For the remainder of the paper we will consider seven different relabelling strategies, the IC,

three deterministic relabelling algorithms and the three variants of probabilistic relabelling

we introduced in the previous section. The notation used for the methods is defined in Table

??.

Table 3.1: Relabelling algorithms evaluated

Notation Method Source
IC Identifiability constraint ?
PL Parameter relabelling algorithm ?
CPL Class probability relabelling algorithm ?
AL Allocation vector relabelling algorithm ?
EMP EM probabilistic Section ??
SEMP SEM probabilistic Section ??
SEMUP SEM unconditional probabilistic Section ??

One of the disadvantages of relabelling algorithms and ICs is that they apply a specific

permutation ν(r) at each iteration r, with no indication on how uncertain we are that this

particular permutation is ‘correct’. Using probabilistic methods, uncertainty in relabelling

can be quantified by how close to one the probability of the most likely permutation being

correct, max
ν(r)

{
ĝr(ν(r); γ̂,Y ,Z(r))

}
, is, for each iteration of the MCMC.
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A further advantage of probabilistic relabelling is the improved recovery of the posterior

tails, which are often truncated using other methods. Consider 50 simulated observations

from 0.5N(0, 1) + 0.5N(2, 1). Figure ?? compares the marginal posteriors for µ1 (defined as

the component mean with smallest ergodic average) under the PL and SEMP methods, as-

suming that all parameters in the model are unknown. The distributions are quite different

in shape with the right hand tail being truncated for the PL algorithm in comparison to the

SEMP method, which is compensated by a higher peak. Similar results are observed in all

the probabilistic methods. This clearly shows the superior ability of probabilistic relabelling

to recover posterior tails.
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Figure 3.1: Graphs showing the posteriors for µ1 (defined as the µ with smallest ergodic
average) of the two component mixture model 0.5N(0, 1) + 0.5N(2, 1), for the PL (solid
line) and SEMP (dashed line) algorithms

29



3.3 Comparison of Methods

To evaluate the proposed algorithms we will now compare them to existing methods on

observed and simulated data. The seven relabelling strategies that will be compared are

given in Table ??.

3.3.1 The Galaxy Data

For the initial comparison we investigate the galaxy data which consist of the velocities of

82 different galaxies (?). A histogram of the data is given in Figure ??. This dataset has

become the benchmark for testing different methods for analysis of mixture data. See ? for

a recent investigation into the galaxy data in the mixture modelling context.
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Figure 3.2: Histogram of the velocities of 82 galaxies

An MCMC run on this data spends at least 10% of its iterations in each of K = 3, 4 and
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5 clusters suggesting that any of these choices could be sensible. We refer to ? for an in-

teresting summary of the differing posteriors for K achieved using different, but apparently

similar, methods on this dataset. Here we will look in detail at the relabelling algorithms

applied to the K = 5 case. As this is a single data set, it is feasible to use all of the output

points from the MCMC for the SEMUP algorithm.

A remarkable stability between the different methods can be found as they recover al-

most identical values to each other for all the parameters. Table ?? shows an example of

these results, the component mean of the fourth component, µ4. The mean changes between

methods, which is due to the difference in dealing with tails of the relabelled posterior by the

various methods. Looking at the α-quantiles this is further illustrated by the fact that q0.05

and q0.95 are rather different between the methods. This suggests that there are adjacent

components that are poorly separated. For a parameter in a well-separated component,

such as the first component that accounts for the observations in the left-hand peak, almost

identical results for the α-quantiles are observed for each relabelling method. Consequently

the only major difference between the algorithms can be found in the variance for the esti-

mates of each parameter as the allocation of component estimates from the tails has a large

bearing on the estimated variances of the parameters.

Table 3.2: Summary of estimated µ4 for different relabelling methods across all iterations
of the MCMC with K = 5. Here, µ4 is defined as the mean with the fourth smallest ergodic
average.

Method Mean Posterior quantiles
q0.05 q0.25 q0.50 q0.75 q0.95

IC 23.92 21.81 22.56 23.01 23.58 32.51
PL 22.60 21.33 22.04 22.65 23.09 23.65

CPL 22.39 21.09 21.83 22.43 23.00 23.45
AL 22.49 21.20 21.94 22.55 23.04 23.62

EMP 23.92 21.40 22.09 22.68 23.13 24.13
SEMP 22.60 21.25 22.00 22.63 23.09 24.09

SEMUP 23.37 16.39 22.21 22.88 23.44 34.60

Figure ?? gives the probabilities of the two most likely permutations (calculated from
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Figure 3.3: Graphs showing the probabilities of the most likely (solid line) and second most
likely (dashed line) permutations at 100 iterations of the MCMC sampler for the galaxy
data. The three graphs represent models with differing numbers of components — K = 3
(top), K=4 (middle) and K=5 (bottom).

Equation ??) for the galaxy data with the number of components K = 3, 4, 5, for 100

thinned iterations in each case. We have used the SEMP relabelling procedure. For K = 3

and 4, there is little or no uncertainty over which permutation of the labels is selected. For

K = 5, however, it is often the case that there are two permutations with reasonable prob-

abilities of being selected. This suggests that there are two components that are virtually

indistinguishable, which implies that it may be beneficial to merge them. In this way, there

is potential to use this method to help choose the number of components K.
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3.3.2 Simulated Data

For a more thorough evaluation of the different relabelling algorithms we now turn to sim-

ulated data. We investigated different simulations in which we draw n observations from

πN(0, 1) + (1− π)N(µ2, σ
2
2), for various combinations of (n, π, µ2, σ

2
2). Each combination is

repeated 100 times and the results are averaged over these repeats in order to remove the

impact of individual data sets. Since it is computationally not feasible to use the SEMUP

algorithm with all available iterations of the MCMC we set the number of posterior points to

100 for use in Equation (??). As well as giving estimates of parameters, we give a measure

of closeness of the estimated mixture distribution to the true density that we have simulated

from, by simulating 106 values from the true density and estimating the Kullback–Leibler

distance via

ϕ =
104

106

106∑
i=1

log

{
f(Yi;θtrue)

f(Yi; θ̂)

}
,

where θ̂ is estimated via the various relabelling methods, and we have rescaled by 104 from

a usual average to give more readable results.

For situations where the difference between two components is large, that is when either

µ2 was very different from zero or σ2
2 was very different from 1 (for example, σ2

2 = 0.1 or

σ2
2 = 10), all relabelling algorithms, unsurprisingly, performed well as label switching occurs

rarely. We therefore omit the details of these simulations and focus on situations where

the two components are very similar. Tables ??–?? provide the details of some of the most

interesting situations considered.

For the case where (π, µ2, σ
2
2) = (0.5, 2, 1) and the sample size is varied as n = 50 and

n = 100 (Table ??), it is immediately striking that for all relabelling algorithms except the

IC, the estimates of µ1 and µ2 are pushed toward each other with the effect being strongest

for the CPL and AL methods, and a moderate effect for the probabilistic strategies. Further,

for all relabelling methods, the variances are severely over-estimated and neither feature is
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improved by an increase sample size, even when raised to n = 500 (not shown).

Both of these problems can be attributed to posterior weight on the possibility of both

components being in the middle of the dataset with similar means and different variances.

This solution, however, yields a rather different interpretation of the components than the

one used to generate the data. The high standard deviation of the simulations indicates a

high uncertainty in the ‘correct’ interpretation of the mixture distribution. In terms of the

predictive error ϕ, PL and the probabilistic approaches are best performers in both sample

sizes.

When looking at the results for very similar components (µ2 = 0.1, Table ??), we see the

converse feature of the average estimates of µ1 and µ2 being pushed apart from each other.

This is caused by the components being virtually indistinguishable so the MCMC responds

by moving one component excessively to the left and the other excessively to the right.

These results, opposite to the previous case where the components were pushed together,

are an illustration of the limitations of using ergodic average estimates for the parameters.

For this situation interestingly the CPL and AL method perform better than the other

methods, while probabilistic relabelling methods are in the middle. It is also interesting to

see that, contrary to the previous set of situations, the estimates of the variance are more or

less on target for all algorithms considered. In this case, the predictive error ϕ is minimized

by CPL and AL, although SEMUP performs fairly well.

In Table ?? the components are more distinguishable (µ2 = 2), but the mixing weights

are rather different, with π = 0.1. In this case, µ1 and σ1 are both severely over-estimated

while µ2 and σ2 are estimated accurately for all relabelling strategies with none of the meth-

ods appearing to be superior to the others. Additionally π is also over-estimated strongly

which can be attributed to the asymmetry in the posterior distribution. The predictive

error ϕ is smallest for the PL method while it is largest for the IC.

Overall the results indicate that none of the methods compared are performing uniformly
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Table 3.3: Average parameter estimates over 100 iterations for different relabelling strategies
when (π, µ1, µ2, σ

2
1, σ

2
2) = (0.5, 0, 2, 1, 1) for n = 50 and n = 100. Values in parentheses give

the standard deviations of the estimates.

n θ IC PL CPL AL EMP SEMP SEMUP
µ1 −0.02 (0.21) 0.19 (0.12) 0.64 (0.19) 0.65 (0.18) 0.20 (0.09) 0.20 (0.16) 0.34 (0.16)
µ2 1.90 (0.12) 1.69 (0.03) 1.24 (0.09) 1.23 (0.08) 1.69 (0.01) 1.68 (0.06) 1.54 (0.06)

50 σ2
1 1.63 (0.39) 1.62 (0.31) 1.58 (0.51) 1.58 (0.51) 1.62 (0.37) 1.63 (0.38) 1.66 (0.39)

σ2
2 1.61 (0.47) 1.62 (0.55) 1.66 (0.34) 1.66 (0.34) 1.62 (0.48) 1.61 (0.48) 1.58 (0.46)
π 0.50 (0.06) 0.51 (0.09) 0.49 (0.38) 0.49 (0.39) 0.51 (0.11) 0.46 (0.08) 0.47 (0.11)
ϕ 205 97 166 169 96 86 83
µ1 0.07 (0.18) 0.23 (0.23) 0.58 (0.36) 0.58 (0.36) 0.27 (0.28) 0.28 (0.25) 0.30 (0.26)
µ2 1.91 (0.19) 1.75 (0.23) 1.39 (0.39) 1.40 (0.38) 1.71 (0.30) 1.70 (0.29) 1.68 (0.27)

100 σ2
1 1.52 (0.39) 1.52 (0.39) 1.50 (0.39) 1.50 (0.39) 1.51 (0.35) 1.52 (0.39) 1.52 (0.36)

σ2
2 1.47 (0.36) 1.47 (0.37) 1.49 (0.36) 1.49 (0.36) 1.49 (0.40) 1.47 (0.35) 1.47 (0.39)
π 0.50 (0.05) 0.50 (0.07) 0.49 (0.24) 0.49 (0.24) 0.50 (0.09) 0.50 (0.09) 0.49 (0.09)
ϕ 110 65 188 184 66 67 70

Table 3.4: Average parameter estimates over 100 iterations for different relabelling strategies
when (π, µ1, µ2, σ

2
1, σ

2
2) = (0.5, 0, 0.1, 1, 1) for n = 100. Values in parentheses give the

standard deviations of the estimates.

θ IC PL CPL AL EMP SEMP SEMUP
µ1 −0.60 (0.24) −0.42 (0.28) −0.22 (0.30) −0.21 (0.30) −0.47 (0.30) −0.44 (0.28) −0.36 (0.29)
µ2 0.67 (0.22) 0.47 (0.24) 0.27 (0.26) 0.27 (0.26) 0.52 (0.25) 0.50 (0.25) 0.42 (0.25)

σ2
1 0.95 (0.25) 0.95 (0.31) 0.94 (0.26) 0.94 (0.26) 0.95 (0.24) 0.95 (0.27) 0.96 (0.28)

σ2
2 0.92 (0.23) 0.91 (0.29) 0.92 (0.23) 0.92 (0.23) 0.92 (0.23) 0.91 (0.24) 0.91 (0.24)
π 0.49 (0.09) 0.49 (0.15) 0.47 (0.29) 0.47 (0.29) 0.49 (0.14) 0.48 (0.14) 0.50 (0.15)
ϕ 211 37 0.4 0.4 66 50 18

Table 3.5: Average parameter estimates over 100 iterations for different relabelling strategies
when (π, µ1, µ2, σ

2
1, σ

2
2) = (0.1, 0, 2, 1, 1) for n = 100. Values in parentheses give the standard

deviations of the estimates.

θ IC PL CPL AL EMP SEMP SEMUP
µ1 0.75 (0.40) 0.91 (0.47) 1.07 (0.55) 1.08 (0.55) 0.85 (0.45) 0.91 (0.49) 0.95 (0.49)
µ2 2.32 (0.20) 2.17 (0.20) 2.00 (0.21) 1.99 (0.21) 2.22 (0.23) 2.16 (0.23) 2.12 (0.20)

σ2
1 1.39 (0.36) 1.46 (0.46) 1.36 (0.43) 1.35 (0.42) 1.35 (0.36) 1.39 (0.38) 1.38 (0.41)

σ2
2 1.02 (0.29) 0.95 (0.25) 1.05 (0.26) 1.05 (0.27) 1.05 (0.31) 1.02 (0.29) 1.02 (0.32)
π 0.39 (0.10) 0.36 (0.12) 0.28 (0.18) 0.28 (0.18) 0.38 (0.12) 0.39 (0.13) 0.40 (0.14)
ϕ 184 51 57 59 125 106 110

better than any of the others leaving the ultimate decision on which method to use to the

user. The CPL and AL methods are unstable in terms of the predictive error ϕ as they

perform well when the components are very hard to distinguish, but show poor performance

when the components are more separated. Consistent results for ϕ are obtained for the PL

and the probabilistic methods. Based on these results it is, however, evident that the use

of ergodic averages can often be detrimental. Due to the large variation in the parame-

ter estimates we believe the SEMUP method is more appropriate as it is probabilistic and

moreover avoids conditioning on the parameter estimates. It does, however, depend on the

accuracy of the approximation in Equation (??) through the value of R.
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3.4 Discussion

In this paper we have developed a new class of probabilistic methods for the label switching

problem in Bayesian mixture models. The main advantages of these approaches are on the

one hand that the tails of the posterior distributions are recovered and on the other hand

uncertainty associated with relabelling can be incorporated, features that are not present

for deterministic relabelling algorithms. The computation time of the probabilistic meth-

ods are either substantially lower than or on par with the existing deterministic methods

with the exception of the IC. It is shown through analysis of an observed dataset as well as

simulation that the parameter estimates obtained by probabilistic relabelling are virtually

the same as for the deterministic approaches suggesting that the above advantages come

without any loss.

We also introduce an algorithm for probabilistic relabelling, called SEMUP, that does

not rely on ergodic average estimates of parameters as we integrate over a relabelled poste-

rior. Although there is some additional computation required to approximate the relevant

integral that also introduced a trade-off between speed and accuracy, the additional time

was found to be reasonable for single datasets.

During the evaluation of the methods it was pointed out that some information about

the choice of K, the number of components, can be derived from probabilistic relabelling

algorithms. Although the full extent of the relevance of probabilistic relabelling for choosing

K is still to be evaluated carefully, it does show promise. The uncertainty in the relabelling

can be used as an indication that too many components are in the model, since high uncer-

tainty in relabelling suggests that there is ambiguity between adjacent components, implying

that it may be better to merge them. Further work will need to be done to get a better

understanding of this.
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3.5 Appendix

Derivation of Equation (??)

First, gr(νr; γ̂,Y ,Z(r)) is defined as the probability that permutation νr is ‘correct’, given

the data Y , the current estimate of the parameters γ̂, and the allocation vector Z(r), for

the rth iteration of the sampler. In an abuse of notation when we write νr henceforth we

mean ‘permutation νr is correct’.

Then

Pr[νr|Y ,Z(r), γ̂] =
Pr[Y |νr,Z(r), γ̂]Pr[Z(r)|νr, γ̂]Pr[νr|γ̂]

Pr[Y |γ̂,Z(r)]Pr[Z(r)|γ̂]
.

Now, the terms in the denominator do not depend on νr. The permutations νr are marginally

independent of the parameters γ̂ — it is exactly this that causes the label switching problem.

So we have Pr[νr|γ̂] = Pr[νr], and we assume that each permutation is equally likely, so we

are left with

Pr[νr|Y ,Z(r), γ̂] ∝Pr[Y |νr,Z(r), γ̂]Pr[Z(r)|νr, γ̂]

=
n∏
i=1

Pr[Yi|νr, Z(r)
i , γ̂]Pr[Z(r)

i |νr, γ̂]

=
K∏
k=1

∏
i∈Srk

π̂ν(k)fν(k)

(
Yi|θ̂ν(k), η̂

)
,

which is the form given in Equation (??).
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Chapter 4

Sparsity Methods in High

Dimensions

4.1 Introduction

We now switch attention to the second methodological area of the thesis, the recovery

of direct effects from data sets in which the number of predictors, p, is larger than the

number of observations, n. Obtaining information from a dataset with a large number of

predictors is an important issue in statistics. We focus attention on supervised datasets

(i.e. those including at least one response variable). High dimensional, supervised datasets

commonly arise in all fields of statistics, and are particularly common in genetics. There

are at least two kinds of inference one may wish to carry out on such datasets: prediction,

and true sparsity recovery (?). In prediction, the goal is to estimate or predict the response

accurately. True sparsity recovery, on the other hand, focuses attention on the predictors;

the goal is to include the ‘correct’ predictors in the model, where ‘correct’ refers to those

predictors that have a direct effect on the response. A direct effect is a relationship between

a predictor and the response that is not explained by any other measured predictors. Those

predictors that are associated with the response but do not have a direct effect are said to

have indirect effects. There can be many predictors with indirect effects when the predictors

are correlated.

The distinction between prediction and true sparsity recovery is now illustrated with an
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example. Suppose that there are two closely related predictors available for a response. The

response may be an indicator of incidence of heart disease, and the predictors body mass

index (BMI), and fat percentage (proportion of body mass that consists of fat). Suppose

that through an oracle it is known that fat percentage has a direct effect on heart disease in

this model, whilst BMI has only an indirect effect, that comes about through its correlation

with fat percentage. Assume further that after fitting a model, the result is a regression

equation that relates heart disease to BMI but not fat percentage. If the goal was prediction,

we would be quite satisfied. The fact that the included predictor is indirectly responsible for

heart disease is not important, since we are only concerned with making accurate predictions.

If, however, recovery of the true sparsity pattern was the goal, getting the wrong predictor

would be more concerning. On the other hand, suppose our fitted model was a regression

equation that related heart disease to fat percentage, but the effect size was estimated

poorly. This would be a success for recovery of the true sparsity pattern, since the correct

predictor is included in the model. The poor estimate of the effect size, however, means

that the predictive ability of the model may be poor.

In the remainder of this Chapter we introduce the regression notation, and give an

introduction to the lasso (?) and related methods. In Chapter ??, which is the paper ?, we

introduce direct effect testing (DET), which is a novel method that recovers direct effects

between binary predictors and a binary response. Chapter ?? consists of the paper ?, and is

a detailed comparison study of how well various methods, including DET, are able to recover

true sparsity patterns in various scenarios. Chapter ?? then presents some additional work

and extensions that have not been written for publication. We now introduce the notation

for this part of the thesis.

Suppose n observations are collected, including a univariate response variable and p

predictor variables. Suppose for the moment that there is no missing data. The responses

are recorded in a response vector Y = (Y1, Y2, . . . , Yn)′; each predictor variable is recorded in

a vector Xj = (X1j , X2j , . . . , Xnj)′, j = 1, . . . , p, and the predictor variables are combined

into an n × p design matrix X = (X1,X2, . . . ,Xp). We suppose that there is a linear
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relationship between X and Y , and so consider the standard regression equation

Y = Xβ + δ, (4.1)

where β = (β1, β2, . . . , βp)′ is a vector of unknown coefficients, and δ is an n×1 independent

noise vector. For the remainder of this section we assume without loss of generality that

the predictors are scaled and centred, i.e.
∑n

i=1Xij = 0 and
∑n

i=1X
2
ij = 1. Additionally

without loss of generality, for each j we assume
∑n

i=1 Yi = 0.

We will suppose that the true solution to Equation (??) is sparse, meaning that βj = 0

for many j = 1, . . . , p. Let D = {j : βj 6= 0}, so that D denotes the set of predictors that

should be included in the model, i.e. the ‘true sparsity pattern’. Let |D| denote the number

of elements in the set D. It is typically assumed that most of the predictors turn out to be

excluded from the model, i.e. |D| = s� p (see, for example, ?).

We are interested in the case where p is large, even p � n. The classical solutions

to the problem of large p fall into at least three families: principal component regression

(?), ridge regression (?) and subset selection (for example, ?). The principal component

regression family includes methods such as partial least squares (?), and is still an area

of active research, with recent developments including sparse sufficient data reduction (?).

Since principal component regression is focussed on prediction rather than sparsity, we do

not consider it further here. Ridge regression and subset selection, which are prediction and

sparsity methods respectively, are combined by the lasso (?).

4.2 The Lasso

The lasso (least absolute shrinkage and selection operator) was popularised by the seminal

paper of ?. It is also known as basis pursuit in the machine learning and wavelets literature

(?). The lasso can be described as a penalised regression method, placing it in the same

class as ridge regression (?).

Recall that the ordinary least squares (OLS) solution to the regression equation (??) is
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obtained by minimising the residual sum of squares

β̂ == argmin
β

(Y −Xβ)2.

In penalised regression, a penalty function p(·) is added, with a tuning parameter λ, to give

β̂ == argmin
β

(Y −Xβ)2 + λp(β). (4.2)

The ridge regression solution is obtained by setting p(β) =
∑p

j=1 β
2
j , and has the property

that the coefficients βj , j = 1, . . . , p are shrunk towards zero. The amount of shrinkage that

occurs is controlled by the size of the tuning parameter λ. From a Bayesian perspective, ridge

regression is equivalent to assigning independent normal priors to the βj ’s. The method does

not cause sparsity. Indeed, βj 6= 0 almost surely for all j. Generalisation of ridge regression

to the penalty p(β) =
∑p

j=1 |βj |γ , for γ ≥ 0 — called bridge regression — is considered by

?.

The lasso uses p(β) =
∑p

j=1 |βj |, corresponding to a bridge regression with γ = 1. The

consequence of using a linear penalty, rather than the quadratic penalty of ridge regression,

is that sparsity is achieved, since some of the coefficients βj will be zero. This is due to

the non-differentiability of p(β) at zero. From a Bayesian perspective, lasso regression is

equivalent to assigning independent double exponential priors to the βj ’s. The lasso is also

commonly expressed in the following form:

β̂ = argminβ(Y −Xβ)2 subject to
p∑
j=1

|βj | < t, (4.3)

where t now takes the role of the tuning parameter. The forms of Equations (??) and (??)

are equivalent, in the sense that for each t there exists a λ that gives the same solution, and

vice-versa.

The applicability of the lasso was further increased with the introduction of the LARS

(least angle regression) algorithm (?). This algorithm can be used to reconstruct the entire

lasso path (i.e. the value of each βj , j = 1, . . . , p, as a continuous function of the penalty

λ) in the time it takes to carry out OLS regression. Not only is LARS a useful calculation
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algorithm, its method of operation is also instructive in understanding how the lasso behaves,

and its relation to other methods. Therefore, we now consider the LARS algorithm in some

detail. The algorithm proceeds as follows, where cor(·, ·) denotes correlation.

1. Start with the null model: βj = 0 for all j = 1, . . . , p.

2. Enter the variable Xj with the largest absolute value of cor(Xj ,Y ) into the model.

3. Gradually adjust βj so that cor(Xj ,Y −Xβ) decreases, until there exists a variable

Xk with an equal residual correlation, cor(Xk,Y −Xβ) = cor(Xj ,Y −Xβ).

4. Enter variable Xk into the model, and now adjust the coefficients βj and βk such that

cor(Xk,Y −Xβ) and cor(Xj ,Y −Xβ) are both decreasing at the same rate (so they

remain equal).

5. Continue adjusting until there exists a variable Xl with an equal residual correlation,

cor(Xl,Y −Xβ) = cor(Xk,Y −Xβ) = cor(Xj ,Y −Xβ),. . .

This process continues in the obvious way, with the condition that if any coefficient βj

becomes zero at any point, the variableXj is removed from the model at that point (but may

be re-introduced later). The process terminates when either the OLS solution is reached,

when there are as many active variables in the model as there are observations, or when

some other criterion specified by the user is reached.

An artificial example with three variables, illustrating the LARS procedure, is given in

Figure ??. The y-axis represents the standardised values of the coefficients, while the x-axis

represents the severity of the sparsity penalty, which depends on λ (becoming less severe

from left to right). The first variable to enter the model is X2, at the point labelled ‘1’ (at

the top of Figure ??). Then at the point labelled ‘2’, variable X1 also enters; notice that at

this point the path of the coefficient of X2 adjusts its direction. Finally variable X3 enters

the model at point ‘3’, and the OLS solution is reached at the right hand end of the Figure,

and the procedure terminates.

It is often overlooked that, for p > n, the lasso estimator is multimodal (see, for example

?). This is an important issue that needs further work and consideration. In this work,

however, for simplicity we identified a single solution only for each lasso regression.
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Figure 4.1: Illustrative example of the LARS procedure with three variables

4.2.1 Choosing the Tuning Parameter λ

Choosing the tuning parameter λ, or equivalently selecting the point on the LARS path to

take as the solution, is a model selection problem. A popular method to select the tuning

parameter λ is k-fold cross validation. This is introduced in ? and specifically applied to the

lasso in ?. In brief, the idea is to split the observations into k equally sized groups (k = 10 is

a common choice for the lasso), and for each kth group, use the remaining k−1 groups to fit

the lasso, and calculate the error in predicting the kth group of observations. The average

prediction error can then be calculated over the k parts. In the case of the lasso, the value

of λ that minimises the average prediction error would be chosen. Standard cross-validation

techniques involve splitting the data into two groups, fitting the various models with one

group, then selecting the model that minimises the prediction error of the second group.

The main advantage of k-fold cross validation, over the two groups method, is the increase
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in power gained by using more observations to fit the models (see, for example, ??).

An alternative, less computationally intensive method to choose λ is to use standard

model fit criteria such as Akaike’s information criterion (AIC) (?) and Schwarz’s information

criterion (BIC) (?). The AIC is essentially a prediction error criterion, where the ‘best’

model is obtained by minimising

AIC = 2pa − 2 logL,

where pa is the number of active (nonzero) coefficients in the model, and L is the likelihood

evaluated at the corresponding values of the parameters. The focus of the BIC, on the other

hand, is the recovery of the true model, and one selects the model minimising

BIC = pa log n− 2 logL,

where n represents the number of observations and the other parameters are defined as

above. The BIC tends to select solutions with less coefficients than the AIC.

We have preferred to use model fit criteria than cross-validation in this work, because

of the computational savings. These savings has been essential especially for the extensive

simulations carried out in Chapter ?? (?). Also, since we focus attention on true sparsity

recovery rather than prediction, we see BIC as a more appropriate choice than both AIC

and cross validation. Further comments on the choice of the tuning parameter λ are made

throughout this work.

4.3 Extensions and Alternatives to the Lasso

The importance and influence of the lasso is reflected in a vast array of literature devoted to

its extensions and alternatives, following the original paper of ?. Therefore, the discussion

in this section is necessarily an incomplete summary. We focus on the methods that are

considered in the subsequent Chapters.
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4.3.1 Screen and Clean

A major criticism of the lasso is that it is very difficult to assign significance to predictors.

A solution to this is given by the ‘screen and clean’ method (?). The idea of the procedure

is to split the data into two groups, D1 and D2, of equal size n/2.

Group D1 is used for the ‘screen’ stage. This involves fitting a dimension reduction

method, such as lasso. ? discuss splitting the data into three groups rather than two, and

using the second group for cross-validation to select the tuning parameter λ. Whilst this is

necessary for the theoretical developments of the method, simulations demonstrate that a

two group approach and selecting λ by k-fold cross validation is superior. In this thesis, we

have used BIC to select λ when using screen and clean, and have hence used the two group

approach. After the optimal tuning parameter λ has been chosen, the predictors {Xj} with

β̂j = 0 are discarded from the model — only the predictors with nonzero coefficients are

retained, and carried forward to the second stage.

The second stage (the ‘clean’ stage) of the procedure involves fitting the second half of

the data, D2, using only the retained predictors. ? propose that this is done by fitting

an OLS regression, and declaring significance of the remaining predictors according to their

p-values. These p-values are subject to a Bonferroni correction (?), according to the number

of predictors pa remaining in the model.

A weakness of the screen and clean method is the sensitivity of the p-values to the

selection of D1 and D2. ? remedy this by proposing a ‘multiple split’ procedure, in which

screen and clean is carried out multiple times, B say, with new groups Db1 and Db2 chosen

for each b = 1, . . . , B.

4.3.2 Stability Selection

Stability selection (?) tackles the problem of significance testing for predictors by resam-

pling. The idea is to select predictors that are ‘stable’, in the sense that their coefficients

are nonzero in a certain proportion of lasso regressions carried out on resampled copies of

the data. Each sample of the data is generated by selecting n/2 observations at random

(without replacement), and repeating this process B times, say. This is the method used by

45



?, see ? for discussion of the choice n/2. Lasso regression is then fitted to each sample of the

data, with an optimal tuning parameter λ̂(b) chosen for each resampled copy, b = 1, . . . , B.

The predictors with nonzero coefficients are recorded from each sample of the data. Let mj

be the count of times the jth predictor is nonzero. We then calculate, for each predictor Xj ,

πj = mj/B,

the proportion of times that each predictor is present in the fitted model over the B resam-

plings. Predictor Xj is then deemed to be significant if πj > πthr, where πthr is a tuning

parameter. Stability selection does not provide in itself a method to estimate effect sizes,

but one could, for example, fit a linear regression on the variables that have been selected.

A strength of stability selection is that the predictors recovered are insensitive to the

choice of πthr for πthr ∈ (0.6, 0.9) , and insensitive to the tuning parameter λ used in each

of the lasso regressions (?), provided a reasonable value of λ is chosen. The procedure

is also proven, in the case of exchangeable coefficients, to bound the expected number of

incorrectly detected predictors. Even when the exchangeability conditions are violated, the

false positive rate is shown to be well controlled (?, and see also Chapter ?? in this work).

On the other hand, the nature of stability selection means that it will fail in the presence

of highly correlated predictors. Consider a set of, say, 10 similar predictors, one of which

has a true large effect on the response. Then each predictor may have πj ≈ 1/10, as the

lasso regression tends to select one of the predictors ‘at random’ to represent the effect (see,

for example, ?). This proportion πj would be smaller than any reasonable threshold πthr,

meaning that none of the 10 predictors would be declared significant, and the model would

fail to detect the true large effect.

4.3.3 The Dantzig Selector

The Dantzig selector is developed by ?, and is quite distinct from the lasso, rather than

being an extension to it. Whereas the lasso penalty is a special case of Equation (??),

the Dantzig selector is quite different. The minimization of the residual sum of squares is
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replaced by the minimization of the infinity norm of the correlated residuals:

β̂ = argmin
β

‖X ′(Y −Xβ)‖∞ + λ‖β‖1. (4.4)

The infinity norm, also known as the sup-norm, controls the value of the largest element of

the vector,

‖(c1, c2, . . . , cm)′‖∞ = sup
i
{c1, c2, . . . , cm}.

The reason for the development of the Dantzig selector was that theoretical results were more

readily available, and a suggested shift of emphasis from prediction to sparsity recovery (?).

Recent work, however, has established similar properties for the lasso (for example, ?).

? have developed an algorithm that allows the entire path of the Dantzig selector to be

calculated, analogous to the LARS algorithm for lasso. The work also shows that in sparse

situations, the Dantzig and lasso solutions are identical, and hence the Dantzig selector has

not been considered in Chapters ?? or ??. Instead, the Dantzig selector is considered in

Chapter ??, where we highlight similarities of the direct effect testing method to the Dantzig

selector.
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Chapter 5

Direct Effect Testing: A Two-Stage

Procedure to Test for Effect Size

and Variable Importance for

Correlated Binary Predictors and a

Binary Response

Abstract

In applications such as medical statistics and genetics, we encounter situations where a large

number of highly correlated predictors explain a response. For example, the response may

be a disease indicator and the predictors may be treatment indicators or single nucleotide

polymorphisms (SNPs). Constructing a good predictive model in such cases is well studied.

Less well understood is how to recover the ‘true sparsity pattern’, that is finding which pre-

dictors have direct effects on the response, and indicating the statistical significance of the

results. Restricting attention to binary predictors and response, we study the recovery of

the true sparsity pattern using a two-stage method that separates establishing the presence

of effects from inferring their exact relationship with the predictors. Simulations and a real
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data application demonstrate the method discriminates well between associations and direct

effects. Comparisons with lasso based methods demonstrate favourable performance of the

proposed method.

Keywords: Contingency table; Direct effect; High dimensional; Lasso; Noncentral hyperge-

ometric distribution; Sparsity.

5.1 Introduction

It is commonplace in applications of statistics to encounter situations in which a large

number of predictors are available to explain a response. Consider the standard regression

Y = Xβ + ε, (5.1)

where Y is an n × 1 response vector explained by an n × p design matrix X through

an unknown p× 1 coefficient vector β with n× 1 noise vector ε. Having a large number of

predictors, p, possibly even p > n, should intuitively be beneficial, as we are maximising the

information available to explain the response. From the perspective of producing a good

predictive model, this is true, and many methods are available for this objective, such as

principal component regression (?), partial least squares (?), ridge regression (?) and more

recent methods such as sparse sufficient data reduction (?).

In this paper, however, our focus is in recovering the so-called ‘true sparsity pattern’ (?),

in which we search for a subset of predictors deemed to have a ‘direct effect’ on the response,

that is an effect that is attributed to the predictor in question rather than being due to the

correlation of the predictor with other important predictors. A more formal definition is

given later. We wish to find a sparse solution to the regression given in Equation (??) and

in particular carry out significance tests of variable importance. The lasso (?) is a very

popular sparse estimator, where sparsity is induced by applying an L1 penalty to the size

of the vector β. It is computationally fast thanks to the least angle regression algorithm

(LARS, ?). Other possibilities for sparse estimation include subset selection (?), the Dantzig

selector (?) and sure independence screening (?). For the lasso, much work has been carried
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out concerning consistency in terms of sparse pattern recovery (see, for example, ???).

Until recently, it has not been possible to reliably ascertain significance of parameters

included in a sparse model, that is to test for variable importance. Although standard

errors of lasso parameters are available (??) these are difficult to interpret because of the

discontinuity of the sampling distribution of the parameters. In the situation where the

predictors in the model are not too highly correlated, recent methods that address the

problem with significance testing include the ‘screen and clean’ method (??), and stability

selection (?). Such methods are also appropriate when, in the highly correlated predictor

case, it is satisfactory to recover predictors that are correlated with the true origins of

the effects. Carrying out significance tests in the presence of multicollinearity is, however,

according to Meinshausen (?, p. 266) ‘in some sense ill-posed’.

There are many situations, however, where multicollinearity is present and we are nev-

ertheless interested in recovering the true sparsity pattern, along with ascertaining the

significance of our result. For example, in genomewide association studies we study a num-

ber of sites on the genome called single nucleotide polymorphisms (SNPs) which are highly

correlated with each other. We would like to identify exact regions on the genome that

influence the risk of disease, so that appropriate interventions can be considered. Typically,

a large number of SNPs are not measured, so true sparsity only corresponds to improving

localisation of the effect, not identifying the true causal SNP. The problem of multicollinear-

ity can be seen by considering a group J of highly correlated predictors, one of which has

a true non-zero regression coefficient (or direct effect). In such a situation the lasso will

select one variable from J , but there is no stability in which variable is selected. This is

noted in ?, where the ‘elastic net’ is proposed as a solution, which modifies the lasso by

adding an L2 penalty, promoting inclusion of all the predictors in the group J . Whilst this

improves the sensitivity of recovering the sparsity pattern, this is at the expense of inclusion

of a potentially large number of unrelated predictors in the model. Additionally, effect sizes

become difficult to interpret as they are shared amongst the correlated predictors. Such

an approach is useful, for example, in the recovery of gene networks, but not for the true

sparsity recovery problem considered here. Meinshausen ? adopts a hierarchical approach,

in which he looks for significance at the level of groups of variables, rather than the level of
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individual variables. This is sensible, since in the case of the group J of highly correlated

predictors, it can be easy to identify that at least one member of the group has a direct

effect, but very difficult to identify which member(s) of the group have the effect. The

method, however, relies upon the selection of an appropriate hierarchical clustering regime,

and it is apparent that the results will depend upon the clustering method chosen.

In this paper we introduce an alternative two-stage method that allows separation of the

two inherent kinds of uncertainty: presence of an effect that is sufficiently large to be deemed

significant and which predictor(s) the effect is allied to. The application of the method is

to ‘fine mapping’ problems, where the correlation is particularly high and may violate the

standard correlation structure assumptions relied upon by other methods for consistency

results (see ?, for a summary of these assumptions and further references). Consequently,

our method makes no claims about consistency of variable selection. Instead, the idea is to

acknowledge uncertainty about which predictor is the source of a given effect by providing

probabilities that a direct effect arises from each of a collection of predictors. Currently, we

restrict attention to binary predictors and response. As the method identifies direct effects,

we will call it direct effect testing (DET).

In the remainder of the manuscript, we formally define the methodology in Section ??,

before we investigate its behaviour on simulated data and real data (in Section ?? and

Section ??). We conclude with a brief summary and discussion in Section ??.

5.2 Method

5.2.1 Correlated Lasso

Suppose we are interested in a response Y , and its relationship to a set of p predictors

X = (X1, . . . ,Xp). Consider the situation where we have n complete observations; suppose

that X and Y are scaled and centred, so that
∑n

i=1 xij = 0 and
∑n

i=1 x
2
ij = 1 for each

j = 1, . . . , p, and
∑n

i=1 yi = 0 and
∑n

i=1 y
2
i = 1. We are interested in finding direct effects

between the predictors and the response. Different definitions of the term ‘direct effect’

appear in the literature. For example, ? defines a direct effect as a dependence between two

variables that is not mediated by a third variable. In this paper, we define a direct effect to
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be a partial dependence between the response Y and a covariate of interest Xj . Formally,

this can be expressed as the complement of a conditional independence statement about Xj

and Y ,

(Y ⊥⊥Xj |X−j)c.

where X−j denotes all predictors except Xj . Alternatively, in a graphical model this would

correspond to an edge between Xj and Y . In a regression of Y on all the predictors X, it

corresponds to βj 6= 0. This is a more general definition than that of ?, since the relationship

between the predictors X is not specified — there can be confounders, effect modifiers, or

overlap in information between the predictors. The application we have in mind is where

the predictors are genetic markers, where the relationship is induced by spatial correlations

that occur as a consequence of the inheritance.

Direct effects can be difficult to identify when the predictors are highly correlated. To

see this, suppose that there is a direct effect between Xj and Y , and a further covariate

Xk is highly correlated with Xj . Then a correlation is induced between the covariate Xk

and the response Y , but this does not mean there is a direct effect between Xk and Y .

We will call the resulting association between Xk and Y an indirect effect. Our goal is

then to identify a small number of direct effects from a potentially much larger number of

associations.

To proceed, consider multiplying both sides of the regression equation (Equation ??)

by the transposed design matrix X ′ and the reciprocal of the number of observations, n−1,

giving the normal equations

Ry = Rβ + ε, (5.2)

where R = n−1X ′X is the empirical correlation matrix of X, and Ry = n−1X ′Y is the

correlation vector whose jth entry is the empirical correlation of predictor Xj with the

response Y . The vector ε = X ′ε is the correlated error term. Clearly, when R is invertible,

the equation leads to the standard least squares estimate, β̂ls. In general, when p is large, it

is desirable to control the estimate by introducing some regulation. For example, one could

solve Equation (??) using an L1 constraint on the coefficients, β, known as the lasso (?).
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This can be written as

β̂lasso = argmin
β

‖Y −Xβ‖22 + λ‖β‖1.

We consider instead applying the lasso constraint to Equation (??), which corresponds

to

β̂ = argmin
β

‖X ′(Y −Xβ)‖22 + λ‖β‖1. (5.3)

In fact, if one replaces the L2 norm on the correlated residuals with the L∞ norm in

Equation (??), this would correspond to the Dantzig selector (?).

The advantage we exploit in this paper is that under the proposed formulation in Equa-

tion (??), the distribution of the correlated error term ε can be exactly determined, for

binary variables at least. Moreover, it does not depend on the uncertainty in the estimation

of β that is a result of multicollinearity.

5.2.2 Special Case: Binary Variables

In this paper we focus on the special case where the predictors and the response are binary.

The overall approach for binary variables can be summarised as follows; detailed descriptions

of each steps follow:

1. Construct a regression equation based on the empirical correlations between the predic-

tors and response. Fit this regression using a lasso regression, carrying out constrained

minimisation of the correlated residuals rather than the raw residuals (Equation ??).

2. Carry out significance testing by separating the uncertainty into two levels,

Stage I: Carry out significance testing on effect sizes using Fisher’s noncentral hypergeo-

metric as the null distribution (Section ??).

Stage II: Account for uncertainty in the origin of the effect using counting rules (Section

??).

Let Y u andXu
j denote unstandardised versions of the binary variables Y andXj , taking

values 0 and 1. Then, Table ?? gives notation for the 2×2 Table. Without loss of generality
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we assume in the sequel that the correlation of each predictor Xj , j = 1, . . . , p, with the

response Y is non-negative, reversing the binary coding for Xj whenever this does not hold.

Table 5.1: Notation for a 2 × 2 contingency table for a binary response Y u and binary
predictor Xu

j

Observed Counts
Y u = 0 Y u = 1 Total

Xu
j = 0 aj bj t0j

Xu
j = 1 cj dj t1j

Total s r n

Under the null hypothesis of no association between Xj and Y , the count aj in the

contingency table (Table ??) is distributed according to a hypergeometric distribution with

mean µ0j and variance σ2
0j , given by

µ0j =
st0j
n
,

σ2
0j =

rst0jt1j
n2(n− 1)

.

Writing zj = σ−1
0j (aj − µ0j), it can be seen that (see Appendix ??),

zj =
√
nρ̂y,j , (5.4)

where ρ̂y,j is the empirical correlation between Xj and Y . Therefore we can relate back to

Equation (??), so that for each zj ,

zj =
∑

βkn
−1/2ρ̂j,k + εj , (5.5)

where ρ̂j,k is the empirical correlation between Xj and Xk.

We are interested, however, in direct effects rather than associations. A hypothesis test

of a direct effect is

H̃j
0 : Xj is not directly affecting Y ,

H̃j
1 : Xj is directly affecting Y .
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Regardless of which of the above hypotheses apply, the count aj is distributed according to

Fisher’s noncentral hypergeometric distribution (?) with, say, mean µ̃ωj and variance σ̃2
ωj ,

under H̃j
ω, ω = 0, 1. Under H̃j

1 the noncentrality of the distribution is allowed to include

a potential direct effect between Xj and Y , but under H̃j
0 the noncentrality accounts for

indirect effects only. Once the mean, µ̃ωj is known, the variance can be approximated (?)

as:

σ̃2
ωj ≈

ngh

(n− 1)(t0jh+ t1jg)
,

g = µ̃ωj(t0j − µ̃ωj), h = (s− µ̃ωj)(µ̃ωj + t1j − s). (5.6)

As each βk in Equation (??), denotes the direct effect between predictor Xk and Y ,

we expect most of these to be zero, and βk 6= 0 means that predictor Xk has a direct

effect on the response Y . Since all βk, k = 1, . . . , p, are unknown, we will estimate them

as β̂k, k = 1, . . . , p via the approach of Equation (??), using the least angle regression

algorithm (?). In order to choose the constraint on the lasso, note that if we take E(εj) = 0

for each j,
p∑
j=1

var(εj) = E
(
ε2j
)

=
p∑
j=1

σ̃2
1j

σ2
0j

. (5.7)

We therefore select the point on the lasso path where
∑p

j=1 ε
2
j is equal to its expectation

(Equation ??). The noncentral variance σ̃2
1j depends upon the current noncentrality esti-

mate, hence is recalculated for every step along the lasso path.

The model (??) is not homoskedastic because var(εj) = σ2
j /σ

2
0j , so the variances depend

on the size of the noncentrality of each predictor Xj . However, scaling by the standard

deviation under each Hj
0 provides some stability. Furthermore, the more severe the non-

centrality of Xj , the smaller its variance tends to be, so there will not be points that exert

excessive leverage on the linear model due to large variances. Note further that the εjs

are not independent as they are correlated residuals. Standard regression carried out in

a situation of non-independent errors, however, leads to coefficient estimates that are still

unbiased, but are unlikely to be the best linear unbiased estimator. In this framework, the

variance of the estimators is large in the presence of multicollinearity in the predictors. This
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is taken care of in the two-stage procedure outlined below.

Ideally, we would like to carry out the hypothesis tests (H̃j
0 , H̃

j
1) to establish whether or

not a direct effect exists between Xj and Y , for each j = 1, . . . , p. For a given j, if we knew

the direct effects on the other predictors, β−j , we could calculate the indirect effect between

Xj and Y , and hence the noncentrality of the noncentral hypergeometric null distribution.

Then, the distribution of aj under H̃j
0 would have mean µ̃0j and variance σ̃2

0j , where it is

natural to express the mean as

µ̃0j = µ0j + σ0j

∑
k 6=j

βkn
−1/2ρ̂j,k.

This comes about by taking the central mean µ0j , and estimating the null noncentrality

parameter as a linear combination of all the indirect effects between Xj and Y , and then

σ̃2
0j is estimated via Equation (??). Thus any remaining association can be attributed to a

direct effect.

Unfortunately, we only have an estimate, β̂, and hence we cannot carry out the above

hypothesis tests explicitly. We therefore resort to a two-stage procedure in which we separate

the uncertainty in β̂ into effect size uncertainty and predictor assignment uncertainty.

5.2.3 DET Stage I — Hypothesis Testing for Effect Size

For a set J of highly correlated predictors, where at least one has a direct effect, the lasso

will select one variable from the group (?). Therefore, the coefficient estimate β̂j assigned

to predictor Xj can be used to estimate the size of the corresponding effect, but we must

bear in mind that Xj may not be the actual predictor from which the effect originates. We

test for significance of the size of the effect assigned by the lasso to each predictor using a

Fisher’s noncentral hypergeometric null distribution with the estimate β̂ used to determine

the non-centrality. Denoting the resulting mean by ˆ̃µ0j and the variance by ˆ̃σ2
0j we obtain,

ˆ̃µ0j = µ0j + σ0j

∑
k 6=j

β̂kn
−1/2ρ̂j,k,
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and again we can estimate the variance via Equation (??). The test statistic is then calcu-

lated as

T =
zj − ˆ̃µ0j

ˆ̃σ0j

,

and this can either be tested against the relevant non-central hypergeometric distribution,

or provided the margins of the contingency table are sufficiently large, an approximation to

a standard normal distribution is possible.

Since we are carrying out p significance tests, a multiple testing correction is needed.

We have used a Bonferroni correction in the results and simulations for this paper for

transparency. Any other multiple testing method would offer an improvement over this;

which method is appropriate would depend on the application.

5.2.4 DET Stage II — Uncertainty in Direct Effect Predictor Assignment

Suppose predictor Xj has a direct effect on the response Y , but is highly correlated with

predictor Xk. Then by chance it may happen that ρ̂y,k > ρ̂y,j , and thus the lasso wrongly

identifies the effect on predictor Xk (see also ?). For each detected effect, we therefore

identify a class of predictors from which each effect could truly have originated. Moreover,

we allocate a probability to each predictor in this class measuring the likelihood that the

effect originated from that predictor. Returning to the graph theory analogy, in the first

stage we have established the number of edges originating from the response Y , and roughly

where each edge leads. We now acknowledge uncertainty, over a set of vertices, for each

edge.

When an effect is declared on a predictor Xk in stage I, we generate a set {Xj : j ∈ J }

of predictors highly correlated with Xk (including Xk itself). Then for each j ∈ J we would

like to calculate pj|k = pr(Xj true direct effect|Xk declared direct effect).

To proceed we use the result that

pj|k ∝ pr(Xk declared DE|Xj true DE, Xj or Xk declared DE)
1− pr(Xk declared DE|Xj true DE, Xj or Xk declared DE)

×pr(Xj declared DE|Xj true DE)pr(Xj true DE), (5.8)
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where DE stands for direct effect. The proof is given in Appendix ??. We make three

assumptions in the sequel:

1. The set J covers all reasonable predictors, in that pj|k is negligible for any j /∈ J . We

discuss the choice of J at the end of this section.

2. Each predictor is a-priori equally likely to be responsible for a direct effect on Y .

3. For each j ∈ J , pr(Xj declared DE|Xj true DE) is the same. In other words the

sensitivity of the method does not depend on which predictor happens to possess the

effect.

These assumptions allow us to calculate pj|k for each j ∈ J as

pj|k ∝
pr(Xk declared DE|Xj true DE, Xj or Xk declared DE)

1− pr(Xk declared DE|Xj true DE, Xj or Xk declared DE)
, (5.9)

then normalising these probabilities to sum to one over the set J .

We now outline the procedure for calculating the right hand side of Equation (??).

Suppose an effect has been observed in stage I between Xk and Y . Let βk be the size of the

direct effect, measured as the change in the estimated effect size if Xk were changed from

{Xk = 0} to {Xk = 1}, but all other variables X−k were held constant, and let αk be the

baseline effect size under {Xk = 0}, with the other variables unchanged, so that

βk = pr(Y{Xk=1} = 1)− pr(Y{Xk=0} = 1),

αk = pr(Y{Xk=0} = 1). (5.10)

We estimate αk and βk using the association measure zk, with the indirect effects re-

moved,

α̂k =
t0k − µ0k − σ0k(zk −

∑
k 6=j β̂kn

−1/2ρ̂j,k)
t0k

,

β̂k =
r − t0k + µ0k + σ0k(zk −

∑
k 6=j β̂kn

−1/2ρ̂j,k)
t1k

− α̂k, (5.11)

see the Appendix ?? for further details.
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Suppose that Xj has a true direct effect on Y , but this effect has been detected, in stage

I, on predictor Xk. The effective number of observations that we can use to distinguish

between Xj and Xk as the origin of the effect is given by

NE(j, k) = n(γ0,1 + γ1,0),

where

γω1,ω2 =
1
n

n∑
i=1

I(xuik = ω1, x
u
ij = ω2), (5.12)

i.e. when the two predictors take different values. Evidence towardsXj rather thanXk truly

possessing direct effect, the ‘truth’ in this case, occurs when (Xj ,Xk,Y ) = (0, 1, 0) or (1, 0, 1)

which we suppose happens ET (j, k) times. Evidence towards predictor k rather than

predictor j having a direct effect, the incorrect conclusion, occurs when (Xj ,Xk,Y ) =

(0, 1, 1) or (1, 0, 0), which we suppose happens EF (j, k) times. It is clearly possible to ob-

serve EF (j, k) > ET (j, k), and is particularly likely for small βj , small n or large correlation

between Xj and Xk, resulting in the aforementioned scenario, that Xk is wrongly detected

as possessing the direct effect.

Using straightforward algebra (Appendix ??) we can find,

πEF (j,k) = pr [(Xj ,Xk,Y ) = (0, 1, 1) or (1, 0, 0) |Xj 6= Xk]

=
γ1,0αk + γ0,1(1− αk − βk)

γ1,0 + γ0,1
, (5.13)

with γω1,ω2 as in Equation (??). For intuition, note that if we assume t0j = t0k this reduces

to

π̂EF (j,k) =
1− βk

2
.

It follows that

EF (j, k) ∼ Binomial(NE(j, k), πEF (j,k)), (5.14)

so we can use this to calculate

pr{EF (j, k) > ET (j, k)} = pr(EF (j, k) > NE(j, k)/2)
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for each j ∈ J . Noting now the equality of events

{EF (j, k) > ET (j, k)} = {Xk declared DE |Xj true DE, Xj or Xk declared DE} (5.15)

that is a straightforward consequence of the behaviour of the lasso, this allows us to calculate

pj|k for j ∈ J using Equation (??).

There are various ways that J could be chosen. A cut-off value of ρ could be found so

that pr{EF (j, k) > ET (j, k)} is small for ρ̂jk < ρ, where ρjk is the correlation between Xj

and Xk, i.e. Xj is very unlikely to be the true predictor associated with Xk. Alternatively,

one could fix the size of J to, say, the ten predictors that are most highly correlated with

Xk; or in the spirit of ?, one could consider using clustering algorithms to select J . In

the subsequent work, we adopt the first approach, and choose ρ such that pr{EF (j, k) ≥

ET (j, k) | ρ̂jk < ρ} ≤ 0 ·01. Practically, provided conservative bounds are selected when

choosing J the choice of the set is not important. Indeed, one could simply allow J to

contain all the predictors, in this case those predictors that are not highly correlated with

Xk would turn out to have a negligible probability of containing the true direct effect.

5.3 Simulations

5.3.1 Introduction

We will now evaluate direct effect testing on the ‘ge03d2’ dataset taken from the ‘GenABEL’

package (?) in R (?).

We study DET by simulating binary responses on the data, with various relationships

to the binary predictors. The response for each individual observation, Yi, is generated

according to a Bernoulli distribution with pr[Yi = 1] = µi, where

µi = α+ βj1xij1 + . . .+ βjKxijK ,

so that the response is related to a subset of K predictors with indices {j1, . . . , jK}. The

βjk ’s are chosen to represent different effect sizes. To ensure that µi is always between zero
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and one, |
∑
βjk | < 1. The intercept α is set to

α =
1
2

(
1−

K∑
k=1

βjk

)

to provide approximately equal numbers of observations with Yi = 0 and Yi = 1, and the

influential predictor(s) are chosen at random on each simulation. An alternative approach

is to generate according to a Bernoulli distribution with Pr[Yi = 1] = µi, where

log
(

µi
1− µi

)
= α+ βj1Xij1 + . . .+ βjKXijK .

This would avoid the need for a constraint on the βs, but otherwise changes little in terms

of the simulations.

Throughout this section we select the significance level for stage I of DET via a Bon-

ferroni correction to achieve a family-wise error rate of 0.05. We record two versions of the

DET method — stage I only, in which a find means that the predictor identified by stage I

of the method is the true one; and the full DET, where a find means that a true predictor

is contained in the set J associated with a significant effect, and has a probability of being

a direct effect at least 0.1pmax, where pmax is the probability of the most likely predictor in

the set. This corresponds to a Bayes factor argument, in that a ratio of greater than 10:1

in favour of the more likely predictor implies strong evidence that the more likely predictor

should be preferred. One could change this definition be more or less stringent on which

members of J are allowed to be included: one could choose a different Bayes factor cut-off,

or use an absolute probability such as only considering predictors with probabilities of at

least 0.05. A ‘false find’ (ffind) occurs when a significant direct effect is found but there are

no associated finds. To be clear, any significant effect identified must be either a find or a

false find. When there is more than one true predictor (i.e. jK > 1), there can be more than

one find per simulation. A ‘complete find’ (cfind) is then recorded when all true predictors

have been found.

We compare DET with a standard logistic regression with a lasso penalty, where the

strength of the penalty is chosen via BIC. We define a ‘find’ under the standard lasso
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occurring when a true causal predictor is assigned a non-zero coefficient. Again, when

jK > 1 there may be more than one of these per simulation, and a ‘complete find’ is when

all true predictors have been found. Significance testing is not appropriate because the

relatively small sample size coupled with the multicollinearity of the dataset means that we

do not find coefficients that are significantly different from zero. A lasso ‘false find’ (ffind)

occurs when a non-zero coefficient is assigned to a non-causal predictor. We additionally

compare with the ‘screen and clean’ (S & C) method of Wasserman and Roeder ?, where

the strength of the penalty in the ‘screen’ stage is also chosen via BIC. In ? cross validation

is used to determine the penalty for the ‘screen’ stage — this leads to more variables being

carried forward to the ‘clean’ stage as compared with BIC, and hence more true and false

finds. Due to the high multicollinearity in this particular dataset, the increase in false finds

was particularly damaging for both the lasso and the ‘screen and clean’ methods, so using

BIC seemed to give more favourable results for these methods. The significance level for the

‘screen’ stage of the S & C procedure is again chosen via a Bonferroni correction to achieve

a family-wise error rate of 0.05.

It must be noted that, for the lasso and screen and clean methods, a find is usually de-

clared to have occurred when a non-zero coefficient is found on a predictor highly correlated

with the correct predictor. We are, however, considering the case when it is of interest to

recover the causal predictor exactly which is frequently of interest in genetic studies. The

‘glmpath’ function in the ‘glmpath’ (?) library in R (?) was used to calculate all lasso

paths; all other code was written by the authors and can be obtained upon request.

5.3.2 Simulations on ‘ge03d2’ Data

The ‘ge03d2’ dataset contains n = 897 subjects, with p = 7480 SNPs measured on each

subject. We restrict our attention to dominant effects of the SNPs so that, in the usual

coding of 0, 1 or 2, we translate all the 2s to 1s. We select two disjoint subsets of the data

(subsetting on SNPs not observations), one with p = 2000 to study the p > n case, and the

other with p = 400 to look at the p < n case.

For each of the p > n and p < n cases, we carry out 100 independent simulations on

the ‘ge03d2’ data, where in each case, a subset of predictor(s) is randomly selected, and
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a response is simulated via various relationships to these predictor(s), as detailed above.

Results are then presented as a summary measure over the simulations, so the number of

finds recorded is the sum of finds over the simulations. We study here cases of one and four

causal predictors, with effect sizes of 10% and 20%. Table ?? gives the results for the p > n

case and Table ?? gives the results for the p < n case. The number of finds made by lasso

and DET are very similar, despite DET implementing a stringent significance test and lasso

merely reporting non-zero coefficients. In addition, the lasso makes a larger number of false

finds in general. The screen and clean method achieves similar false find control to DET,

but this is at the expense of a far smaller number of true finds. In the case of four predictors,

all methods struggle to recover all four predictors on any simulation which corresponds to

the number of complete finds being low, but again DET performs better than lasso in terms

of recovering the most finds while having similar low false finds as S & C.

Table 5.2: Comparison of lasso and DET finds for p > n case for various effect sizes, for one
and four true predictors

Effect size 0.2 0.1 (0.2,0.2,0.2,0.2) (0.1,0.1,0.1,0.1)

DET (SI∗ only)
finds 37 2 157 10
cfinds 1 0
ffinds 18 5 71 9

DET
finds 44 3 186 11
cfinds 2 0
ffinds 11 4 42 8

Lasso
finds 36 1 173 11
cfinds 1 0
ffinds 24 5 95 12

S&C
finds 17 0 70 0
cfinds 0 0
ffinds 10 7 17 3

∗Stage I

5.4 Example

We now illustrate the method on a real dataset. Note that the example has been chosen

deliberately to be relatively small and to include only a few predictors to illustrate the results

of DET more clearly. In practice, there is no limitation in terms of number of predictors

and responses and in fact best results are to be expected in situations with highly correlated
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Table 5.3: Comparison of lasso and DET finds for p < n case for various effect sizes, for one
and four true predictors

Effect size 0.2 0.1 (0.2,0.2,0.2,0.2) (0.1,0.1,0.1,0.1)

DET (SI∗ only)
finds 49 3 143 11
cfinds 0 0
ffinds 17 4 61 14

DET
finds 56 3 176 18
cfinds 3 0
ffinds 10 4 28 7

Lasso
finds 53 6 189 16
cfinds 4 0
ffinds 27 3 89 15

S&C
finds 25 2 84 6
cfinds 0 0
ffinds 9 3 24 4

∗Stage I

predictors as shown in the previous sections.

The Coronary Risk-Factor Study (?) was carried out in three rural areas in South Africa,

in the White Cape region, where incidence of heart disease is particularly high. A subset of

the study is analysed extensively in (?). In this subset the binary response, whether or not

the subject has heart disease, is measured and 160 cases and 302 controls are collected. Each

subject has nine measurements taken as predictors. These are ‘sbp’ (systolic blood pres-

sure); ‘tobacco’ (cumulative tobacco); ‘ldl’ (low density lipoprotein cholesterol); ‘adiposity’;

‘famhist’ (family history of heart disease); ‘typea’ (type-A behaviour); ‘obesity’; ‘alcohol’

(current alcohol consumption); and ‘age’ (age at onset, or age of testing for controls). To

illustrate DET, we have dichotomized the predictors where necessary, by setting a single

threshold level, at an appropriate point where possible: for example, the ‘obesity’ predictor

is originally measured as the Body Mass Index (BMI) and so we have used 30 as the cut-off

point, since persons with a BMI exceeding 30 are classed as obese.

We then carry out five analyses on the dichotomized data: the standard single predictor

association test, a standard logistic regression, a logistic regression with lasso penalty, the

screen and clean method and the direct effect testing method. Results of the single predictor

test, the logistic regression and the screen and clean method are given in Table ??. For the

screen and clean method, some variables are ‘dropped’ at the screen stage, so they do not
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have associated p-values. For the lasso method, four non-zero coefficients were identified

— on ‘tobacco’, ‘ldl’, ‘famhist’ and ‘age’. For the direct effect testing method, four direct

effects were found at the Bonferroni significance level of 0.0056, and the details are in Table

??. Note that the probabilities do not always sum to one, due to rounding and exclusion of

predictors with low (< 0·01) probabilities, using the cut-off rule specified in Section ??.

Table 5.4: Comparing p-values calculated via the standard single predictor test and a logistic
regression, for the heart disease data

Covariate Single Predictor Logistic Regression S&C
age 1·1× 10−11 9·0× 10−4 3·7× 10−3

famhist 4·8× 10−9 1·1× 10−5 7·0× 10−3

ldl 4·4× 10−7 6·9× 10−2 3·4× 10−2

adiposity 4·4× 10−6 2·4× 10−1 dropped
tobacco 3·2× 10−7 1·0× 10−1 8·3× 10−2

typea 2·3× 10−1 4·3× 10−2 dropped
sbp 8·1× 10−4 2·8× 10−1 dropped

alcohol 1·3× 10−1 7·0× 10−1 dropped
obesity 1·3× 10−1 3·3× 10−1 dropped

Table 5.5: Details from direct effect testing method for heart disease data

Direct Effect p-value Location Probability
4·5× 10−8 age 1

3·0× 10−6 famhist 1

2·1× 10−4 tobacco 1

1·3× 10−3 tobacco 0·64
ldl 0·31
age 0·02

typea 0·02
adiposity 0·01

To summarize the findings of the DET analysis, we are virtually certain that ‘age’,

‘famhist’ and ‘tobacco’ have a direct effect on heart disease, which is also reflected in the

small p-values in both the logistic regression and the single predictor analysis. There is

a possible fourth direct effect, and ‘tobacco’ re-appears as a possible predictor to possess

this direct effect. We interpret this as either evidence of an interaction effect, a direct

effect occurring on an unmeasured predictor, or evidence that this fourth direct effect is

65



in fact a false positive. Given that this is the weakest potential effect detected the false

positive argument is to be preferred, but it is recommended that expert judgement be used

to interpret weaker, ambiguous effects.

5.5 Discussion

In this paper we have introduced a method for binary predictors and response that separates

the testing for the presence of a direct effect and the selection of the predictor that produces

the effect. This allows, in the first stage, direct effect hypothesis tests to be carried out in

the presence of highly correlated predictors without suffering multicollinearity issues. The

uncertainty in the assignment of a direct effect to a predictor, caused by the multicollinearity,

is taken into account in the second stage, so that the method gives a set of predictors

that could represent each direct effect, with probabilities on each predictor in the set. We

demonstrate that the method works effectively to find single and multiple direct effects, and

compares very favourably with the lasso. Whilst similar methods are available (?), DET is

unique in offering a probabilistic assessment of which predictors could be associated with

the detected effect.

The method easily handles missing data, provided we use the missing completely at

random assumption (?). Since we deal with cell counts only, a specific observation, xij , that

are missing at any point can be excluded from the count, and therefore no imputation is

required. The column totals in Table ?? would then depend on j so we would replace s by

sj , and so forth.

The second stage of the method can be viewed from a Bayesian perspective, by relaxing

assumption 2 given in Section ??, and instead placing a discrete prior on pr(Xj true DE).

The enforcement of assumption 2 corresponds to a uniform prior.

One of the shortcomings of the method is that it does not allow for multiple levels of

the predictor variables. One way to address this issue is by introducing multiple binary

predictors for a single discrete predictor.

The model does not currently account for interactions between predictors. Logic regres-

sion (?) and random forests ? are existing methods that address this issue; as a consequence
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of the complexity of such modelling, these methods are algorithmic rather than statistically

rigorous. Combining the search for direct effects with a search for interaction effects will be

challenging, but represents an important area of future research.

? use Bayesian graphical models to search for relationships between SNPs and a binary

response. This naturally takes care of dependencies between SNPs by allowing edges to

exist between them. The primary interest is then in edges between SNPs and the binary

response. Our method is different in that it separates the uncertainty in size and origin of

effects. The relationship of DET to graphical model approaches is still to be investigated

fully.

Another interesting point for future investigation are the connections of the introduced

method to Genomic Control (??) and Delta Centralisation (?), which are methods used to

account for subpopulation structure or other unobserved confounding effects in a dataset,

particularly applied in genetic contexts. This is achieved by assuming the better known

noncentral χ2 null distribution in tests of association, with a noncentrality parameter ν that

is common to all tests. This begs the question of whether the direct effect testing method

can be used in a similar context, and whether additional power is gained by allowing for a

different noncentrality parameter for each test.

In the genetics context, the DET method can be used on either phased or unphased

haplotypes. At the point of collection, genetic data is almost always unphased, and it is

necessary to use statistical methods to phase the haplotypes. A commonly used method is

the PHASE algorithm of ?. Once the data is phased, we can consider the haplotypes sep-

arately, immediately leading to binary data. If haplotypes are unphased, we must consider

three possible levels for a SNP (no mutation, single mutation and double mutation). For

example, consider a three level predictor Xj , taking values 0,1 or 2. Then we introduce two

binary predictors, Xj1 and Xj2 . Code Xj1 = 1 if Xj ≥ 1 and Xj1 = 0 if Xj = 0; and

code Xj2 = 1 if Xj = 2 and Xj2 = 0 if Xj ≤ 1. A more general extension that makes use

of the multivariate hypergeometric distribution will be investigated in the future. We are

also looking into the generalisation to the continuous predictors and response case. Further

investigation is needed to compare the performance of DET using the unphased and phased

approaches.
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5.6 Appendix

Derivation of Equation (??)

To establish Equation (??), note that

ρ̂y,j =
1
n

n∑
i=1

xuijy
u
i

=
ajdj − bjcj√
srt0jt1j

,

so that

√
nρ̂y,j =

√
n
ajdj − bjcj√
srt0jt1j

,

=
√
n
naj − t0js√
srt0jt1j

. (5.16)

Replacing zj by the formulae for the mean and standard deviation of the hypergeometric

distribution yields

zj =
aj − t0js/n√

srt0jt1j
n3

,

=
√
n
naj − t0js√
srt0jt1j

. (5.17)

Therefore Equations (??) and (??) are equal, proving Equation (??).

Derivation of Equation (??)

Write pj|k = pr(Xj true|Xk dec.), abbreviating in the obvious way. Now by Bayes’ Theorem,

pj|k ∝ pr(Xk dec.|Xj true)pr(Xj true).
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But

pr(Xk dec.|Xj true) = pr(Xk dec.|Xj true,Xk or Xj dec.)pr(Xk or Xj dec.|Xj true)

= pr(Xk dec.|Xj true,Xk or Xj dec.)
{

pr(Xk dec.|Xj true)

+pr(Xj dec.|Xj true)
}
,

and re-arranging gives

pr(Xk dec.|Xj true) =
pr(Xk dec.|Xj true,Xk or Xj dec.)pr(Xj dec.|Xj true)

1− pr(Xk dec.|Xj true,Xk or Xjdec.)
.

So that

pj|k ∝
pr(Xk dec.|Xj true,Xk or Xj dec.)pr(Xj dec.|Xj true)pr(Xj true)

1− pr(Xk dec.|Xj true,Xk or Xj dec.)

as required.

Derivation of Equation (??)

Referring to Table ??, if we were interested in the size of the association between Xk and

Y , we would estimate this as

pr(Y = 1 |Xk = 0) =
bk
t0k

=
t0k − ak
t0k

=
t0k − µ0k − σ0kzk

t0k
,

Removing the indirect effect part,
∑

j 6=k βkn
−1/2ρ̂j,k, immediately yields α̂k in Equation

(??).
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In order to find the expression for β̂k, consider

pr(Y = 1 |Xk = 1) =
dk
t1k

=
r − t0k + ak

t1k

=
r − t0k + µ0k + σ0kzk

t1k
.

Removing the indirect effect part and subtracting α̂k then yields the desired result.

Derivation of Equation (??)

Recall that we assume a true direct effect between Xj and Y . We then find

PEF (j,k) = pr {(Xj ,Xk,Y ) = (0, 1, 1) or (1, 0, 0) |Xj 6= Xk}

=
pr {(Xj ,Xk,Y ) = (0, 1, 1)}+ pr {(Xj ,Xk,Y ) = (1, 0, 0)}

pr {(Xj ,Xk) = (0, 1)}+ pr {(Xj ,Xk) = (1, 0)]}

=
γ1,0αk + γ0,1(1− αk − βk)

γ1,0 + γ0,1
,

where the last line is obtained by writing pr (Xj ,Xk,Y ) = pr (Y |Xj ,Xk) pr (Xj ,Xk),

and using Equation (??) for the conditional probabilities of Y .
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Chapter 6

Recovering Direct Effects in

Genetics: A Comparison Study

Abstract

In genetics it is often of interest to discover single nucleotide polymorphisms (SNPs) that

are directly related to a disease, rather than just being associated with it. Few methods

exist, however, addressing this so-called ‘true sparsity recovery’ issue. In a thorough simula-

tion study comparing specialised methods, it is shown that for moderate or low correlation

(linkage disequilibrium) between SNPs, lasso-based methods perform well at true sparsity

recovery, despite not being specifically designed for this purpose. For large correlation,

however, more specialised methods are needed. Direct effect testing performs well in all

situations, including when the correlation is large.

Keywords: Direct effects, Fine mapping, Lasso, Screen and clean, Stability selection,

True sparsity selection, Large p.

6.1 Introduction

In genetic association studies or fine mapping studies where the density of measured single

nucleotide polymorphisms (SNPs) in the genome is high, it is of interest to recover SNPs

that are directly affecting a response. A SNP with a direct effect is defined as one that
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has an effect on the response that is not caused by its correlation with any other measured

SNP. Those SNPs that are associated with a response but do not have a direct effect are

said to have indirect effects. There can be many SNPs with indirect effects, due to the high

linkage disequilibrium (LD) or correlation between SNPs on the genome. This LD causes

SNPs in proximity to a SNP with a direct effect to be associated with the response. Define

the ‘true sparsity pattern’ to be the set of SNPs (or more generally, predictors) that have a

direct effect on the response. The purpose of this paper is to compare the ability of various

methods to recover the true sparsity pattern. A contrasting idea is presented by ?, who use

a Bayesian approach to attain models with optimal predictive capabilities.

Suppose a study is carried out with n participants, each typed at p SNPs. Usually the

number of SNPs is much larger than the sample size, p � n. The SNPs and the response

are assumed to be related through a generalised linear model,

g(E[Y ]) = η = Xβ + δ (6.1)

where η is an n × 1 response vector explained by an n × p matrix X (the SNPs) through

an unknown p × 1 coefficient vector β with n × 1 noise vector δ. On the left hand side Y

is the response of interest and g(·) is the link function. An example of a link function is

the logit link, g(x) = log
(

x
1−x

)
, which is used when Y is binary. See, for example, ? for

a comprehensive introduction to generalised linear models. Usually only a few of the SNPs

under consideration have a direct effect on the response, suggesting βj = 0 for most of the

predictors. A sparse solution is therefore desired, where only some βj 6= 0. The SNPs with

direct effects are difficult to find when the predictors are correlated or p > n or both. In

these situations there may exist, for example, β′ and β′′ such thatXβ′ = Xβ′′ but β′ 6= β′′,

causing an identifiability problem (see, for example, ?). As a consequence, it can be difficult

or impossible to identify which of a highly correlated group of predictors possesses an effect;

under different permutations of the data, the chosen model will contain different predictors.

The lasso (?) is a popular method to identify a sparse set of predictors. It does so by

simultaneously shrinking some of the coefficients to zero and estimating effect sizes on the

remaining coefficients. It is, however, designed with the goal of prediction in mind rather
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than true sparsity pattern recovery. If there exists a true direct effect on one of a group of

highly correlated predictors (for example, a region on the genome densely populated with

SNPs in high LD), the lasso does not attempt to distinguish within the group. Instead,

it simply selects one representative member of the group for inclusion in the regression

model (?). When the objective is prediction this is satisfactory, since having more than one

predictor from the group in the model adds little to the predictive capability of the model.

For other objectives, such as recovery of the true sparsity pattern, this is not satisfactory.

The difficulty in distinguishing between highly correlated predictors also leads to inflated

standard errors, which can lead to no predictors being deemed significantly different from

zero.

A solution to many of the drawbacks of the lasso is a procedure by ?, which essentially

isolates the significance of an effect from the significance of a predictor. It does this via a

two-stage procedure called screen and clean. First, in the ‘screen’ stage, lasso regression

is fitted to one half of the data, so that usually one predictor is selected for each effect.

Second, in the ‘clean’ stage, a standard linear regression is fitted to the other half of the

data, using only those predictors selected in the first stage. Therefore, the multicollinearity

problem is avoided, and significant effects can be identified. A further advantage is that

the coefficients estimated in the second stage are no longer shrunk towards zero, so they

are not underestimated. The method does not tell us, however, which predictor, amongst a

correlated group, is responsible for a given effect.

Another method that is considered here is stability selection (?). Stability selection

works by carrying out a lasso regression multiple times, on bootstrapped samples of the

data. These samples are then used to select variables, by including those variables that

appear in at least a certain proportion, πthr, of the regressions on the bootstrapped data.

This has been shown to be very effective, but it will break down in the presence of highly

correlated predictors.

Direct effect testing (?) determines the significance of an effect, and retains information

on the predictors that could be directly responsible for each effect. In the first stage, one

predictor is selected to be responsible for each effect, which allows information about the

size and significance of the effect to be obtained. This is similar to screen and clean except
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that all the data is used at once. In the second stage, a set of predictors that could be the

origin of each significant effect are identified, and probabilities are assigned to each of these

predictors of being the true direct effect.

We consider here the case where the predictors and the response are binary, because the

second stage of DET is currently restricted to such situations. SNPs can be expressed in a

binary format despite having three levels, by coding the dominant effect and the recessive

effect in two separate predictors. In genetic studies, frequently the responses are also binary

(for example, case control studies).

In this paper the performance of lasso, screen and clean, stability selection and direct

effect testing in recovering true sparsity patterns is compared, in the binary framework. The

comparison is done by simulation. In Section ?? a more detailed summary of the methods

under consideration is provided, Section ?? explains how the various simulations are carried

out and presents the results. We conclude with a thorough discussion in Section ??.

6.2 Sparsity Methods

6.2.1 Lasso

The lasso (least absolute shrinkage and selection operator) is introduced first, as all other

methods considered are either extended or modified versions of it. ? introduces the lasso as a

regression technique that simultaneously performs variable selection and shrinkage towards

zero. It works by minimising a penalised residual sum of squares function,

β̂ = argmin
β

(Y −Xβ)2 + λ

p∑
j=1

|βj |, (6.2)

where λ is a tuning parameter used to control the strength of the penalty. If λ = 0, the

lasso is identical to ordinary least squares; a larger value of λ will cause some coefficients to

be zero, which corresponds to selection, and the remaining coefficients to be shrunk towards

zero. The tuning parameter λ can be selected by minimising the prediction error through

cross validation, or using a model fit criterion such as AIC (?) or BIC (?).

Since Equation (??) includes the residuals, it optimises for prediction rather than true
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sparsity pattern. As a consequence, consistency is only obtained under some modifications,

such as the adaptive lasso (?). In addition, there is an explicit requirement that the corre-

lation between predictors is not too severe. This was first made concrete by ? who call the

requirement the irrepresentable condition.

A benefit of the lasso is the efficiency with which it can be calculated. Using the least

angle regression algorithm (LARS) of ?, the full lasso path (i.e. the solution of Equation ??

for all values of λ) can be computed in a time comparable to that of a standard regression.

On the other hand, a major drawback of the lasso is the difficulty in assigning significance

to predictors, particularly in the presence of multicollinearity. Indeed, ? describes this

notion as ill-posed; it may be obvious that an effect is present, but the significance is

then lost in trying to assign the effect to a specific predictor. The difficulty in finding

significant predictors leads to the naive assumption often being made that the sparse model

should include all those predictors with nonzero coefficients, and exclude all those with zero

coefficients.

6.2.2 Screen and Clean

Screen and clean (?) is an extension to the lasso that uses a two stage approach to overcome

two issues with the lasso: the difficulty of significance testing in the presence of a large

number of potentially correlated predictors, and the tendency of the lasso to underestimate

effect sizes (see, for example, ?). The first stage of screen and clean fits a lasso regression to

the first half of the data. This ‘screen’ stage is intended to produce a collection of potential

predictors to carry forward for further testing. The second stage — the ‘clean’ stage —

then fits an ordinary least squares regression to the second half of the data, using only those

predictors that had nonzero coefficients in the first stage. This reduced set of coefficients

makes significance testing feasible, and avoids effect sizes being underestimated. Significance

testing is then carried out with a Bonferroni correction on the reduced set, with considerable

success.

In our view, the screen and clean procedure is a method to separate the significance of

an effect from the significance of a predictor. We restate the important point, that in a

group of highly correlated predictors, one of which being the origin of an effect, the lasso
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will select one representative member of the group (?). In the case of screen and clean, one

can therefore see that a variable carried forward to the ‘clean’ stage may represent an effect,

but may not be the predictor with the actual direct effect. It may instead be a predictor

that is correlated with the one possessing the direct effect. On the other hand, elimination

of all but one predictors in a highly correlated group mitigates the multicollinearity issue.

Removal of multicollinearity is one of the major factors leading to the subsequent success

of significance testing. Therefore, screen and clean is a method to find significant effects,

but not necessarily significant predictors. In the genetics context, one can be optimistic of

finding a region of the genotype that is causal to a phenotype, but fine mapping cannot be

done.

6.2.3 Stability Selection

Stability selection (?) tackles the problem of significance testing for predictors by resam-

pling. The idea is to select predictors that are ‘stable’, in the sense that their coefficients are

nonzero in a certain proportion of lasso regressions carried out on resampled copies of the

data. Each sample of the data is generated by selecting half of the observations at random

(without replacement). See ? for discussion of why each sample should contain half of the

observations. Lasso regression is then fit to this sample of the data, and the predictors with

nonzero coefficients are recorded. This procedure is repeated for each new sample of the

data, for a large number, B, of bootstrap samples. Let mj be the count of times the jth

predictor is nonzero. For each predictor Xj , πj = mj/B is then the proportion of times

that predictor is present in the fitted model. Predictor Xj is included in the final model if

πj > πthr, where πthr is a tuning parameter. Stability selection does not provide in itself

a method to estimate effect sizes, but one could, for example, fit a linear regression on the

variables that it has selected.

A strength of stability selection is that the set of predictors recovered turns out to be

insensitive to the choice of πthr, and insensitive to the tuning parameter λ used in each of the

lasso regressions (?). On the other hand, the nature of stability selection means that it will

fail in the presence of highly correlated predictors. Consider a set of 10 similar predictors,

one of which has a large effect on the response. Then each predictor may have πj ≈ 1/10.
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This πj would be smaller than any reasonable threshold πthr, meaning that none of the 10

predictors would be selected, and the model would fail to include the true effect.

6.2.4 Direct Effect Testing

Direct effect testing (DET) (?) is a method that detects direct effects, and calculates a

probability distribution giving the probabilities that each predictor is the true origin of each

direct effect. The first stage of DET identifies direct effects by using lasso regression to

separate direct effects from indirect effects. To calculate the significance of an effect, each

direct effect is attributed, automatically by the lasso, to a specific predictor. The lasso has

the property that a significant effect is usually detected on one single predictor (see, for

example ?). The lasso does not recover the true sparsity pattern per se — the predictor to

which the effect has been attributed may not be the true origin of the effect.

The second stage of DET then incorporates the uncertainty in the predictor that is the

true origin of each direct effect. We give a sketch of stage two of DET — see ? for more

detail. Consider a model with only two predictors, Xj and Xk, which are highly correlated

with each other, and highly correlated with a response, Y . In truth, one of the predictors,

Xj or Xk, has a direct effect on the response, but it is not known which one. Suppose in the

first stage of DET, a significant effect is discovered on predictor Xk. Then the probabilities

of interest are

Pr[Xk true effect|Effect observed in stage one on Xk]

and

Pr[Xj true effect|Effect observed in stage one on Xk]

Simple manipulations using Bayes theorem allow both of these probabilities to be obtained

when the predictors are binary. The procedure then naturally generalises to any number of

binary predictors.

DET therefore provides a novel method to carry out fine mapping by distinguishing

between direct and indirect effects, and quantifying the uncertainty associated with this

distinction. The main drawback of the method is that stage two can only be applied to

binary predictors, which is the reason that the simulations carried out in this paper are
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restricted to the binary case.

6.3 Design and Results of Simulations

A range of simulations are carried out to study the properties of the methods introduced

above. Situations involving strong and weak correlations, including both serially correlated

data and clustered data are considered, and consistency properties of the methods on these

simulated data are investigated. Additionally, the performance of the methods on some

covariate patterns taken from real data with a simulated response are compared. Finally,

the performance of the methods is investigated on genetic type data generated using the

‘Fregene’ software (??). We begin by explaining how the various methods are applied,

how significance is determined, and introduce some of the measures used to compare the

methods.

For the lasso, the penalty is selected using the BIC (?), due to increased speed over cross

validation. Results based on the BIC were uniformly superior to the AIC in our studies.

Since determining significance is difficult for the lasso, a significant find is recorded when a

predictor receives a nonzero coefficient.

For screen and clean, the data is randomly divided in half for each simulation. The

first half of the data is used to fit the lasso (screen stage), where the penalty is selected by

BIC, for the reasons given before. For the clean stage, ordinary least squares is carried out

on the nonzero coefficients, and significance is determined using a Bonferroni correction, as

suggested in ?.

For stability selection, 100 samples of the data of size n/2 are sampled without replace-

ment on each simulation. Lasso regression is then fit to each sample, but this time AIC is

used to determine the lasso penalty, as this dominated the BIC results on the simulations

considered. The threshold is set to πthr = 0.75, meaning that a predictor must be selected

in at least 75 out of the 100 lasso regressions to be declared significant. ? claim that any

value of πthr in the range (0.6, 0.9) gives similar results, justifying this choice.

For direct effect testing, significance of each predictor is calculated using a Bonferroni

correction. For stage two of the procedure, let pmax be the probability of the best contender
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for the origin of a given direct effect, then a ‘find’ is defined as any other predictor that

has a probability of origin that is at least 10% as large as the best contender, i.e. 0.1pmax.

Results from DET using stage one only are also recorded, so that the circumstances under

which stage two gives additional benefit can be studied.

It is emphasised that the comparisons are not designed to be an indicator of which

methods are universally best. Each method is designed to deal with different scenarios,

and here only the ability of the methods to recover true sparsity patterns is considered.

Moreover, it is difficult to make the comparisons fair, for example DET (including stage

two) can have multiple chances to make a find per significant effect identified, while formal

significance testing is not used in declaring significance for the lasso.

Whichever method is used to obtain the data, it is necessary to generate the response

artificially through some dependence on one or more of the predictors. The response for

each individual observation, Yi, is generated according to a Bernoulli distribution with

Pr[Yi = 1] = µi, where

µi = α+ βj1Xij1 + . . .+ βjKXijK ,

so that the response is related to a subset of K predictors with indices {j1, . . . , jK}. The

βjk ’s are chosen to represent different effect sizes. So that µi is always between zero and

one, |
∑
βjk | < 1. The intercept α is set to

α =
1
2

(
1−

K∑
k=1

βjk

)

to provide approximately equal numbers of observations with Yi = 0 and Yi = 1, and the

influential predictor(s) are chosen at random on each simulation. An alternative approach

is to generate according to a Bernoulli distribution with Pr[Yi = 1] = µi, where

log
(

µi
1− µi

)
= α+ βj1Xij1 + . . .+ βjKXijK .

This would avoid the need for a constraint on the βs, but otherwise changes little in terms

of the simulations.

If a method finds a predictor that was truly used to generate the response, this is called
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Table 6.1: Summary of find definitions

Name Description
True find True predictor found

Strong true find All true predictors found
False find False predictor found

Strong false find At least one false predictor found
Perfect find Strong true find and no strong false find

FDR False discovery rate (false finds / total finds)

a ‘true find’; consequently when more than one predictor is used to generate the response,

there can be more than one true find per run on a simulation. On the other hand any

predictors that are declared significant and were not used to generate the response are

declared ‘false finds’; consequently there can be more than one false find per run on a

simulation. For the case of DET there can be multiple finds per significant effect. In this

case a significant effect is a true find providing at least one true predictor is a find associated

with that effect. A ‘strong false find’ is recorded whenever at least one incorrect predictor

is included in the model. In cases where the response explicitly depends on more than

one predictor, a ‘strong true find’ is recorded when all the causal predictors are recovered.

A ‘perfect find’ is recorded when the model includes all causal predictors and no other

predictors (i.e. simultaneous occurrence of a strong true find and nonoccurrence of a strong

false find). Finally, the standard definition of false discovery rate (FDR),

FDR =
Number of false finds
Total number of finds

,

is also used. For convenience, the definitions above are summarised in Table ??.

The ‘glmpath’ function in the ‘glmpath’ (?) library in R (?) was used to calculate all

lasso paths. All other code was written by the authors.

6.3.1 Serially Correlated Data

Data Generation

To generate serially correlated data, denoting the strength of the correlation by ρ, the

approach used is:

1. Generate random binary realisations for Xi,1, i = 1, . . . , n, according to Bernoulli(0.5)
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where n, the sample size, is set to n = 1000 here.

2. For j = 2, . . . , p, where p is the number of predictors, set to p = 400 here, generate

binary realisations for Xi,j , i = 1, . . . , n, via

Xi,j =


Xi,j−1 with prob. ρ

0 with prob. (1− ρ)/2

1 with prob. (1− ρ)/2.

3. Randomly assign a causal predictor with effect size 0.2, repeating this ten times on

each dataset.

4. Repeat steps 1–3 100 times to obtain 100 different datasets, and 1000 simulations in

total.

This procedure is repeated for a range of serial correlations, from ρ = 0 to ρ = 0.99.

Results

Figure ?? illustrates the simulated true finds, perfect finds, false finds and FDRs for serial

correlations ranging from 0 to 1. Most of the methods deteriorate in fairly similar ways as

the correlation approaches one. The exception is DET including stage two, whose perfect

find rate and FDR do not become worse as the correlation becomes very large. Indeed, once

the correlation becomes close to one, DET has the highest number of perfect finds and the

lowest FDR of all the methods. This is a consequence of the second stage of DET accounting

for the high correlation by giving a large set of potential predictors for a detected effect. It

is only once ρ > 0.75, however, that including stage two of DET gives additional benefits

over stage one alone. For small to moderate correlation, stability selection gives the highest

perfect find rate and lowest FDR.

Results are also given for the situation where the response is independent of the predic-

tors, i.e. there are no causal predictors. The false find rates for this situation are given in

Figure ??. These are roughly constant for lasso, screen and clean, and stability selection,

with the latter being much lower than the other two. Interestingly, the number of false finds
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Figure 6.1: Serial correlation: Comparing true finds (top left), perfect finds (top right), false
finds (bottom left) and false discovery rate (bottom right) for different values of ρ. Heavy
solid line — DET, dashed line — DET (stage one only), dotted line — lasso, dot-dashed
line — screen and clean, light solid line — stability selection.

for DET decreases as the serial correlation ρ increases. Note that since there is no true

effect, stage two of DET has no effect here.

Consistency

The consistency properties of the different methods in the serial correlation framework are

now studied. Unlike Section ?? the correlation is fixed and the sample size, n, varied.

Datasets are generated using the same method as Section ?? for the largest sample size

under consideration, n = 10000. Simulations for smaller sample sizes are done by taking

subsets of the n = 10000 observations. This ensures that the simulations are as similar as

possible.

Figure ?? gives true finds, perfect finds, false finds and FDRs for the methods with high

correlation, ρ = 0.95. Figure ?? gives the same for correlation ρ = 0.5. In both cases the
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Figure 6.2: Serial correlation: Comparing false find rates for different values of ρ, when
there is no true causal effect. Heavy solid line — DET, dotted line — lasso, dot-dashed line
— screen and clean, light solid line — stability selection.

number of predictors p = 400.
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Figure 6.3: Comparing true finds (top left), perfect finds (top right), false finds (bottom left)
and false discovery rate (bottom right) for differing sample sizes n, on the log scale. Serial
correlation ρ = 0.9. Heavy solid line — DET, dashed line — DET (stage one only), dotted
line — lasso, dot-dashed line — screen and clean, light solid line — stability selection.
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Figure 6.4: Comparing true finds (top left), perfect finds (top right), false finds (bottom left)
and false discovery rate (bottom right) for differing sample sizes n, on the log scale. Serial
correlation ρ = 0.5. Heavy solid line — DET, dashed line — DET (stage one only), dotted
line — lasso, dot-dashed line — screen and clean, light solid line — stability selection.

Screen and clean has the best consistency properties in the high correlation scenario,

since the perfect find rate increases, and the false discovery rate decreases as the sample

size increases. Stability selection also performs well in the high correlation scenario since

the perfect find rate increases, and the false discovery rate is controlled (although it does

not appear to decrease as fast when n increases). Direct effect testing performs poorly as

sample size increases in the large correlation case; a large number of false finds are generated

for large n, and the perfect find rate does not increase. Lasso does slightly better, but the

increase in the perfect find rate is much slower than for stability selection and screen and

clean.

For the low correlation case (Figure ??), all the methods considered have good consis-

tency properties. DET outperforms the other methods in terms of perfect finds and FDR for

small n; stability selection and screen and clean are the better performers on these measures
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for larger sample sizes n.

6.3.2 Clustered Data

Data Generation

As an alternative to serial correlation, clustered data is considered. The data here is gener-

ated with p = 400 predictors, divided into clusters of size k, for a range of cluster sizes from

k = 1 to k = 10. Within cluster correlation is set to ρ and there is independence between

clusters. This is repeated for different correlations ρ. The data generation procedure is as

follows:

1. Generate random binary realisations for Xi,j , i = 1, . . . , n, where the sample size is

set to n = 1000, according to Bernoulli(0.5) for the first Xj in each cluster. Hence

this step is carried out p/k times.

2. For each subsequent Xj in each cluster, generate binary realisations for Xi,j , i =

1, . . . , n via

Xi,j =


Xi,j−1 with prob. ρ

0 with prob. (1− ρ)/2

1 with prob. (1− ρ)/2.

Hence this is carried out k − 1 times in each cluster.

Results

Figure ?? visualises the results of various cluster sizes, for a within cluster correlation ρ =

0.9. Stability selection does a surprisingly good job of controlling the FDR and maintaining

a large number of perfect finds, out-performing all the other methods.

Figure ?? repeats the cluster size study but with the within cluster correlation now set

to ρ = 0.95. The larger correlation causes stability selection to struggle to make perfect

finds, but it does continue to control the FDR. Direct effect testing now achieves the largest

number of perfect finds, while having the second best control of FDR.

Consistency of the various methods was also considered in the clustering framework. The

results are almost identical as the consistency results in the serial correlation framework, so
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Figure 6.5: Comparing true finds (top left), perfect finds (top right), false finds (bottom left)
and false discovery rate (bottom right) for different values of cluster sizes, within cluster
correlation 0.9. Heavy solid line — DET, dashed line — DET (stage one only), dotted line
— lasso, dot-dashed line — screen and clean, light solid line — stability selection.

the details are omitted.

6.3.3 Real Covariate Patterns

It is important to consider how the methods behave when covariate patterns from a real

dataset are used. Here, the ‘ge03d2’ data taken from the ‘GenABEL’ package (?) in R (?)

is used. This dataset contains n = 897 subjects, with p = 7480 SNPs measured on each

subject. Attention is restricted to dominant effects of the SNPs so that, in the usual coding

of 0, 1 or 2, all the 2’s are translated to 1’s. Various subsets of the SNPs are considered,

including two non-overlapping subsets with p = 400 and p = 2000, to allow both the p < n

and p > n cases to be considered. A binary response is then simulated based on various

relationships to the predictors.

Tables ??, ?? and ?? present the data with real covariate patterns. Three situations
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Figure 6.6: Comparing perfect finds (top left), false discovery rate (top right), true finds
(bottom left) and false finds (bottom right) for different values of cluster sizes, within cluster
correlation 0.95. Heavy solid line — DET, dashed line — DET (stage one only), dotted line
— lasso, dot-dashed line — screen and clean, light solid line — stability selection.

are considered — a single predictor having an effect of size 0.2 on a response (Table ??),

two predictors both having an effect of size 0.2 on the response (Table ??), and a single

predictor with a weaker effect, size 0.1, on the response (Table ??). For the larger effect

sizes, DET performs the best in terms of both maximising the number of perfect finds and

minimising the FDR. Stage 2 of DET is beneficial regardless of the cluster size. These

outcomes are similar to the results for the clustered and serially correlated simulations, for

sufficiently large correlation. Tables ?? and ?? show that stability selection achieves similar

FDR control to DET but is less powerful. There is cohesion, therefore, between the results

based on the simulated data, and the results obtained from the real covariate patterns. For

the smaller effect size, stability selection achieves the lowest FDR, but this is at the expense

of a low perfect find count. Lasso and DET share the highest perfect find counts in this

case (Table ??).
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Table 6.2: Simulations with single effect, size 0.2, real covariate patterns

eff=0.2 True finds False finds Strong false finds Perfect finds FDR
DET (S1) 457 159 148 426 0.26

DET 545 71 69 505 0.12
Lasso 542 261 216 413 0.33
S&C 231 89 89 231 0.28

Stab. sel. 329 50 49 315 0.13

Table 6.3: Simulations with two effects, both of size 0.2, real covariate patterns

eff=0.2,0.2 True finds Strong true finds False finds Strong false finds Perfect finds FDR
DET (S1) 800 153 331 293 487 0.29

DET 991 240 140 132 648 0.12
Lasso 1030 297 540 408 405 0.34
S&C 436 68 144 138 342 0.25

Stab. sel. 657 123 101 100 486 0.13

Similar results are observed for another data set with p = 2000. The effect size of 0.2 is

chosen as it demonstrates most clearly the differences between the methods, although other

smaller effect sizes gave comparable results.

Finally, for comparison, Table ?? gives the number of false finds and strong false finds

that are made when the response is independent of the predictors (for the p = 400 case).

All methods (but particularly stability selection) control the false find rates well in this

situation.

6.3.4 Genetic-type Data

Data Generation

We now investigate genetic-type data, generated using the ‘Fregene’ software (??). This

software allows forward-in-time simulations of genetic type data, making it a versatile tool

for simulations. The particular data used in this illustration was generated based on a single

Table 6.4: Simulations with single effect, size 0.1, real covariate patterns

eff=0.2 True finds False finds Strong false finds Perfect finds FDR
DET (S1) 33 36 32 31 0.52

DET 43 26 22 41 0.38
Lasso 49 42 39 41 0.46
S&C 11 22 22 11 0.67

Stab. sel. 9 3 3 8 0.25
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Table 6.5: Simulations with no effect, i.e. response independent of predictors, real covariate
patterns

eff=0 False finds Strong false finds
DET (S1) 21 21

DET 21 21
Lasso 33 32
S&C 24 24

Stab. sel. 1 1

Table 6.6: Simulations with no effect, i.e. response independent of predictors, real covariate
patterns

eff=0 False finds Strong false finds
DET (S1) 5 4

DET 5 4
Lasso 4 4

Fisher’s Exact 8 5

chromosome, of length 3 megabases, with 10000 chromosomes in the initial population. The

simulation was allowed to run for 200000 generations, with a mutation rate of 2.3 × 10−8.

Two thousand haplotypes were generated, and carried forward for analysis. There were a

total of 12835 SNPs; after discarding any SNPs with minor allele frequency less than 10%,

2545 SNPs remained. These 2545 SNPs were used in the subsequent analysis.

Results

We compared the performance of DET (with and without stage 2), lasso and Fisher’s exact

test on this dataset. Here, the methods were empirically calibrated so that, in the case when

a response is generated independent of the predictors, the strong false find rate is controlled

at approximately 5%. To illustrate the control achieved, Table ?? gives the numbers of

strong false finds and false finds made in 100 simulations, where the response is generated

independent of the predictors.

We also carried out 100 simulations where a binary response is generated, with a single

predictor having an effect of size 0.2. Table ?? gives the results for this case.

False finds are, of course, no longer at the 5% level because SNPs correlated with the

causal SNP are likely to be declared significant. Unsurprisingly, the performance of Fisher’s

exact test is poor, with a large number of false finds. Lasso, and DET with stage one
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Table 6.7: Simulations with single effect, size 0.1, real covariate patterns

eff=0.2 True finds False finds Strong false finds Perfect finds FDR
DET (S1) 35 161 82 10 0.82

DET 82 114 50 42 0.58
Lasso 33 57 45 17 0.63

Fisher’s exact 100 7831 99 1 0.99

only, are comparable in terms of performance. DET, including stage 2, has the lowest false

discovery rate and a perfect find rate more than double that of lasso. The performance of

the lasso is greatly improved by controlling its false finds in this way. Note the similarity of

these results with those in Section ??.

6.4 Discussion

This paper presents a thorough simulation study of the performance of various methods at

recovering the true sparsity pattern, specifically with application in genetic studies. Despite

many of these methods not being designed for the objective of true sparsity recovery, per-

formance of all the methods is good, provided the correlation in the predictors is not too

high. Once the correlation becomes high, specialised methods such as direct effect testing

are needed. Direct effect testing also out-performs the other methods considered in scenarios

where the sample size is small. Direct effect testing, however, does not have good consis-

tency properties; in our simulations screen and clean appears to have the best consistency

properties.

We were surprised in particular with how well stability selection performed. At first

glance, it seems that because of the bootstrapping approach used, even moderate correlation

may cause problems for the method. Whilst it does begin to fail once the correlation is very

large, datasets where neighbouring correlations are as high as ρ = 0.95 are handled well.

Indeed, until the correlation reaches this high level, stability selection also controls the type

one error. This was proved for the case of exchangeable coefficients in Theorem 1 of ?, the

work here represents further empirical evidence that similar control is achieved in many

non-exchangeable situations.

As the density of information collected increases, measured predictors will become in-
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creasingly correlated. So methods that are specifically designed to handle this, such as direct

effect testing, will become more important. Direct effect testing, however, only deals with

binary predictors and response. Therefore, novel methods that can handle highly correlated

continuous variables are needed.
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Chapter 7

More on Direct Effect Testing

7.1 Introduction

This Chapter considers various extensions and alternatives to direct effect testing (DET).

The general theme of the Chapter is to make suggestions on how DET can be generalised

to the continuous predictors and response case.

In Section ?? we illustrate that the unpenalised version of the correlated residuals model

has the same ordinary least squares solution as a normal linear regression. Once a penalty

is applied, however, we illustrate that the correlated residuals version of the lasso and the

standard version of the lasso do not lead to the same solution. In Section ?? we relate the

lasso used in DET to the standard lasso (?) and the Dantzig selector (?). We then suggest

how these relationships could be used to derive asymptotic results for DET. In Section ??

we focus on stage 2 of DET, and derive a fully Bayesian alternative based on the work of

?. Such a procedure generalises naturally to the continuous case. We compare DET stage

2 with the Bayesian approach through simulation.

Throughout this Chapter, we use the same notation as ? (Chapter ??).
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7.2 Relationships between Correlation Model and Ordinary

Least Squares

Consider the standard linear regression

Yi =
p∑
j=1

βjXij + δi,

where for observations i = 1, . . . , n, Yi and Xij have exactly the same meaning as in the

DET framework, so that Yi represents the response and Xij is the value of the jth predictor

variable. Additionally here, δi is the residual and βj is the coefficient for the jth predictor.

Recall from Chapter 5 the DET model based on correlation structure:

ρ̂y,j =
p∑

k=1

ρ̂j,kθk + εj , (7.1)

First, we note that Equation (??) is equivalent to this standard linear regression. This is

not a new observation. It appears, for example, in ? who describes Equation (??) as ‘the

normal equations of the method of least squares in a slightly disguised form’. The author’s

proof given here also illustrates the role of the error term, εj .

Proposition 1. The model

ρ̂y,j =
p∑

k=1

ρ̂j,kθk + εj , (7.2)

is equivalent to the model

Yi =
p∑
j=1

βjXij + δi. (7.3)

Moreover, for each j = 1, . . . , p, βj = θj, and εj = ρ̂δ,j, where ρ̂δ,j is the observed correlation

between the residuals and predictor Xj.

Proof. By definition

ρ̂y,j =
1
n

n∑
i=1

XijYi,
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and therefore replacing Yi using Equation (??) gives

ρ̂y,j =
1
n

n∑
i=1

Xij

 p∑
j=1

βjXij + δi

 ,

=
p∑

k=1

ρ̂j,kβk +
1
n

n∑
i=1

Xijδi.

and by comparison with Equation (??), βk = θk and εj = 1
n

∑n
i=1Xijδi = ρ̂δ,j .

As a consequence of Equation (??) corresponding to the normal equations for Equation

(??), it is clear that the least squares solutions are identical (?). On the other hand, the

lasso regression solutions for the two equations will not be the same. Call a lasso regression

carried out on Equation (??) standard lasso, and a lasso regression carried out on Equation

(??) correlated lasso. The lasso paths generated using these two equations are different,

despite the OLS solutions being the same. We show this through an example. We generate

200 observations, where each observation consists of a response and four predictors, but

all responses and predictors are simply generated independently from a standard normal

distribution. Figure ?? shows the lasso paths generated for these frameworks.

The value of making these comparisons lies in illustrating the differences and similarities

of DET to standard approaches. The fact that the OLS solutions for the correlation model

and the normal linear model are the same is reassuring in terms of consistency of the

correlation model approach. The open questions are what causes the difference in the lasso

paths between the two methods, and when or why should one method be preferred over the

other?

7.3 Relationships between Correlation Model Lasso, Stan-

dard Lasso and the Dantzig Selector

Lasso (?) can be written as

argmin
β

β‖Y −Xβ‖22 + λ‖β‖1. (7.4)
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Figure 7.1: Comparison of the lasso paths on simulated independent data (i.e. no true effects
between predictors and response) for standard lasso (top) and correlation lasso (bottom)

The Dantzig selector (?) can be written as

argmin
β

β‖X ′(Y −Xβ)‖∞ + λ‖β‖1. (7.5)

For the lasso-based method used within DET, Equation (??) written in matrix notation

gives

Ry = Rθ + ε,

or

n−1X ′Y = n−1X ′Xθ + ε.

So by comparison with Equation (??) it is easy to see that lasso within DET is equivalent

to

argmin
β

‖X ′(Y −Xβ)‖22 + λ‖β‖1. (7.6)
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So it appears that the lasso within DET combines features of the standard lasso and of

the Dantzig selector. This is interesting in the context of recent work that has focussed on

the relationship between the lasso and the Dantzig selector. ? and ? establish that under

certain sparsity conditions, i.e. when most of the coefficients are zero, the lasso and Dantzig

selector yield the same solution. When the solutions are not the same, the Dantzig solution

will always be sparser than the lasso. See ? for some illuminating graphical representations

of the comparison between the two methods. This leads to the conjecture that the solution

produced by the lasso within DET is ‘sandwiched’ by the standard lasso and the Dantzig

selector, in the sense that it is guaranteed to be at least as sparse as the lasso solution, but

not more sparse than the Dantzig solution. Given the extensive theoretical results available

for the lasso (see, for example, ??), and corresponding results for the Dantzig selector (?),

it could be possible to derive similar results for the correlation model lasso using a sandwich

inequality.

7.4 DET stage 2: Comparison with a Bayesian Approach and

Evaluation

In this Section we develop a Bayesian alternative to stage 2 of DET, based on ideas from

?. We then compare the Bayesian approach with DET stage 2 in terms of the consistency

of the two methods, and their ability to assign high probabilities to truly causal predictors

and low probabilities to predictors with indirect effects.

7.4.1 Bayesian Alternative to DET Stage 2

Following similar ideas to those in ?, we develop a Bayesian alternative to stage 2 of DET.

Assume that there is one effect on a binary response Y in a group of p (binary) predictors,

{X1, . . . ,Xp}, but we do not know which predictor has the effect. Due to the high correlation

between the predictors, many predictors will be associated with the response. If we assume
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that predictor Xj is the origin of the effect, the likelihood is given by

Lj(µ0, µ1) =
∏

i:Xij=0

{
µYi0 (1− µ0)1−Yi

} ∏
i:Xij=1

{
µYi1 (1− µ1)1−Yi

}
,

where µω = Pr(Yi = 1|Xij = ω). Assume that µ0 and µ1 both have Uniform[0, 1] priors, and

the location of the true causal predictor has a uniform prior so that Pr[Xj causal] = 1/p for

each predictor. Then the marginal likelihood for predictor Xj can be computed exactly as

ML(j) =
aj !bj !cj !dj !

(t0j + 1)!(t1j + 1)!
,

and the posterior probability of each predictor Xj being causal is

PP (j) = Pr[Xj causal|Y ] =
ML(j)∑p
k=1ML(k)

.

The Bayesian approach will generalise more naturally to the continuous predictor and

response case than the approach presented as DET stage 2. This could be done by reformu-

lating the likelihood, then using a Gibbs sampler to approximate the marginal likelihood.

7.4.2 Comparison and Verification of Stage 2 Procedures

We now study the quality and consistency of DET stage 2 and the Bayesian alternative on

simulated data using the following algorithm:

1. Generate n = 100 observations of p = 10 binary predictors that are serially correlated

with a randomly chosen correlation ρ.

2. Generate a binary response that depends on the fifth predictor with effect size 0.2.

3. Calculate PP (j) for each j = 1, . . . , 10 using both the Bayesian and DET stage 2

approaches.

4. Record PP (5) in a vector S — the ‘successes’, and PP (j), j 6= 5 in a vector F of

‘failures’.
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5. Repeat steps 1–4 multiple times, T times say, concatenating the PP (j)’s in the same

vectors S and F . Hence S is a vector of length T and F is a vector of length 9T .

6. Consider the partition P1 = [0, 0.05), P2 = [0.05, 0.10), . . . , P20 = [0.95, 1.00). Let

SPk be the subvector of S whose probabilities are contained within the kth partition,

and let FPk be the subvector of F whose probabilities are contained within the kth

partition. Let |X| denote the length of a vector X. For each partition calculate
|SPk |

|SPk |+|FPk |
, to give the observed proportion of successes in each partition.

7. Calculate the theoretical proportion of successes within a partition as the average of

the probabilities in the combined vector of successes and failures, (S′Pk ,F
′
Pk

)′. Here,

‘theoretical’, means under the assumption that the causal probabilities calculated

are correct. This step and the previous are done for both the Bayesian and DET

approaches. For a large number of iterations T , the theoretical proportion of each

partition would be close to the midpoint of that partition.

It is then of interest to compare, within each partition, the theoretical proportion of pre-

dictors that are truly causal with the observed number of predictors that are truly causal.

This gives a measure of the consistency of each method. We did this for T = 10000 re-

peats; the results are presented in Tables ?? and ??. In each of these tables, the third

column gives the difference between the observed and theoretical probabilities, and in the

fourth column each difference is scaled by dividing by the theoretical probability. Both of

these difference measures are summed over the 20 partitions to give a difference score. The

Bayesian method does a slightly better job than DET, whichever way the total difference

is measured. For both methods, however, when the causal probability is estimated as high,

the predictor in question is causal less often than expected. So both methods seem to be

slightly anti-conservative.

We also compare the ability of the two methods to assign high probabilities to truly

causal predictors, and low probabilities to predictors with indirect effects. The average true

causal probability is defined as the mean of the probabilities in the vector S for each of the

Bayesian and DET stage two approaches; the average non causal probability is the mean

of the probabilities in the vector F , for each approach. We also include the proportion of
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Table 7.1: Theoretical and observed proportions of successes within each probability parti-
tion for Bayesian method

Partition Observed Theoretical Difference Scaled diff.
P1 0.018 0.023 0.005 0.217
P2 0.063 0.073 0.010 0.137
P3 0.141 0.121 0.020 0.165
P4 0.209 0.172 0.037 0.215
P5 0.267 0.223 0.044 0.197
P6 0.314 0.274 0.040 0.146
P7 0.363 0.324 0.039 0.120
P8 0.398 0.374 0.024 0.064
P9 0.434 0.424 0.010 0.024
P10 0.492 0.474 0.018 0.038
P11 0.517 0.525 0.008 0.015
P12 0.554 0.575 0.021 0.037
P13 0.571 0.625 0.054 0.086
P14 0.617 0.674 0.057 0.085
P15 0.648 0.725 0.077 0.106
P16 0.697 0.775 0.078 0.101
P17 0.746 0.825 0.079 0.096
P18 0.785 0.875 0.090 0.103
P19 0.842 0.925 0.083 0.090
P20 0.918 0.979 0.061 0.062

Total 0.855 2.104
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Table 7.2: Theoretical and observed proportions of successes within each probability parti-
tion for DET stage 2 method

Partition Observed Theoretical Difference Scaled diff.
P1 0.035 0.027 0.008 0.296
P2 0.077 0.070 0.007 0.100
P3 0.111 0.119 0.008 0.067
P4 0.145 0.169 0.024 0.142
P5 0.256 0.225 0.033 0.147
P6 0.315 0.276 0.039 0.141
P7 0.352 0.325 0.027 0.083
P8 0.375 0.375 0.000 0.000
P9 0.406 0.425 0.019 0.045
P10 0.431 0.475 0.044 0.093
P11 0.454 0.525 0.071 0.135
P12 0.490 0.574 0.084 0.146
P13 0.514 0.625 0.111 0.178
P14 0.550 0.675 0.125 0.185
P15 0.585 0.724 0.139 0.192
P16 0.632 0.774 0.142 0.183
P17 0.675 0.825 0.150 0.182
P18 0.751 0.874 0.123 0.141
P19 0.822 0.924 0.102 0.110
P20 0.921 0.972 0.051 0.052

Total 1.307 2.618
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Table 7.3: Average probabilities attributed to true causal and non causal predictors. In
brackets, the proportion of truly causal predictors assigned a causal probability of 0.75 or
greater, and the proportion of non causal predictors assigned a probability of 0.1 or less are
given.

Bayes DET
S 0.290 (0.099) 0.316 (0.128)
F 0.079 (0.780) 0.076 (0.858)

truly causal predictors assigned a causal probability of 0.75 or greater, and the proportion

of non causal predictors assigned a probability of 0.1 or less. The results are given in Table

??, and we see that, on both of these measures, DET out-performs the Bayesian approach.
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Chapter 8

Conclusions and Future Directions

8.1 Label Switching and Mixture Models

Mixture models are used in situations involving heterogenous populations. They consist of

a number of components, where each component represents a homogenous sub-population

within the population. When conducting MCMC inference, the order that the components

are in can change multiple times between iterations. This makes it difficult to carry out

component-specific inference, since one cannot tell how the components in one iteration map

to the components in any other iteration. This is known as the label switching problem.

To deal with the label switching problem, deterministic ‘relabelling’ strategies exist that

attempt to align the components, so that essentially they are in the same order on each it-

eration. This process provides an estimate of how the components correspond to each other

between iterations. These deterministic methods, however, provide no indication of the

uncertainty that is associated with the relabelling process. We introduced a probabilistic

algorithm as an alternative to the deterministic methods. Probabilistic relabelling algo-

rithms provide a natural way to incorporate the uncertainty in the relabelling process, and

have appealing connections to the EM and SEM algorithms. Applications of the approach

in genetics include making inferences on sub-populations within a sample. This will become

more important when larger samples, where the participants come from more diverse back-

grounds, are collected, since genetic variants may have different phenotypic consequences in

different sub-populations. There are many applications outside of genetics, since the mix-
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ture model is a general methodological tool. Some very recent examples of mixture model

applications include longitudinal clinical trial data (?), social networks (?) and mutilevel

data (?). The label switching problem is also relevant to hidden Markov models on a discrete

state space (?).

An interesting avenue for future research in this area is the integration of the relabelling

procedure with the determination of the number of components in the mixture model. This

is suggested in Section ??. A combined approach to dealing with these two difficult issues

when using mixture models would certainly be useful.

8.2 Direct Effect Testing and Sparsity Models

In the second part of the thesis we introduced a novel method for searching for direct effects

in supervised problems, called direct effect testing (DET). A direct effect is a relationship

between a predictor and response that is not explained by correlation with any of the other

measured predictors. Any relationship between a predictor and the response that is not

a direct effect is called an indirect effect. An indirect effect can arise when a predictor is

correlated with another predictor that has a direct effect. DET is useful in situations where

a large number of predictors are available to explain a response. For example, the response

may be a disease outcome, and the predictors SNPs (single nucleotide polymorphisms).

When there are more predictors than observations, or the predictors are highly correlated,

or both, it is difficult to distinguish predictors directly associated with a response from

those indirectly associated with the response. DET is a method that allows these situations

to be handled, by distinguishing between direct effects and indirect effects, and providing

information on the uncertainty in this distinction.

DET is a two stage procedure. In the first stage, lasso regression is used in a novel

structure to model direct and indirect effects between the predictors and the response. This

allows effects to be identified. The second stage of DET then quantifies the uncertainty in

which predictors are responsible for each detected effect. Specifically, a discrete probability

distribution is calculated for each detected effect, giving the probability that each predictor

is directly responsible for that effect.
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It may be beneficial, for future research, to consider the two stages of DET in isolation.

The first stage involves fitting a lasso regression based on minimising the correlated residuals

rather than the residuals. This is discussed, in Section ??, to be a compromise between the

classical lasso (?) and the Dantzig selector (?), and this is worth pursuing further, to

understand the relationships between these three methods. Hypothesis testing on effect size

is then carried out, based on the noncentral hypergeometric distribution of the underlying

cell counts. Generalisation of this stage to continuous situations will be of interest.

The DET method was originally developed in a frequentist setting, but stage 2 of DET is

making pseudo-Bayesian statements, suggesting that it would be more natural to construct

the method using a Bayesian framework. The more strictly Bayesian alternative to stage two

of DET, which is discussed briefly in Section ??, seems comparable to the original proposal.

The Bayesian alternative also allows more explicit inclusion of any prior knowledge that is

available. Hence we believe that the Bayesian paradigm is the natural way to take the ideas

of DET forward.

There are many methods that are similar to DET in that they carry out inference in

the p� n setting. Each of these methods was designed for a different purpose, but we were

interested in how well these different methods recovered the ‘true sparsity pattern’. The

true sparsity pattern is important as it tells us which genetic variants affect our outcome of

interest. A thorough simulation study showed that, surprisingly, many existing methods are

good at recovering the true sparsity pattern, even in unfavourable conditions such as high

correlation between predictors. The vast family of methods, including DET, have many

close relationships, and more work needs to be done to understand how they all relate.

From a practical point of view, a user of p � n methods needs to know which method to

use to solve their particular problem.

In genetics, identifying predictors with direct effects is potentially useful. For example,

if the predictors are SNPs, genetic engineering could modify the SNP in question. There

are also applications of such a procedure outside of genetics, such as digital communications

(?), network recovery (e.g. ?) and wavelets (?).
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