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Dynamic Simultaneous Fare Proration for

Large-Scale Network Revenue Management

Philipp Kemmer∗, Arne Strauss†, Thomas Winter∗

April 5, 2011

Abstract

Network revenue management is concerned with managing demand for products that require

inventory from one or several resources by controlling product availability and/or prices in order

to maximize expected revenues subject to the available resource capacities. One can tackle this

problem by decomposing it into resource-level subproblems that can be solved efficiently, e.g. by

dynamic programming (DP).

We propose a new dynamic fare proration method specifically having large-scale applications in

mind. It decomposes the network problem by fare proration and solves the resource-level dynamic

programs simultaneously using simple, endogenously obtained dynamic marginal capacity value es-

timates to update fare prorations over time. An extensive numerical simulation study demonstrates

that the method results in tightened upper bounds on the optimal expected revenue, and that the

obtained policies are very effective with regard to achieved revenues and required runtime.

Keywords: Transport; Revenue Management; Dynamic Programming; Air Transport

Introduction

Many service providers sell products that require inventory on one or several resources, for example,

flight tickets that require seats on one or several flight legs, or hotel stays that require rooms over one

or several nights, etc. In this context, the network revenue management (RM) problem is to manage

demand for such network products by controlling product availability and/or prices in order to maximize

expected revenues subject to the available resource capacities. The interdependencies between the various

resources cause the identification of an exact solution to this problem to be intractable; instead, we can

only solve the problem approximately.

Much work has been devoted to the construction of such approximate solutions (see literature in the

following section). A popular approach is to decompose the network problem into easier, independent

subproblems, one per resource, by replacing the fare for products requiring inventory from more than one

resource with resource-level fare allocations based on some estimate of the marginal capacity value (MCV)

of each resource. Recent research confirmed the intuition that consideration of time-dependent estimates

(as opposed to static ones) can improve the average revenue performance of policies derived from such

methods (e.g. Adelman (2007), Topaloglu (2009)). However, this improved revenue performance comes

at the expense of computationally more demanding models.

We propose an approximate solution to the network RM problem that generates and uses time-

dependent estimates of the MCVs at virtually the same computational cost as the traditional decompo-

sition technique. The key idea is to solve the resource-level subproblems simultaneously, and to exchange
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information on new estimates of the MCVs between these subproblems so as to obtain new fare alloca-

tions to the individual resources at every point on a discrete time scale. We compare this new method

with a simplified version of the optimization methodology that is being used by Lufthansa Systems.

Their actually used complex methodology includes many additional features such as customer choice

modeling, overbooking, cancelations, risk-based capacity optimization etc; we ignore these for the sake

of a clearer presentation of the new idea. We emphasize that these features can easily be added to the

new model in the same way as for the simplified version with similar increase of computational cost.

This justifies our claim for applicability to large-scale networks since their complex methodology has

been successfully applied to airline RM networks with more than 1000 flight legs.

We present numerical results on public benchmark data that demonstrates that the new method can

obtain significantly higher average revenues than the traditional dynamic programming (DP) decompo-

sition with prorated fares at about the same computational cost. Further, it can be much faster whilst

maintaining statistically the same average revenue levels if compared to iterative dynamic programming

decomposition via fare proration with static proration factors. We also show a new upper bound rela-

tionship, namely that the DP decomposition with prorated fares is a tighter upper bound on the optimal

expected revenue than the so-called Deterministic Linear Program.

The work is organized as follows: after a brief literature review, the network RM problem is formally

stated along with the required mathematical notation. As an approximate way to solving this problem,

we present an iterative dynamic programming decomposition via fare proration that serves us as a

benchmark to measure performance of the new approximation proposed in the subsequent sections. We

report numerical results in the penultimate section and draw conclusions in the final section.

Related Work

There is a large body of literature on the subject of network revenue management, and we only outline

the most related work on fare proration or decomposition techniques. For a general overview, consult

the book of Talluri and van Ryzin (2004b) and the survey papers Chiang et al. (2007) and McGill and

van Ryzin (1999).

The solution approaches to the network RM problem often take the form of either a mathematical

programming formulation, or a decomposition into a collection of single-resource problems, or a combi-

nation of both. Any of these approaches eventually leads to estimates of opportunity costs that can be

used to construct policies.

Popular mathematical programming approaches include the so-called Deterministic Linear Program

(DLP) and the Probabilistic Nonlinear Program (PNLP), see Glover et al. (1982); Williamson (1992).

A more recent alternative is due to Adelman (2007): he proposes a time-dependent approximation

and shows that upper bounds on the optimal objective value are tightened relative to the DLP, and

that the obtained policies perform better in a simulation study. A problem with this formulation is

the large number of columns in the linear program; in fact, it grows exponentially in the number of

products. The author hence proposed to solve it via column generation, which, however, can be (too)

time-consuming for large-scale networks. Farias and Van Roy (2007) introduce a linear programming

approach to approximate dynamic programming that depends on both time and inventory levels. The

same approximation was independently proposed by Talluri (2008) who studies the relationships of

various upper bounds obtained by different methods.

Decomposition approaches aim to simplify the network problem by breaking up the links in the prob-

lem structure that cause the resources to be interdependent, so that one eventually obtains a collection

of simpler subproblems. Under the assumption of independent demand, these links are the inventory
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consumption and fare of products that use more than one resource.

Jiang (2008) uses Lagrangian relaxation to break up interdependencies across the capacity constraints

in order to solve the aforementioned PNLP. He proposes this technique as an alternative to tackling the

PNLP with general non-linear solvers. The relaxed problem decomposes by the products, and he shows

that the subproblems can be solved analytically (for fixed Lagrangian multipliers). The latter are being

improved using subgradient optimization with the disadvantage of slow convergence. Topaloglu (2009)

decomposes the network RM problem by likewise using Lagrangian relaxation of the constraints that link

resources via the inventory consumption of network products. He obtains a time- and inventory-level-

dependent approximation that allows acceptance or rejection of a product on the individual resources

that the product requires. Subgradient optimization finds a feasible solution by penalizing discrepancies

of these resource-level accept/deny decisions. The evaluation of a subgradient requires solving a single-

dimensional dynamic program for all resources. The convergence of this procedure can be quite slow,

requiring hundreds of iterations.

Most decomposition techniques focus on breaking up the network fares. Kunnumkal and Topaloglu

(2010) develop an approach where optimal partitions of network fares into resource-level allocations

are found using subgradient optimization. Each evaluation of a subgradient requires solution of single-

resource dynamic programs. The main advantage over previous fare decomposition methods is that it

adjusts the fare allocations from iteration to iteration.

A traditional approach is to combine mathematical programming and decomposition: first, we solve a

mathematical program resulting in some estimate of the marginal value of capacity for each resource, and

then we use these estimates to define fare allocations to the individual resources. These allocations can be

obtained additively or multiplicatively, and we refer to them as displacement-adjusted or prorated fares,

respectively. Talluri and van Ryzin (2004a) describe the traditional dynamic programming approach

using displacement-adjusted fares based on an initial solution of the DLP. Fare proration was proposed

in the Master thesis of Bratu (1998) based on capacity value estimates derived from the Expected

Marginal Seat Revenue heuristics of Belobaba (1987, 1986).

Variants of this decomposition method became popular in practice. Recent research aimed at im-

proving the shortcoming that after the initial fare allocation, all network information is lost. While this

allows us to solve the subproblems in parallel since they are independent, one would expect revenue

improvements if some information would be exchanged. This idea underpins the work of Zhang (2011),

who proposes to use the static marginal capacity value estimates obtained from the DLP to decompose

the problem as in the traditional approach, however, since we can obtain an upper bound on the optimal

expected revenue from each of these subproblems at each time step, he proposes to solve the subproblems

in parallel, and to use the tightest bound at each time step as the value function approximation. His

work is related to ours in that we also solve the DP subproblems in parallel and exchange information

between them, however, the main difference is that we use information from all subproblems to define

dynamic estimates of the marginal value of capacity, and use them to obtain new fare allocations by

proration to reflect changes of the capacity values over time.

The Network Revenue Management Problem

We face a network with m resources and n products. A product j is a seat on one or several flight legs

and has a fixed fare fj and potentially some fare rules associated with it. The set of all resources and

products is denoted by I = {1, . . . ,m} and J = {1, . . . , n}, respectively. The matrix A ∈ {0, 1}m,n with

components aij specifies whether product j requires resource i for all product-resource pairings. We

assume that there are no group requests. We write Aj for the jth column of A and Ai for its ith row.
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The notation i ∈ Aj (j ∈ Ai) represents resources i that are used by product j (products j that use

resource i).

Customers arrive continuously over time while decisions on which products to offer are made at

discrete points in time such that the time intervals are small enough to have a negligible probability that

two or more arrivals occur. The decision time periods are indexed with t, starting at time t = 1 until all

flights depart at time t = T + 1. The index t can also refer to the time interval between decisions at t

and t + 1 and will be clear from the context. In practice, the time grid can differ from one resource to

another since we are interested in adjusting the grid for expected demand for this resource on the one

hand, but not letting the grids become unnecessarily fine and thereby increasing computational time on

the other.

Given that we offer a set S ⊆ J of products at time t, a customer purchases product j ∈ S with

probability pjt and does not purchase with probability p0t = 1−
∑

j∈S pjt. We assume that all customers

show up and do not cancel so that no overbooking is required.

Each resource i initially has capacity ci, and the state vector x ∈ N
m
0 indicates how much inventory is

still available. Although x is clearly time-dependent, we do not use a subscript t because it will be clear

from the context. The remaining inventory also affects which products can be offered; since we exclude

overbooking, we require that sufficient inventory must be available to provide a product. The set of all

feasible products is then J(x) = {j ∈ J : Aj ≤ x}.

Let us denote the optimal expected revenue obtainable from time t until the end of the booking

horizon given remaining capacity x by vt(x), usually referred to as the value function. A common

assumption in recent work on this kind of network RM problem is that we can offer any combination

of products at any time; subject to sufficient remaining inventory. Under this assumption, vt(x) can be

written as follows:

vt(x) = max
S⊆J(x)

∑

j∈S

pjt

[

fj + vt+1(x−Aj)
]

+ p0tvt+1(x)

= max
S⊆J(x)

{

∑

j∈S

pjt

[

fj −
(

vt+1(x)− vt+1(x−Aj)
)

]

}

+ vt+1(x),

=
∑

j∈J(x)

pjt

[

fj −
(

vt+1(x) − vt+1(x−Aj)
)

]+

+ vt+1(x), ∀ t, x, (1)

where [z]+ is defined as max{z, 0}. The boundary conditions are given by vT+1(x) = 0 for all inventory

states x. Note that the expression
(

vt+1(x) − vt+1(x − Aj)
)

represents the opportunity cost of selling

product j. Computation of vt(x) for all time periods t and all inventory vectors x ∈
⊗

i∈I{0, . . . , ci}

is not tractable, so instead we are looking for a good approximation of vt(x) that we can use as an

approximation of the opportunity cost. The resulting policy is to offer only those products for which

fare minus approximate opportunity cost is positive.

In the next section, we introduce the iterative fare proration method that serves us as a benchmark

in our numerical study.

Iterative Dynamic Programming Decomposition via Fare Prora-

tion

Fare proration means the allocation of portions of any network fare fj to the resources that product j

uses by defining a vector of so-called proration factors ζ ∈ [0,∞)m that is used to obtain allocations

f i
j := fjζi/

∑

k∈Aj
ζk for each resource i if

∑

k∈Aj
ζk 6= 0. In the event that the denominator is zero
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for a product j, we distribute the revenue equally across all resources via f i
j := fj/|Aj | for all i ∈ Aj ,

where |Aj | denotes the number of nonzero components of Aj . If we substitute the fare fj with the fare

allocation f i
j for a fixed resource i in the dynamic program (1), then we obtain a collection of easy-to-solve

dynamic programs defined over a single resource:

vζt,i(xi) =
∑

j∈J(x
−i)

pjt

[

f i
j −

(

vζt+1,i(xi)− vζt+1,i(xi − aij)
)

]+

+ vζt+1,i(xi), ∀ t, xi ∈ {0, . . . , ci}, (2)

with x−i := [c1, . . . , xi, . . . , cm] and boundary conditions vζt,i(0) = vζT+1,i(xi) = 0 for all t and xi. Having

solved all resource-level value functions vζt,i(xi), we can approximate vt(x) with
∑

i v
ζ
t,i(xi).

Let us consider the construction of proration factors. A classic approach is to use the optimal dual

values of the capacity constraints of the Deterministic Linear Program (DLP) as proration factors. The

DLP considers demand for product j as deterministic and being equal to its expected value
∑

t pjt, and

is often found in industry solutions owing to its simplicity and relatively good performance. It is given

by

zDLP =max
y
〈f, y〉

(DLP)
∑

j∈J

aijyj ≤ ci, ∀ i ∈ I, (3)

0 ≤ yj ≤
∑

t

pjt, ∀ j ∈ J,

where 〈·, ·〉 denotes the scalar product. The variable yj is an allocation of capacity to product j, and

the constraints ensure that the available capacity is not exceeded. The optimal dual variables π of the

capacity constraints (3) represent a (static) estimate of the marginal value of capacity. Therefore, using

ζi := πi for all resources i allocates fares to resources proportional to the value of each respective resource.

An intriguing variant of this process is to run it once, to use the resulting information to obtain

updated estimates of the marginal value of capacity and thus new proration factors, and then to re-

start the process using this new proration until some stopping criterion is met. Although there are

typically neither guarantees that the proration factors will become better nor that they converge, still

this approach has turned out successful in practice at Lufthansa Systems. We define this method in

Algorithm 1, where we obtain the initial proration factors from the DLP in line 1, define the denominator

dhj of the proration term for product j at iteration h in line 4, prorate the fare between lines 5 and 10,

and solve the dynamic programs (2) with ζ := π in line 12. Accordingly, we denote these single-resource

value functions as vπ,ht,i (xi). After this first iteration we check a stopping criterion, and if it is not met,

we define new proration factors ζh+1
i := vπ,h1,i (ci) − vπ,h1,i (ci − 1) and re-evaluate the dynamic programs.

The stopping criterions are discussed in the penultimate section. We use Algorithm 1 as a benchmark

method in our numerical experiments.

Properties

An attractive feature of decomposition by fare proration is that we are always guaranteed to obtain an

upper bound on the optimal expected revenue given by vt(x) as expressed by the following Lemma:

Lemma 1. Let there be a vector α such that
∑

i∈I αijt = fj for all products j and all time periods t.

Then vt(x) ≤
∑

i∈I vt,i(xi|α), where vt,i(xi|α) is the value function obtained by substituting the prorated

revenues f i
j in (2) with αijt.

Proof. This result can be shown by induction over time and is stated in Kunnumkal and Topaloglu

(2010).
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Algorithm 1 Benchmark: Iterative Fare Proration

1: obtain initial marginal capacity value estimates ζh ← π from DLP for iteration h = 1
2: boundary conditions: vπ,hT+1,i(xi) = 0 for all xi, i. v

π,h
t,i (0) = 0 for all t, i

3: loop

4: dhj ← 〈Aj , ζ
h〉 for all products j

5: for all products j with dhj > 0 do

6: f i
j ← ζhi fj/d

h
j for all resources i ∈ Aj

7: end for

8: for all products j with dhj = 0 do

9: f i
j ← fj/|Aj | for all resources i ∈ Aj

10: end for

11: for all i = 1 : m do

12: solve vπ,ht,i (xi) =
∑

j∈J(x
−i)

pjt

[

f i
j −

(

vπ,ht+1,i(xi)− vπ,ht+1,i(xi−aij)
)

]+

+ vπ,ht+1,i(xi) for all t, xi

13: end for

14: update proration factors: ζh+1
i ← vπ,h1,i (ci)− vπ,h1,i (ci − 1) for all i

15: if stopping criterion satisfied then

16: break
17: else

18: h← h+ 1
19: end if

20: end loop

21: return value function approximations vi for all i

Note that this holds regardless of the way that the allocations are made. On the other hand, we are

also interested in methods that result in tight bounds since these can be expected to generally produce

better average revenue results. Indeed, for fare proration based on the dual values of the DLP with

subsequent solution of the dynamic programs (2), we can show that we achieve a tighter bound after one

DP iteration than the one given by the optimal objective zDLP of DLP:

Proposition 2. v1(c) ≤
∑

i∈I v
π,1
1,i (ci) ≤ zDLP.

The proof can be found in the Appendix. Note that this result only holds when we use the DLP

dual values as initial prorating factors; it is not clear whether the bound is tighter after more than one

iteration of Algorithm 1. However, numerical results in the penultimate section indicate that iterations

can tighten the bound with respect to zDLP.

Practical Considerations

Iterative dynamic programming decomposition via fare proration is a proven concept that delivers good

revenue and run time performance at Lufthansa Systems. Even for large-scale networks with more than

1000 flight legs, the method can run within the time limitations given the hardware equipment typically

found at large airlines (even with all additional features such as customer choice models etc) because

the single-resource DPs are independent from each other and can consequently be solved in parallel.

The number of DP iterations typically averages around five, though that of course varies with network

structure and demand.

Dynamic Simultaneous Fare Proration

Although the iterative DP decomposition via fare proration based on the DLP has appealing theoretical

and practical properties, there still appears to be scope for improvement: various researchers have recently
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Algorithm 2 Dynamic Simultaneous Fare Proration

1: define boundary conditions: vξT+1,i(xi) = 0 for all xi, i. v
ξ
t,i(0) = 0 for all t, i.

2: for all t = T : −1 : 1 do

3: for all i ∈ I do

4: update ξi ← vξt+1,i(ci)/ci
5: dj ← 〈Aj , ξ〉 for all products j
6: for all products j ∈ Ai with dj > 0 do

7: f i
j ← ξifj/dj

8: end for

9: for all products j ∈ Ai with dj = 0 do

10: f i
j := fj/|Aj |

11: end for

12: solve vξt,i(xi) =
∑

j∈J(x
−i)

pjt

[

f i
j −

(

vξt+1,i(xi)− vξt+1,i(xi − aij)
)

]+

+ vξt+1,i(xi)

13: end for

14: end for

15: return value function approximations vi for all i

demonstrated the benefit of accounting for time-dependence of estimates of the marginal capacity values

(see literature review), yet the approach as outlined above is based on the static dual solution of the

DLP. Typically, the corresponding approaches become difficult to solve for large-scale networks since

they are based on slow-converging strategies such as column generation or subgradient optimization.

In this section, we investigate a new DP decomposition approach to the network RM problem that

exploits simultaneous solution of the DPs and endogenously creates time-dependent proration factors

without need for DP iterations. It uses the knowledge of the resource-level value functions as soon as it

becomes available.

We call this new method Dynamic Simultaneous Proration (DSP) and outline it in Algorithm 2.

More specifically, we initially allocate equal fare proportions f i
j for any network product j to all the

resources i that it uses. This allocation is motivated by the fact that all MCV are zero at departure.

In line 4, the estimated MCV of resource i is defined as the MCV averaged over all inventory levels l:
∑ci

l=1

(

vξt+1,i(l) − vit+1(l − 1)
)

/ci = vξt+1,i(ci)/ci. We compute new prorated fares (lines 5–11) and use

these in the calculation of the value function at time t (line 12). At each time step, the value functions

for all resources need to be evaluated (in other words, we solve the DPs simultaneously).

This approach has several interesting features: Firstly, it does not require any initial prorating fac-

tors, and afterwards we can use the previously computed MCV estimates from the resource-level value

functions themselves to obtain new MCVs (i.e. new proration factors). Therefore, all MCVs are obtained

endogenously from the model. Secondly, these endogenous updates of the MCV within the DP backwards

recursion make iterative proration superfluous. In contrast, the iterative fare proration in the benchmark

method attempts to correct the static nature of the prorating factors by updating them after each DP

iteration. Thirdly, the proration updates are very simple to compute and incur virtually no additional

computational cost as compared to Algorithm 1.

Properties

We know from Lemma 1 that
∑

i∈I v
ξ
1,i(ci) is an upper bound on the optimal expected revenue v1(c),

and intuitively one would expect that the dynamic DP decomposition would result in a bound that is

tighter than the benchmark
∑

i∈I v
π,1
1,i (ci). Unfortunately, this is in general not the case. In fact, we

show with an example that
∑

i∈I v
ξ
1,i(ci) is not even guaranteed to be tighter than the optimal objective

of (DLP).

Proposition 3. In general, zDLP and
∑

i∈I v
ξ
1,i(ci) as defined in Algorithm 2 do not dominate each
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other.

Proof. Consider a network with two products and two flights. The fares are given by f = [100, 50],

product 1 uses both flight legs and product 2 uses only the first flight leg. The time horizon is T = 50,

and pt = [0.1, 0.1] for all t. Let the initial capacity be c = [10, 1]. It is easy to see that the DLP objective

is 350 since we would allocate the sales of 1 unit of product 1 and 5 units of product 2. However,
∑

i v
π,1
1,i (ci) ≈ 349 ≤ zDLP = 350 <

∑

i∈I v
ξ
1,i(ci) ≈ 395. On the other hand, in the penultimate section

we report examples where
∑

i∈I v
ξ
1,i(ci) ≤

∑

i v
π,1
1,i (ci) ≤ zDLP.

The example above illustrates how the new method can go wrong: the dual solution to (D) for this

network is π = [0, 100], whereas Algorithm 2 starts with an initial guess of ξT = [0, 0]. This behavior

arises from the absence of information concerning the MCVs of the resource with zero capacity, whereas

the static dual solution π reflects that this resource is the bottleneck. We could smooth this effect by

constructing proration factors using a convex combination of prior information such as π obtained from

the DLP as well as the dynamic endogenous estimates.

However, we observe in our extensive numerical study that the revenue and upper bound performance

of the new approach is very good across all test instances without using any prior information. The

method is computationally very attractive since it does not require the expensive up-front computation

of time-dependent MCV. We further discuss the MCV estimates obtained with this method in the

numerical results section.

Practical Considerations

As run time performance is crucial for any real-life application, we need to make sure that the exchange

of information between parallel single-resource DPs does not slow the entire system down. Moreover, the

time grids in real applications can differ from resource to resource, so that it is not immediately clear how

to apply this concept. On the other hand, in the real system there are a number of time points (usually

about 20) at which new forecasting data becomes available, and at these so-called data collection points

the time grids are synchronous. Therefore we suggest to perform the update of proration factors at these

data collection points; this will also result in a low amount of information that needs to be exchanged.

In the numerical experiments that we describe in the following section, we address this issue by testing

both updates at every time step (under the assumption of synchronous time grids) and at only 20 fixed

points in time.

Numerical Experiments

Network Instances

We investigate the numerical behavior of various policies on the 48 single hub network instances provided

by Topaloglu (2011), available for download online. Associated with each one of the ν spokes, there are

two flight legs, one of which is to the hub and the other one is from the hub. For each origin-destination

pair, there is one high-fare and one low-fare product. Consequently, there are 2ν flight legs and 4ν

products for direct flights, and 2ν(ν − 1) products itineraries using two flight legs. Each of the 48

instances is characterized by (T, ν, α, κ), that is, the number of time periods T ∈ {200, 600}, the number

of spokes ν ∈ {4, 5, 6, 8}, tightness of leg capacities α ∈ {1.0, 1.2, 1.6}, and the ratio between low and

high class fares κ ∈ {4, 8}. By “tightness of leg capacity” we refer to the ratio of total expected demand
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for the capacity on all flights over total initial network capacity, that means

α :=

∑T

t=1

∑

i∈I

∑

j∈J pjtaij
∑

i∈I ci
.

We define 20 time points on each time grid as “data collection points”, i.e. {200, 190, 180, . . . , 10} for

the scenarios with T = 200, and {600, 570, . . . , 30} for those with T = 600. At these points in time

there is no actual data collection taking place (since the data does not provide us with new demand

information); we merely introduce this notion to reflect that in realistic implementations the time grids

are only synchronous at about 20 data collection points where we perform proration factor updates and

re-solves.

Policies & Implementation

The iterative proration benchmark defined in Algorithm 1 requires some stopping criterion that we have

yet to define. It is not clear whether the method converges in some sense, be that convergence of the

proration factors or of the prorated fares themselves. We experimented with the following stopping

criteria:

Factor Stop after iteration h if ‖ξh − ξh+1‖∞ ≤ 5.

Fare Let us denote the prorated fare for product j on resource i under proration factors ξ by f i
j(ξ).

Define the number nConverged of “converged” prorated fares as the number of such fares for which

|f i
j(ξ

h) − f i
j(ξ

h+1)| ≤ 5. Let nProratedFares denote the total number of prorated fares. Finally,

the scalar meanFareDiff denotes the fare difference |f i
j(ξ

h)− f i
j(ξ

h+1)| averaged over all prorated

fares. The stopping criterion can be stated as follows:

if nConverged / nProratedFares ≥ 90%

- if nConverged / nProratedFares == 1, stop, endif

- if meanFareDiff ≤ 5, stop, endif

endif

We allow at most 10 iterations.

1Iter As a third alternative, we stop always after the first iteration.

On average, the stopping criterion Factor turned out to produce smaller revenues and to require slightly

more iterations so that we confine ourselves to reporting results only for Fare and 1Iter.

We tested the following policies, all of which are based on 20 re-solves of the corresponding underlying

method at equally spaced time points over the entire time horizon:

IPBMK The Iterative Proration Benchmark as outlined in Algorithm 1. We use the stopping criterion

Fare. Each call to the algorithm provides us with a collection of single-leg value function approx-

imations vζi , which we use to accept a product at time t if there is sufficient remaining inventory

and fj −
∑

i∈I aij∆vζt+1,i(xi) ≥ 0.

BMK1 This is the same benchmark method as IPBMK except that we always stop after the first DP

iteration (i.e., the IPBMK with stopping criterion 1Iter).

DSPt We run the Dynamic Simultaneous Proration as outlined in Algorithm 2 with prorating factor

updates at every time step t.

DSP Same as DSPt, except with only 20 prorating factor updates.
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DLP We re-optimize the Deterministic Linear Program at each each data collection point to obtain a

static estimate of the MCV by means of the dual solution π to the capacity constraints, and offer

all products j for which there is sufficient inventory (xi ≥ aij∀ i ∈ Aj) and positive contribution

fj −
∑

i aijπi ≥ 0.

Results

Upper Bounds

We begin with an investigation of the upper bounds on the optimal expected revenue obtainable from

the various methods and report the results for all 48 test instances in Table 1 and 2. We find that

the DLP bound is between 2.2% to 10.2% weaker than the IPBMK bound (on average +5.3% over all

instances). BMK1 results in bounds that are between +0% to +2.7% weaker than IPBMK (on average

+0.5%), while DSPt and DSP improve the IPBMK bound by up to -2.2% and -2.2%, respectively. In

the worst cases, DSPt and DSP results in 0.4% and 0.5% weaker bounds (on average -0.1% and -0.0%,

respectively).

Table 1: Upper bounds

(T, ν, α, κ) IPBMK BMK1 DSPt DSP DLP

(200,4,1.0,4) 20894 20930 20429 20442 21531
(200,4,1.0,8) 33348 33857 33250 33265 34571
(200,4,1.2,4) 18887 18887 18879 18897 19882
(200,4,1.2,8) 31640 31640 31641 31659 32922
(200,4,1.6,4) 16530 16534 16543 16569 17530
(200,4,1.6,8) 29243 29257 29248 29274 30570
(200,5,1.0,4) 21358 21556 21320 21325 22144
(200,5,1.0,8) 34421 34671 34384 34389 35387
(200,5,1.2,4) 20187 20343 20115 20121 21263
(200,5,1.2,8) 33134 33302 33052 33059 34495
(200,5,1.6,4) 17644 17644 17679 17695 18870
(200,5,1.6,8) 30484 30486 30491 30507 32081
(200,6,1.0,4) 21114 21372 21118 21128 22300
(200,6,1.0,8) 34104 34425 34106 34118 35544
(200,6,1.2,4) 19708 19730 19663 19686 20932
(200,6,1.2,8) 32597 32619 32544 32568 34172
(200,6,1.6,4) 17263 17263 17308 17338 18592
(200,6,1.6,8) 30073 30073 30101 30126 31824
(200,8,1.0,4) 18798 19302 18757 18789 20052
(200,8,1.0,8) 30277 30931 30253 30290 31835
(200,8,1.2,4) 17454 17463 17484 17530 18952
(200,8,1.2,8) 28850 28862 28865 28910 30727
(200,8,1.6,4) 15276 15292 15276 15323 16833
(200,8,1.6,8) 26526 26548 26525 26574 28608

We observe that all methods result in significantly strengthened bounds as compared to DLP. In

particular, IPBMK appears to be already a very strong method as far as the generation of tight bounds

is concerned, but can nevertheless be improved in some cases by dynamic simultaneous proration. Next,

we investigate the revenue performance of the various policies.

Revenue Performance

We conduct an extensive numerical study of the revenue performance of all policies involving 2000

simulations for each scenario and each method. We report the average revenues and load factors in
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Table 2: Upper bounds

(T, ν, α, κ) IPBMK BMK1 DSPt DSP DLP

(600,4,1.0,4) 31181 31482 30986 31005 32409
(600,4,1.0,8) 50613 50985 50391 50413 52086
(600,4,1.2,4) 28610 28610 28620 28652 29852
(600,4,1.2,8) 47923 47923 47945 47978 49529
(600,4,1.6,4) 25071 25073 25094 25141 26324
(600,4,1.6,8) 44334 44350 44345 44392 46001
(600,5,1.0,4) 32357 32424 32289 32296 33299
(600,5,1.0,8) 52156 52239 52068 52075 53285
(600,5,1.2,4) 30658 30834 30557 30568 31943
(600,5,1.2,8) 50277 50464 50165 50177 51904
(600,5,1.6,4) 26829 26829 26929 26963 28343
(600,5,1.6,8) 46309 46310 46373 46404 48283
(600,6,1.0,4) 25663 26221 25550 25561 26873
(600,6,1.0,8) 41355 42054 41258 41272 42865
(600,6,1.2,4) 23787 23820 23718 23747 25184
(600,6,1.2,8) 39363 39398 39289 39319 41166
(600,6,1.6,4) 20756 20756 20825 20864 22274
(600,6,1.6,8) 36239 36242 36297 36330 38252
(600,8,1.0,4) 22879 23340 22743 22782 24167
(600,8,1.0,8) 36804 37378 36659 36706 38395
(600,8,1.2,4) 21079 21098 21098 21161 22755
(600,8,1.2,8) 34862 34891 34872 34933 36976
(600,8,1.6,4) 18491 18509 18486 18545 20228
(600,8,1.6,8) 32117 32146 32112 32173 34449

Tables 3 and 4, along with standard deviations in Table 5. To facilitate reading of the revenue results,

we depict the revenues of all policies relative to the revenue levels achieved by IPBMK in Figure 1. The

relative percentage error of the reported results is about 0.2%–0.4%.

Figure 1 illustrates the strength of the methods IPBMK, BMK1, DSPt and DSP by the considerable

improvements that they yield over DLP. In particular, for fixed (T, ν, α), a big difference between high

and low fares (κ = 8) always results in significantly improved performances relative to DLP as compared

to the improvements gained if κ = 4. Similarly, higher capacity tightness scenarios tend to show higher

improvements over DLP. One would have expected these outcomes since big fare differences and relatively

high demand should create more difficult decision problems so that the improved bid prices determined

by the policies IPBMK, BMK1, DSPt and DSP have more impact.

In the same figure, we observe that IPBMK is always better than BMK1. This confirms the intuition

that using iterative proration in conjunction with dynamic programming decomposition has a signif-

icant revenue impact. Averaged over all scenarios, IPBMK achieves a statistically significant +0.5%

improvement of revenues relative to BMK1.

DSP generates in all but three scenarios the same revenue as IPBMK (deviations statistically insignif-

icant). It is interesting to observe that DSPt and DSP are always very close; in fact, DSPt improves on

DSP only about 0.1%. While we would expect DSP to generate less revenue than DSPt since it uses

much fewer proration factor updates, we would have expected the difference to be larger. This shows that

DSP can already realize most of the dynamic proration potential so that updates of proration factors at

20 data collection points are sufficient to maintain revenue performance on the level of IPBMK despite

the considerably reduced computational cost. In order to provide some intuition concerning the small

difference between DSPt and DSP, we plot the trajectories of the proration factors (note that we can

interpret them as estimates of the marginal value of capacity) used by both methods in Figure 2 and
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Figure 1: Average revenue performance of DLP, DSP and DSPt relative to IPBMK based on 2000
simulations.
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Figure 2: Marginal capacity value (MCV) estimates
based on DLP, DSP and DSPt.
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Figure 3: Marginal capacity value (MCV) estimates
based on DLP, DSP and DSPt.

The proration factors in DSP are very close to those generated in DSPt. The approximation becomes

a bit less accurate when we increase the time horizon whilst keeping the number of data collection points

fixed at 20 (as one would expect), but is still a reasonably close fit. This helps to explain why the

revenue results of DSPt and DSP are so similar. Furthermore, 600 time periods for a leg-based time

grid are already close realistic grid sizes and therefore the revenue results look promising for real-world

implementation.

Runtime Performance

The tests were executed on the High Performance Cluster at Lancaster University since each method

is being re-solved 20 times over the time horizon of each simulation, thereby requiring a considerable
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Table 3: Average revenue results and load factors based on 2000 simulations.

(T, ν, α, κ) IPBMK Load BMK1 Load DSPt Load DSP Load DLP Load

(200,4,1.0,4) 20190 0.9 20139 0.9 20179 0.9 20151 0.91 19824 0.9
(200,4,1.0,8) 33025 0.88 32925 0.89 33015 0.89 32981 0.89 32118 0.89
(200,4,1.2,4) 18565 0.92 18507 0.92 18599 0.91 18572 0.91 18115 0.91
(200,4,1.2,8) 31337 0.89 31201 0.9 31379 0.88 31349 0.88 30285 0.9
(200,4,1.6,4) 16221 0.9 16150 0.91 16266 0.9 16231 0.9 15715 0.9
(200,4,1.6,8) 28925 0.87 28765 0.88 28980 0.86 28942 0.86 27480 0.9
(200,5,1.0,4) 21077 0.86 20963 0.86 21046 0.86 21018 0.86 20693 0.88
(200,5,1.0,8) 34120 0.84 33898 0.85 34071 0.84 34046 0.85 32934 0.89
(200,5,1.2,4) 19762 0.89 19662 0.89 19754 0.89 19729 0.89 19311 0.9
(200,5,1.2,8) 32653 0.86 32417 0.87 32635 0.86 32618 0.86 31098 0.91
(200,5,1.6,4) 17224 0.89 17156 0.9 17274 0.88 17246 0.88 16663 0.9
(200,5,1.6,8) 30020 0.85 29770 0.87 30059 0.85 30041 0.84 28269 0.9
(200,6,1.0,4) 20817 0.86 20704 0.87 20796 0.86 20772 0.86 20368 0.88
(200,6,1.0,8) 33792 0.84 33593 0.85 33752 0.84 33736 0.84 32480 0.88
(200,6,1.2,4) 19248 0.88 19143 0.89 19263 0.88 19238 0.88 18746 0.89
(200,6,1.2,8) 32118 0.85 31887 0.86 32127 0.85 32094 0.85 30453 0.9
(200,6,1.6,4) 16839 0.88 16732 0.89 16870 0.87 16855 0.87 16217 0.9
(200,6,1.6,8) 29628 0.83 29358 0.85 29654 0.83 29640 0.82 27562 0.9
(200,8,1.0,4) 18378 0.84 18289 0.85 18359 0.84 18330 0.84 17902 0.86
(200,8,1.0,8) 29820 0.82 29660 0.83 29805 0.82 29768 0.82 28395 0.86
(200,8,1.2,4) 17008 0.86 16894 0.86 17018 0.85 16985 0.85 16461 0.88
(200,8,1.2,8) 28350 0.82 28142 0.83 28345 0.82 28309 0.82 26596 0.88
(200,8,1.6,4) 14782 0.86 14674 0.87 14802 0.85 14781 0.85 14117 0.88
(200,8,1.6,8) 25956 0.81 25712 0.82 25987 0.8 25956 0.8 23888 0.88

Table 4: Average revenue results and load factors based on 2000 simulations.

(T, ν, α, κ) IPBMK Load BMK1 Load DSPt Load DSP Load DLP Load

(600,4,1.0,4) 30653 0.92 30595 0.92 30639 0.92 30595 0.92 30156 0.91
(600,4,1.0,8) 49990 0.9 49915 0.91 49976 0.9 49937 0.9 48883 0.91
(600,4,1.2,4) 28181 0.93 28124 0.93 28227 0.92 28180 0.92 27495 0.92
(600,4,1.2,8) 47452 0.91 47333 0.91 47496 0.9 47443 0.9 46109 0.91
(600,4,1.6,4) 24660 0.92 24591 0.92 24722 0.91 24664 0.91 23924 0.92
(600,4,1.6,8) 43851 0.89 43674 0.9 43925 0.88 43861 0.88 42065 0.91
(600,5,1.0,4) 31926 0.88 31899 0.89 31893 0.87 31846 0.87 31459 0.89
(600,5,1.0,8) 51659 0.86 51569 0.87 51597 0.86 51544 0.86 50176 0.9
(600,5,1.2,4) 30091 0.9 30031 0.91 30091 0.9 30051 0.9 29496 0.91
(600,5,1.2,8) 49633 0.88 49459 0.89 49631 0.89 49577 0.89 47601 0.92
(600,5,1.6,4) 26344 0.91 26288 0.92 26417 0.9 26366 0.9 25543 0.92
(600,5,1.6,8) 45726 0.88 45546 0.89 45812 0.87 45755 0.87 43466 0.92
(600,6,1.0,4) 25217 0.87 25113 0.87 25190 0.87 25164 0.87 24706 0.89
(600,6,1.0,8) 40896 0.85 40713 0.85 40856 0.85 40830 0.85 39393 0.89
(600,6,1.2,4) 23274 0.89 23176 0.9 23278 0.89 23254 0.88 22674 0.9
(600,6,1.2,8) 38803 0.86 38614 0.87 38797 0.86 38782 0.86 36923 0.9
(600,6,1.6,4) 20304 0.88 20223 0.89 20342 0.88 20316 0.87 19604 0.9
(600,6,1.6,8) 35744 0.84 35505 0.86 35781 0.83 35753 0.83 33400 0.9
(600,8,1.0,4) 22282 0.85 22244 0.86 22266 0.85 22224 0.85 21766 0.87
(600,8,1.0,8) 36081 0.83 36044 0.84 36057 0.83 36005 0.82 34555 0.87
(600,8,1.2,4) 20519 0.87 20442 0.88 20538 0.86 20481 0.86 19906 0.89
(600,8,1.2,8) 34195 0.83 34072 0.85 34201 0.83 34143 0.83 32251 0.88
(600,8,1.6,4) 17896 0.87 17812 0.87 17925 0.86 17893 0.86 17155 0.89
(600,8,1.6,8) 31394 0.82 31194 0.84 31415 0.81 31389 0.81 29088 0.89
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Table 5: Standard deviations for 2000 simulations.

(T, ν, α, κ) IPBMK BMK1 DSPt DSP DLP (T, ν, α, κ) IPBMK BMK1 DSPt DSP DLP

(200,4,1.0,4) 960 968 958 958 967 (600,4,1.0,4) 1623 1556 1597 1578 1543
(200,4,1.0,8) 2054 2067 2043 2040 2069 (600,4,1.0,8) 3502 3393 3464 3437 3209
(200,4,1.2,4) 911 916 918 912 943 (600,4,1.2,4) 1466 1412 1472 1452 1440
(200,4,1.2,8) 2004 2022 2020 2015 2026 (600,4,1.2,8) 3374 3228 3368 3330 3086
(200,4,1.6,4) 891 888 898 886 909 (600,4,1.6,4) 1417 1367 1423 1403 1356
(200,4,1.6,8) 1984 1989 2005 1998 1950 (600,4,1.6,8) 3293 3142 3333 3295 2888
(200,5,1.0,4) 1131 1074 1143 1144 1134 (600,5,1.0,4) 1852 1791 1830 1816 1733
(200,5,1.0,8) 2343 2197 2348 2343 2334 (600,5,1.0,8) 3816 3654 3762 3738 3432
(200,5,1.2,4) 1052 1011 1062 1054 1054 (600,5,1.2,4) 1670 1610 1653 1635 1558
(200,5,1.2,8) 2262 2151 2265 2258 2224 (600,5,1.2,8) 3612 3452 3590 3547 3137
(200,5,1.6,4) 988 949 989 976 1001 (600,5,1.6,4) 1494 1431 1499 1471 1408
(200,5,1.6,8) 2205 2073 2212 2198 2115 (600,5,1.6,8) 3434 3246 3457 3421 2962
(200,6,1.0,4) 1004 1033 1009 1007 1030 (600,6,1.0,4) 1649 1553 1622 1604 1506
(200,6,1.0,8) 2131 2157 2120 2114 2149 (600,6,1.0,8) 3468 3230 3425 3401 3018
(200,6,1.2,4) 958 980 952 946 981 (600,6,1.2,4) 1470 1392 1454 1434 1359
(200,6,1.2,8) 2084 2100 2080 2058 2076 (600,6,1.2,8) 3300 3086 3269 3237 2748
(200,6,1.6,4) 926 946 929 907 922 (600,6,1.6,4) 1360 1305 1373 1342 1239
(200,6,1.6,8) 2059 2078 2067 2041 1964 (600,6,1.6,8) 3173 2951 3187 3156 2548
(200,8,1.0,4) 992 1005 989 984 996 (600,8,1.0,4) 1470 1460 1458 1442 1361
(200,8,1.0,8) 2077 2083 2046 2044 2065 (600,8,1.0,8) 3088 3076 3066 3030 2780
(200,8,1.2,4) 940 949 927 907 931 (600,8,1.2,4) 1355 1320 1335 1302 1229
(200,8,1.2,8) 2028 2033 1994 1964 1940 (600,8,1.2,8) 2982 2926 2956 2908 2531
(200,8,1.6,4) 885 895 881 869 855 (600,8,1.6,4) 1247 1227 1258 1226 1134
(200,8,1.6,8) 1961 1950 1965 1934 1821 (600,8,1.6,8) 2857 2756 2866 2834 2372

volume of computations particularly for IPBMK. We implemented all methods in Matlab R2009b and

obtained the runtime results for a single run on each test scenario as reported in Table 6 and Table 7 on

a Pentium 4, CPU 3GHz, 1GB RAM. Note that we did not use parallel computing. Of course, runtime

of IPBMK increases linearly in the number of iterations it requires, with BMK1 being the time that

one iteration requires. DSPt clearly requires a little more time than DSP due to the more frequent

prorations, but the difference is negligible. Averaged over all tested instances, IPBMK, BMK1, DSPt

and DSP require 5.6, 1.2, 1.6 and 1.5 seconds respectively. The average number of iterations required

by IPBMK is 4.6. We conclude that DSP achieves similar revenue levels as IPBMK (as we observed in

Figure 1) but in less than a quarter of IPBMK’s runtime.

The potential for improvement becomes even clearer when we look at the number of iterations that

IPBMK required in the simulations as reported in Table 8, averaged over all data collection points and

all 2000 simulations. DSP by definition only requires one iteration for all scenarios at approximately the

same cost per iteration whilst achieving similar revenue levels.
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Table 6: Run times in seconds and DP iterations for IPBMK

(T, ν, α, κ) IPBMK (s) Iter IPBMK BMK1 (s) DSPt (s) DSP (s)

(200,4,1.0,4) 1.2 2 0.5 0.7 0.7
(200,4,1.0,8) 4.4 10 0.4 0.6 0.6
(200,4,1.2,4) 0.4 1 0.4 0.5 0.6
(200,4,1.2,8) 0.4 1 0.4 0.6 0.6
(200,4,1.6,4) 1.7 5 0.4 0.5 0.5
(200,4,1.6,8) 1.7 5 0.5 0.5 0.5
(200,5,1.0,4) 1.6 3 0.6 0.7 0.6
(200,5,1.0,8) 2.6 5 0.5 0.8 0.7
(200,5,1.2,4) 4.4 9 0.5 0.6 0.6
(200,5,1.2,8) 5.2 10 0.5 0.6 0.6
(200,5,1.6,4) 0.4 1 0.4 0.6 0.5
(200,5,1.6,8) 0.9 2 0.4 0.6 0.6
(200,6,1.0,4) 6.6 10 0.6 0.8 0.8
(200,6,1.0,8) 6.2 10 0.6 0.8 0.8
(200,6,1.2,4) 1.6 3 0.6 0.7 0.7
(200,6,1.2,8) 2.1 4 0.5 0.8 0.7
(200,6,1.6,4) 0.5 1 0.5 0.7 0.7
(200,6,1.6,8) 0.5 1 0.5 0.7 0.6
(200,8,1.0,4) 6.1 8 0.8 1.1 1.0
(200,8,1.0,8) 7.6 10 0.8 1.0 1.0
(200,8,1.2,4) 1.5 2 0.8 0.9 0.9
(200,8,1.2,8) 2.2 3 0.7 1.1 0.9
(200,8,1.6,4) 1.2 2 0.6 0.9 0.9
(200,8,1.6,8) 1.9 3 0.7 0.9 0.8

Table 7: Run times in seconds and DP iterations for IPBMK

(T, ν, α, κ) IPBMK (s) Iter IPBMK BMK1 (s) DSPt (s) DSP (s)

(600,4,1.0,4) 12.2 7 1.7 2.2 2.1
(600,4,1.0,8) 12.1 7 1.8 2.2 2.2
(600,4,1.2,4) 1.6 1 1.5 2.0 1.9
(600,4,1.2,8) 1.5 1 1.6 2.0 1.9
(600,4,1.6,4) 6.9 5 1.3 1.8 1.7
(600,4,1.6,8) 6.4 5 1.3 2.0 1.6
(600,5,1.0,4) 4.0 2 2.1 2.7 2.5
(600,5,1.0,8) 4.1 2 2.2 2.7 2.5
(600,5,1.2,4) 16.0 9 1.8 2.4 2.2
(600,5,1.2,8) 17.9 10 1.9 2.3 2.2
(600,5,1.6,4) 1.7 1 1.5 2.0 1.9
(600,5,1.6,8) 3.0 2 1.6 2.1 2.0
(600,6,1.0,4) 12.2 6 2.0 2.6 2.5
(600,6,1.0,8) 17.5 9 2.0 2.6 2.5
(600,6,1.2,4) 5.4 3 1.9 2.4 2.3
(600,6,1.2,8) 8.7 5 1.9 2.4 2.3
(600,6,1.6,4) 1.6 1 1.6 2.1 2.0
(600,6,1.6,8) 7.5 5 1.6 2.1 2.0
(600,8,1.0,4) 17.7 7 2.8 3.3 3.3
(600,8,1.0,8) 25.8 10 2.7 3.4 3.4
(600,8,1.2,4) 4.7 2 2.7 3.2 3.1
(600,8,1.2,8) 7.0 3 2.7 3.3 3.1
(600,8,1.6,4) 4.1 2 2.3 2.9 2.8
(600,8,1.6,8) 6.2 3 2.3 2.9 2.8
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Table 8: Average number of DP iterations for IPBMK over 2000 simulations with 20 re-solves each.

(T, ν, α, κ) Iter (T, ν, α, κ) Iter

(200,4,1.0,4) 5.83 (600,4,1.0,4) 5.62
(200,4,1.0,8) 7.66 (600,4,1.0,8) 7.14
(200,4,1.2,4) 3.45 (600,4,1.2,4) 3.19
(200,4,1.2,8) 4.81 (600,4,1.2,8) 4.35
(200,4,1.6,4) 4.02 (600,4,1.6,4) 3.76
(200,4,1.6,8) 5.95 (600,4,1.6,8) 5.44
(200,5,1.0,4) 5.28 (600,5,1.0,4) 5.02
(200,5,1.0,8) 6.84 (600,5,1.0,8) 6.47
(200,5,1.2,4) 5.84 (600,5,1.2,4) 5.58
(200,5,1.2,8) 7.65 (600,5,1.2,8) 7.43
(200,5,1.6,4) 3.22 (600,5,1.6,4) 2.94
(200,5,1.6,8) 4.8 (600,5,1.6,8) 4.33
(200,6,1.0,4) 6.05 (600,6,1.0,4) 5.74
(200,6,1.0,8) 7.45 (600,6,1.0,8) 7.34
(200,6,1.2,4) 4.26 (600,6,1.2,4) 4.08
(200,6,1.2,8) 6.03 (600,6,1.2,8) 5.8
(200,6,1.6,4) 3.23 (600,6,1.6,4) 3.06
(200,6,1.6,8) 5.21 (600,6,1.6,8) 5.07
(200,8,1.0,4) 5.77 (600,8,1.0,4) 5.77
(200,8,1.0,8) 7.12 (600,8,1.0,8) 7.16
(200,8,1.2,4) 4.5 (600,8,1.2,4) 4.38
(200,8,1.2,8) 6.34 (600,8,1.2,8) 6.34
(200,8,1.6,4) 3.72 (600,8,1.6,4) 3.68
(200,8,1.6,8) 5.47 (600,8,1.6,8) 5.36
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Conclusion

Network optimization plays a central role in today’s state-of-the-art revenue management systems. One

can tackle this problem by decomposing it into resource-level subproblems that can be solved efficiently,

e.g. by dynamic programming (DP). Nevertheless, the solution of these subproblems is the most time-

consuming part of the optimization and therefore critical. Recent research has focussed on accounting

for the time-dependence of the marginal value of capacity in order to improve the expected revenues

that policies resulting from this process can achieve. While this has resulted in very interesting methods,

they tend to be computationally too complex for large-scale applications.

We propose a new dynamic fare proration method designed for this situation. It decomposes the

network problem by fare proration and solves the resource-level dynamic programs simultaneously with

simple, endogenously obtained dynamic marginal capacity value estimates. An extensive numerical

study indicates that the estimates are very effective in that the new method achieves similar revenue

levels as iterative DP fare proration, but at a fraction of the computational cost. Compared to using a

standard fare proration approach based on static proration factors with a single DP iteration, the new

method achieves on average significantly higher revenue levels at comparable computational cost, and is

well-suited for large-scale practical applications.

For simplicity’s sake, we did not consider customer choice models in this work. However, the concept

of dynamic simultaneous fare proration can be applied in the same way to choice-based network revenue

management. Since choice-based systems typically require more DP iterations than those under the

independent demand assumption, the new method might be even more beneficial in such an environment.

More research in this direction is clearly needed.

Acknowledgement—The second author gratefully acknowledges financial support by Lancaster Uni-

versity Management School and the LANCS Initiative.

Appendix

Proof of Proposition 2. The first inequality is due to Lemma 1. It remains to show the last inequality.

Let us abbreviate summations over i ∈ I, k ∈ I and j ∈ J with only the subscript i, k and j, respectively.

We denote the dual of (DLP) by (D):

zDLP = min
π̃,σ̃

∑

i

ciπ̃i +
∑

j

(
T
∑

t=1

pjt)σ̃j

(D) s.t.
∑

i

aij π̃i + σ̃j ≥ fj ∀ j ∈ J

π̃, σ̃ ≥ 0.

Let us denote the optimal solution to (D) by (π, σ). We introduce the shorthand notation Ij for the

indicator function 1{
∑

k akjπk > 0}, and Īj for 1{
∑

k akjπk = 0}. With this notation, we can now
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decompose the (DLP) objective by the resource:

zDLP =
∑

i

ciπi +
∑

j

(

T
∑

t=1

pjt)σj

[

∑

i aijπi
∑

k akjπk

Ij +

∑

i aij
∑

k akj
Īj

]

=
∑

i

[

ciπi +
∑

j

T
∑

t=1

pjt

( σjaijπi
∑

k akjπk

Ij +
σjaij
∑

k akj
Īj

)

]

=
∑

i

zi(ci, 1),

where zi(xi, t0) := xiπi +
∑

j

∑T

t=t0
pjt

(

(σjaijπi)/(
∑

k akjπk)Ij + (σjaij)/(
∑

k akj)Īj

)

.

We show by induction over time that vπ,1t,i (xi) ≤ zi(xi, t) holds for any resource i, for all time steps t

and inventory levels xi. Let us fix an arbitrary resource i and arbitrary xi. The following inequalities

hold for t = T :

vπ,1T,i (xi) = max
S⊆J(x

−i)

∑

j∈S

pjT

[ fjπiaij
∑

k akjπk

Ij +
fjaij
∑

k akj
Īj

]

(4)

≤
∑

j|aij≤xi

pjT

[ (
∑

k akjπk + σj)πiaij
∑

k akjπk

Ij +
(
∑

k akjπk + σj)aij
∑

k akj
Īj

]

(5)

=
∑

j|aij≤xi

pjTπiaijIj +
∑

j|aij≤xi

pjT

[ σjπiaij
∑

k akjπk

Ij +
σjaij
∑

k akj
Īj

]

(6)

≤ zi(xi, T ). (7)

The first equation (4) is due to the definition of vπ,1T,i in (2) and of the fare allocation f i
j . Note that it is

optimal to offer the set of all feasible products {j|aij ≤ xi}. The inequality (5) stems from the feasibility

of the optimal solution (π, σ) to the dual of (DLP). Next, we rearrange and simplify terms to obtain (6).

Finally, the last inequality (7) results from aij ≤ xi,
∑

j|aij≤xi
pjT Ij ≤ 1, pjT

(

(σjaijπi)/(
∑

k akjπk)Ij +

(σjaij)/(
∑

k akj)Īj

)

≥ 0 for all j, and the definition of zi(xi, T ).

Assume that vπ,1t+1,i(xi) ≤ zi(xi, t+ 1) holds for arbitrary fixed resource i. Then we have the following:

vπ,1t,i (xi) ≤ max
S⊆J(x

−i)

∑

j∈S

pjt

( fjπiaij
∑

k akjπk

Ij +
fjaij
∑

k akj
Īj + zi(xi − 1, t+ 1)

)

+ (1−
∑

j∈S

pjt)zi(xi, t+ 1) (8)

= max
S⊆J(x

−i)

∑

j∈S

pjt

( fjπiaij
∑

k akjπk

Ij +
fjaij
∑

k akj
Īj − πi

)

+ zi(xi, t+ 1) (9)

≤ max
S⊆J(x

−i)

∑

j∈S

pjt

(

πiaijIj +
σjπiaij

∑

k akjπk

Ij +
σjaij
∑

k akj
Īj − πi

)

+ zi(xi, t+ 1) (10)

≤
∑

j∈J

pjt

( σjπiaij
∑

k akjπk

Ij +
σjaij
∑

k akj
Īj

)

+ zi(xi, t+ 1) (11)

= zi(xi, t).

The first inequality (8) follows from the definition of vπ,1t,i (xi) and from the induction assumption. Equal-

ity (9) holds because zi(xi, t + 1) − zi(xi − 1, t + 1) = πi. As before, we exploit the dual feasibility of

(π, σ) to obtain (10). Note that aijIj ≤ 1 so that we can use πiaijIj − πi ≤ 0, and since the remaining

terms in (10) are all non-negative, we can sum over all products, resulting in inequality (11). The desired

result follows.
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