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Abstract

Most metaheuristic techniques, including Simulated Annealing, require the specification of
parameters before they can be used. Setting these parameters is not straightforward, and there
is no accepted way to determine good values for the parameters other than trial and error, which
is uncertain and can be very time-consuming.

Experimental results are presented to help determine how parameters for Simulated Annealing
should be set automatically, given only the time available for a solution. These results, for two
randomly-generated Euclidean Travelling Salesman Problems, demonstrate, among other
features, that the prevailing orthodoxy concerning starting temperatures is significantly
suboptimal. The paper ends with a suggested set of steps to be undertaken to determine the
parameters for any given instance.
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Introduction

All successful metaheuristic techniques require various decisions to be made before they can be
implemented. For neighbourhood search methods such as Tabu Search (TS) or Simulated
Annealing (SA) this includes the creation of an initial solution and the definition of neighbourhood
moves; for a Genetic Algorithm (GA) this includes recombination methods and often repair
mechanisms; etc.

Over and above this, when these decisions have been taken, various parameters must be set.
Thus for TS the list length, candidate list percentage and, in some cases, recency and frequency
parameters must be set; for GA there is the population size and the mutation rate; for Particle
Swarm Optimisation (PSO) there is the swarm size and the relative weight of local and global best
solutions; etc.

Unfortunately there is often little evidence-based consensus as to how the best values for these
parameters should be determined. Thus research papers often refer to fine-tuning processes,
which are usually little more than trial and error, which are undertaken as a preliminary to
running the methods for the problem and data in question.

This situation is unsatisfactory for a number of reasons.

e We generally do not know whether the parameters used really are the best, or even
approximately the best — usually the “fine-tuning” is far from exhaustive, and in practice
details of it are often omitted from papers. This may make a significant difference when
different techniques are compared with one another.



e This fine-tuning may take a lot of time — time which is usually not reported or used when
comparing run times of various methods.

e For practical OR implementations it is not normally appropriate to expect the user of a
system to carry out this fine-tuning, or even to understand what the parameters mean.

However, there is one factor which is not only reasonable but also almost essential to expect a
system user to specify: this is the time elapsed before a solution is reached. In some applications
this may be a matter of seconds, while in others it may literally be several days. The timescale is
very likely to affect the best parameters to use.

Thus it would appear to be very worthwhile to try to find ways in which these methods can
specify their own parameters automatically, given the time available.

Ideally one could take this reasoning two steps back; initial analysis of a problem could determine
which approach to use and also make decisions about the best neighbourhood definitions etc.
This paper has a less ambitious aim than this: it aims to shed some light as to how parameters
should be automatically specified when using SA in a fairly simple and standard way. This can be
seen as a necessary first step towards the overall goal.

Simulated Annealing

SA is a technique which has been in widespread use since the 1980s, though it was first proposed
by Metropolis et al. (1953) some thirty years earlier, and its use shows no sign of diminishing.
Google Scholar™ (accessed on 29" June 2010) gives 453 articles published during 2009 with the
phrase “Simulated Annealing” in the title. This makes SA equal third in the popularity league
table for metaheuristics, well behind GA (4003) and PSO (1574), about the same as Ant Colony
Optimization (429), but ahead of other well-known methods such as TS (204), Iterated Local
Search (21) or Hyperheuristics (4).

SA has been the subject of many variations and hybridisations over the years, and thus many of
these papers will be concerned with non-standard versions of SA. Dowsland (1995) mentions a
variety of strategies including dynamic temperature control, periodic reheating and parallel
implementation.

However, this paper will only concern itself with the simplest form of SA. The reasoning is that,
until it is understood how best to run simple SA, there is little hope of understanding how best to
run the multitude of variations.

Simple SA works as follows.

1. Create an initial solution — denote it the “current solution”
Set an initial value (Ty) of T, the “temperature”
3. Randomly perturb the current solution to create a neighbouring solution (this needs a
definition of perturbation and thus of neighbourhood)
4. Calculate AC, the increase in cost (assuming this is a cost minimisation problem)
5. Accept the new solution (i.e. make it the new current solution):
a. definitelyif AC<0
b. otherwise with probability e
6. Possibly adjust T (see below)

g

(ac/T)



7. Return to 3 above and continue, until some stopping criterion is met, in which case stop.

There are a number of ways of adjusting the temperature (as in Step 6 above), but one of the
most common ways is to multiply T by a predetermined factor a after every X iterations, where
an iteration is aloop through Steps 3 to 7 above. a is usually just below 1, and X may take a
variety of values, but needs to be of a lower order of magnitude compared with the total number
of iterations.

The simplest form of stopping criterion is to stop either after a fixed number N of iterations or
when the temperature reaches a value Ty. This of course needs to be determined in line with the
overall timescale required for presenting a solution.

Thus we have five potential parameters, Ty, Ty, N, a and X. However, these can easily be reduced
from five to three by the following reasoning.

First, it is easy to see that Ty = Tp * M), Therefore, as soon as any four parameters have been
specified, the fifth may be calculated directly.
Moreover, multiplying the temperature by a'* every iteration has almost exactly the same effect
on T as multiplying it by a every X iterations, unless X is significantly large compared with N

(which it usually is not). Thus we can simplify further by letting X = 1.

So we need only specify three parameters. The simplest course is to specify the starting and
ending temperatures (Ty, Ty ) and the number of iterations N. Unlike a, which is clearly closely
related to the other parameters, these three parameters have intuitively clear meanings and may
perhaps work fairly independently of one another (such that, for example, the best value of T,
may not depend on the value chosen for N, though this will be tested later).

For a given implementation, it can be easily seen that the solution quality may depend on getting
sensible values for all three of these parameters. For example:

e If Nis too high, the answer is not produced soon enough, which may be no better in
practice than not producing any answer at all;

e if Nis too low, then we are not making as much use as we could of the time available —
and, like all metaheuristics, SA has no natural stopping point, and thus using more time
will on average produce better solutions;

e if Tyis too high, then a significant proportion of the time is being wasted at the start
making little if any progress, perhaps being little better than a random walk;

o if Tois too low, then there is not enough diversification at the start, and the search will
not have the opportunity to deviate significantly away from the area of search space
containing the initial solution;

e if Ty is too high, then there is not enough intensification at the end, and the search may
not even reach a single local optimum, let alone make a thorough examination of a good
area of search space;

e andif Tyis too low, then large amounts of time may be wasted towards the end of the
search doing more or less nothing, with the solution changing hardly if at all.

Preliminary analysis



It is not possible to set these parameters without knowing something about the problem being
addressed. Firstly, in order to set N, we need to know how long each iteration takes. This will
depend upon the type and size of the problem, the efficiency of programming, the operating
system, the computer used etc. Preliminary analysis of a few iterations will give us a good
approximation for this, since for most applications the time taken for each iteration is usually
approximately constant, or even if it is not then an approximate distribution can be achieved with
a reasonably small number of preliminary iterations.

However, some prior analysis is also necessary in order to set the starting and ending
temperature. This is because the temperature T is used in the formula e"Acm, so the best values
for To and Ty will depend upon the distribution of AC in some way. Until we have some
information about this distribution, we cannot even speculate sensibly about good values. Note
that this means that we need to undertake this preliminary analysis not just when addressing a
new type of problem but for every single instance.

So, for both the above reasons, we need to start by creating an initial solution, undertaking some
iterations and analysing the results.

How to set the initial temperature

A number of authors have suggested principles to be observed when setting T,. Kirkpatrick et al.
(1983) suggest that it should be high enough so that almost all perturbations are accepted, and
other authors have followed their lead. Aarts et al. (1997, page 114) suggest that it should be set
equal to an estimated value for the maximal cost difference between any two neighbouring
solutions. Dowsland (1995, page 29) agrees, saying that the initial temperature must be hot
enough to allow an almost free exchange of neighbouring solutions, in order that the final
solution should be independent of the starting solution. Hoos and Stitzle (2005, page 77) have
used an initial temperature such that only 3% of perturbations are not accepted. Ben-Ameur
(2004) has suggested that this percentage should be 20%, and has devised a technique for quickly
determining a temperature that will produce the desired percentage, to which we will return
later.

Among more recent papers, Zhang et al. (2010) suggest a rejection rate of around 5% or 10%.
Kuo (2010) suggests that the initial temperature should be such that even the worst perturbation
should have at least a 50% probability of acceptance.

Other authors are less helpful. For example, many such as Seyed-Alagheband et al. (2010), Sahin
et al. (2010) and Mesgarpour et al. (2010) simply state that some experimentation was done in
order to obtain a good value, without giving any further details. Some, e.g. Liu and Liu (2010),
vaguely describe the initial temperature value as “high”. Worse still, very many authors simply do
not say how the initial temperature was obtained or why.

However, some experimental work has been reported which shows that the orthodox view may
be highly suboptimal. Varanelli and Cohoon (1999) have shown that reducing the initial
temperature significantly can result in final solutions of equal quality in a much shorter space of
time. Moreover, even in the very early days of SA implementations, Johnson et al. (1989)
reported that an initial rejection rate of around 60% worked well for their graph partitioning
problems. Given that they were starting from random initial solutions, for which a high
proportion of perturbations would improve the cost, this is a very long way from the prevailing
orthodoxy.



Indeed, on close examination it appears that the orthodox view as propounded by Aarts et al.,
Dowsland, etc. is based not on actual evidence but more on mathematical theorems and appeals
to what might make sense or seem reasonable. But there is a lot about their arguments that does
not appear reasonable at all.

In particular, why should it be important that the final solution is independent of the initial
solution? This might be of importance if there were virtually infinite time available and if it were
of supreme importance to find the global optimum, but this is rarely (if ever) the case. Generally
the objective of the exercise is to find a good solution within the available time. A good solution
produced quickly which is not independent of the initial solution will be far preferable to a less
good solution produced slowly which is independent, or to no solution at all because time has run
out.

Perhaps it is precisely this insistence upon independence which has led to the frequent adoption
of very high initial temperatures which, as noted earlier, mean that the search spends a very long
time making virtually no gains. It is thus not surprising that there is a widespread view that SAis a
very slow and/or ineffective technique.

This is not to say that high initial temperatures are necessarily a bad thing, but merely that there
is no experimental evidence that they are a good thing. What is missing, and what this paper
aims to provide in a relatively small way, is hard factual evidence about what works best; either a
direct way of relating T, to the distribution of AC or an indirect way, first specifying a suggested
value for the Percentage Acceptance of Worsening Solutions (henceforth PAWS), followed by a
method such as that suggested by Ben-Ameur (2004) to find a temperature that will produce this
PAWS value. Note that only worsening solutions have been included in this measure; non-
worsening solutions are always accepted whatever the temperature and thus to include them is
inappropriate.

How to set the final temperature

It is even harder to decide how to set a value for Ty, since the distribution of AC near the end may
be very different from its distribution near the start, and thus cannot be gauged easily at the start
of the process. Likewise, the relationship between any given value of PAWS and the ending
temperature may be very different from the relationship between PAWS and the starting
temperature.

However, as will be seen later, the specification of the ending temperature is even more
important than the specification of the starting temperature. There will be further discussion of
this later, after the presentation of experimental results, and a way forward is proposed.

Experiments

It is therefore necessary to undertake extensive experimentation to investigate this issue, in order
to gain some evidence as to what works best in practice. If we can discover what parameters
seem to work best for a specific example, we can then to relate this to PAWS and/or the
distribution of AC for that specific example.



Two simple Euclidean Travelling Salesman Problems were chosen for the experiments, one with
100 cities and one with 200 cities. For each data set, the position of each city was determined by
choosing x and y co-ordinates at random between 1 and 1000. The neighbourhood scheme used
for each was the common 2-opt scheme.

Now of course such problems are routinely solved to optimality nowadays — see, for example,
Applegate et al. (2006). However, the purpose of the experiments is not to put forward a method
for solving simple TSPs, but rather to obtain comparative evidence for various temperature
parameters when using the basic version of SA. Simple TSPs were chosen because iterations can
be made extremely quickly — the calculation of change in cost takes a small fraction of a
millisecond even when run on an ordinary laptop computer — and thus extensive experimentation
is feasible.

The problems are not only quick to solve but they are also very simple in concept and may have
rather more tractable solution landscapes than many real-life implementations. Thus further
experimentation may be required later to see to what extent the results for simple Euclidean TSPs
can be generalised. However, such experiments are outside the scope of this paper.

Originally a TSP with only 50 cities was chosen, but it proved too easy to reach the optimal
solution for a wide range of parameter values. Thus the results did not discriminate sufficiently
between the different combinations of parameters. However, 100 cities proved to be large
enough to pose a serious test so that the importance of setting good values for the parameters
would be shown up by the experiments. The 200-city example was later run as a check to see if
consistent policies could be found which would apply to both data sets.

For each data set, over 100,000 computer runs were made, by making 100 runs for all
combinations of the following:
e two strategies for creating the initial solution — random or non-random
eight values for Ty: 1000, 500, 200, 100, 75, 50, 25 and 10
thirteen values for Ty: 50, 25, 20, 15, 10, 7.5, 5, 3.5, 2, 1, 0.5, 0.2 and 0.1
5 values of N: 25000, 100000, 500000, 2000000 and 5000000

The non-random initial solution procedure used was a technique sometimes known as Successive
Inclusion or Insertion. This is a constructive heuristic which considers cities in a fixed order and
builds up a tour one city at a time. At each step it inserts the new city into the section of the
partial tour which minimises the increase in total cost. This method very quickly produces a
reasonably good solution.

To put the values of N in context, the neighbourhood size for a TSP under 2-opt is roughly equal
to the square of the number of cities. Thus, for the shortest runs, the number of iterations was
only around 2.5 times the size of the neighbourhood even for the 100-city example, and
significantly smaller than the neighbourhood size for the 200-city example. This is a very small
ratio indeed compared with most implementations of SA, but this small value of N was included in
order to detect whether such a small number of iterations would have a noticeable effect on the
best values for Tg and Ty.

The aim, for each initial strategy and each value of N, was to discover which set of temperature
parameters worked best. Initially eight values were included for each of T, and Ty, but after
examining the results a further five values of Ty were added (50, 20, 15, 7.5 and 3.5) so as to give
a more complete picture.



The runs include some where the final temperature exceeded the initial temperature, which is
against the spirit of SA as it is usually applied! However, these were included for completeness
and do show interesting characteristics.

Results

An example of a summary of results is given in Figure 1, which is for the 100-city example with
random initial solutions and N = 5000000. This shows the average of the best cost found over the
100 runs on the y-axis, with the value of Ty on the x-axis. The different lines relate to different
values of Ty ("st" in the figures).

For each run, the solution value recorded was always the best found during the run, which is not
necessarily the same as the final solution.

Figure 1: Average solution costs for 100 cities for sets of 100 runs of
five million iterations each, with random initial solution
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On the right-hand side of this figure, e.g. for when the end temperature is 50, the lines are in
logical order, with the lowest representing st = 10, the next lowest st = 25, etc.

Some interesting points emerge from Figure 1:

e If the starting temperature is very low (e.g. 10), then the temperature needs to increase
during the search (a>1). This is because there is enough intensification, but not enough
diversification, near the start of the search.

e Inother cases, the most important thing is to ensure that the ending temperature is not
too high; otherwise the solution quality will be very poor indeed.

e If the ending temperature is too high then the picture looks entirely logical as regards the
effect of the starting temperature: for the whole of the right-hand half of the picture a
line with a higher starting temperature is consistently higher than a line for a lower
starting temperature.



However, this logical ordering does not apply at the most interesting points, i.e. where average
costs are at their lowest. Figure 2 therefore gives a close-up of that part of Figure 1 where the
solutions are best.

Figure 2: A close-up from Figure 1
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In this picture, the most extreme values of T, (1000 and 10) do not feature at all — they never
succeeded in producing an average solution of below 8300. The line that comes down the lowest
is for st = 50, followed closely by st = 100, st = 75 and st = 25 in that order, with st = 200 and st =
500 only just making it into the top of the diagram.

To distinguish between these results we need to know the standard deviations involved. Figure 3
shows the standard deviation of the best costs graphed against the average best costs.

Figure 3: Standard deviations of the best means from Figure 2
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We can see from Figure 3 that, among the best solutions, there is a general tendency for the
runs with the lowest means to have the lowest standard deviations, showing that the best sets of
solutions are also the most consistently good. We can also see that the sets of runs with good
means have standard deviations below 50, and the best set of all has a standard deviation of
about 33. Given that the means are of 100 values, and making reasonable assumptions about



approximate normality, we can therefore say that the standard deviations of the best means are
between 3 and 5; thus any mean cost more than about 8 above the best is significantly worse in a
statistical sense using a 95% criterion.

The sets of runs with a mean cost within 8 of the best are shown in Table 1.

To 50 100 75 25 75 100
Ty 7.5 10 7.5 7.5 10 5
Mean cost 8281.8 8286.3 8287.7 8288.3 8288.8 8289.1

Table 1: summary of runs with means within 8 of the best, for 100 cities and 5 million iterations
with random initial solutions

Thus we can be fairly confident that, for this data set, using simple SA with 2-opt neighbourhoods,
with a random starting solution and 5000000 iterations, the best policy is to set the initial
temperature between 25 and 100 and the final temperature between 5 and 10.

Now going through the same procedure for other sets of runs for the 100-city data set, the best
ranges for Ty and Ty are shown in Tables 2 (for random initial solutions) and 3 (for non-random

initial solutions).

N 25000 100000 500000 2000000 5000000
T, range 50 25-75 50-75 25-200 25-100
Ty range 2-5 3.5-10 5-10 3.5-15 5-10

Table 2: best ranges for T, and Ty, with random initial solutions, for all values of N, for the data
set with 100 cities

N 25000 100000 500000 2000000 5000000
To range 10-50 25-50 25-50 25-100 25-100
Tyrange 2 5-15 10 3.5-15 5-15

Table 3: best ranges for T, and Ty with non-random initial solutions, for all values of N, for the
data set with 100 cities

In general, there was a slight tendency for values of Ty at the upper end of the range to work best
in combination with values of T, at the lower end of its range, and vice versa. In particular, a
value of Ty = 15 produced good results only when in combination with T, = 25.

The differences between the best values can be seen not to depend very much on the value of N,
except perhaps for the shortest runs, with N = 25000. With such a short run it is imperative that
intensification is given greater prominence than diversification, otherwise there is a danger that
no solution will be produced which is even reasonably good. However, the effect is not as

marked as had been expected.

Not surprisingly, for the two smallest values of N, the best average solution was significantly
lower with the Non-Random Initial Solution (NRIS) than for the Random Initial Solution (RIS). This
is not surprising, since Successive Inclusion does give quite good solutions. However, for large
values of N there was no significant difference between the effects of the initial solution
procedures. Table 4 gives the details.




N 25000 100000 500000 2000000 5000000
NRIS 8724.4 8543.0 8366.5 8304.8 8279.1
RIS 9005.6 8571.5 8366.1 8306.6 8281.8

Table 4: Best average final solutions found for the 100-city data set

The best single solution found had a cost of 8254.4. This cost was reached on several occasions.
It is thus reasonable to speculate that this may be the cost of the optimal solution or solutions.

Figures 4, 5 and 6 are the same as Figures 1, 2 and 3 except that they apply to the 200-city
example.

Figure 4: Average solution costs for 200 cities for sets of 100 runs of
five million iterations each, with random initial solutions
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Figure 5: A close-up from Figure 4
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Here the line that comes down the lowest is for st = 25, followed by st = 50, then st = 75 and st =
100. Other values do not feature in this Figure.

Figure 6: Standard deviations of the best means from Figure 5
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Figures 4 to 6 display the same general features as Tables 1 to 3. The standard deviations of the
best means are between 6 and 7.5. However, here the best mean is 25.2 lower than the next
best, a difference considerably more than twice these standard deviations. Thus the values Ty =
25 and Ty = 5 can be confidently declared better than all the other combinations tried for this
example.

Tables 5 to 7 are the same as Tables 2 to 4 except that they apply to the 200-city example.
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N 25000 100000 500000 2000000 5000000
To range 10-50 25-50 25-50 25 25
Ty range 0.1-5 1-5 5-75 5 5

Table 5: best ranges for T, and Ty, with random initial solutions, for all values of N, for the data
set with 200 cities

N 25000 100000 500000 2000000 5000000
T, range 10 10-25 25 25-75 25-100
Ty range 0.5 0.1-5 5 3.5-75 35-75

Table 6: best ranges for T, and Ty with non-random initial solutions, for all values of N, for the
data set with 200 cities

N 25000 100000 500000 2000000 5000000
NRIS 12014.3 11805.7 11543.5 11335.7 11252.7
RIS 15289.6 12292.0 11558.8 11292.3 11223.5

Table 7: Best average final solutions found for the 200-city data set

Again the differences between the best values do not appear to depend very much on the value
of N, except when N is small. This effect is stronger here than for 100 cities, which is not
surprising: 25000 iterations is relatively a much smaller number for the 200-city example, with
neighbourhood size around 40000, than for the 100-city example, with neighbourhood size about
10000.

For the two smallest values of N, the best average solution was significantly lower with the non-
random starting solution than for the random starting solution, which again was not surprising.
Perhaps more surprising was the fact that, for larger values of N, the random initial solutions gave
significantly better final solutions than initial solutions produced by Successive Inclusion, as
shown in the final two columns of Table 7. However, we should be cautious here: the best
possible values of To and Ty are probably not represented in these results, since we only tried a
small number of discrete options. So it may be, for example, that values of To=35and Ty =4
could have changed the figure of 11252.7 in Table 7 (obtained with Ty =25 and Ty =5) to
something closer to 11223.5.

Percentage of Acceptance of Worse solutions (PAWS)

During the computer runs with 5 million iterations, a record was kept of the percentage of
worsening perturbations accepted near the start (during the first 1000 worsening iterations) and
near the end (during the last 5000 worsening iterations). During these periods the temperature
was thus very close indeed respectively to To and Ty.

The results are shown in Figures 7 to 10. Figures 7 and 8 relate to the 100-city TSP, and Figures 9
and 10 to the 200-city TSP. As before, “PAWS” is the Percentage Acceptance of Worse Solutions
(solutions which are not worse than the current solution are always accepted, whatever the
temperature); “RIS” means Random Initial Solution and “NRIS” means Non-Random Initial
Solution.

12



Figure 7: 100-city TSP: PAWS against T,
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Figure 8: 100-city TSP: PAWS against T,
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Figure 9: 200-city TSP: PAWS against T,
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Figure 10: 200-city TSP: PAWS againstT,
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In Figures 7 and 9 the RIS line is higher than the NRIS line; for Figures 8 and 10 the lines are
almost identical, showing unsurprisingly that the best PAWS value at the end of the search does
not depend at all on the nature of the initial solution procedure.

Recall that, for the 100-city example, the best values of Ty are in the range 50 to 75
approximately. From Figure 7 we can see that this corresponds to a PAWS value between 5 and 8
with a random initial solution, and between 1 and 2 with a non-random initial solution.

Likewise, for the 200-city example, the best values of Ty are in the range 25 to 50 approximately.
From Figure 9 we can see that this corresponds to a PAWS value between 4 and 7 with a random
initial solution, and between 0.3 and 1 with a non-random initial solution.

Contrast this with the advice from other authors quoted earlier, who suggest in effect a PAWS
value of close to 100 for Ty, assuming a random initial solution. Even a value of To = 1000 here
gives a PAWS value of only about 71 for each of the two data sets, and as we have seen from
Figures 2 and 5 this value is far too high to give solutions which even come anywhere near the
best. Thus these results can be seen to challenge the prevailing orthodoxy to a significant degree.

Recall that, for the 100-city example, the best values of Ty are in the range 5 to 10 approximately.
From Figure 8 we can see that this corresponds to a PAWS value between 0.05 and 0.1. Likewise,
for the 200-city example, the best values of Ty are in the range 3.5 to 7.5 approximately. From
Figure 10 we can see that this corresponds to a PAWS value between 0.02 and 0.05. There is thus
a reasonable level of consistency between the best PAWS values for the two data sets, which
suggests that it may be a good measure to use.

Ben-Ameur's (2004) method for finding a temperature to correspond with any particular value of
PAWS can be used here. It starts by generating worsening perturbations at random from the
initial solution and recording, for each, the resultant increase in cost (perturbations for which the
cost does not increase are discarded). This is followed by a very quick iterative procedure for
which the temperature gets ever closer to the required value.

The accuracy of this technique of course depends upon the number of perturbations generated,
the required value of PAWS and the size of the problem (more strictly, the size of the
neighbourhoods). If time is short, then it is a moot question as to how many perturbations
should be chosen, since a large number carried out now will mean there is less time remaining for
a correspondingly smaller number during the search process.

However, this procedure may need to be modified when determining how to relate the final
PAWS value to the ending temperature. This can be seen by looking at those temperatures which
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we have used both as a starting temperature and as an ending temperature, as shown in Tables 8
and 9.

Temperature 10 25 50

Around an RIS 1.33 2.95 5.54
Around an NRIS 0.17 0.44 1.19
Around a final solution 0.09 0.41 1.74

Table 8: Average PAWS values for the 100-city TSP

Temperature 10 25 50

Around an RIS 1.79 3.94 7.08
Around an NRIS 0.13 0.38 0.98
Around a final solution 0.08 0.42 1.74

Table 9: Average PAWS values for the 200-city TSP

Certainly if we start from a random initial solution, we cannot assume that any given PAWS value
will lead to the same temperature at the start as it would at the end of the search. The solution
landscapes must be very different.

However, it is reasonable to expect that the solution landscape near a good final solution may be
similar in nature to that near a good initial solution such as that produced by the successive
inclusion procedure, and these figures appear to bear this out to some extent at least. Further
runs were therefore made to obtain values of PAWS for other starting temperatures from non-
random starting solutions and then to compare the PAWS figures with those obtained when using
the same temperature as the ending temperature, with results as shown in Tables 10 and 11.

Temperature 0.1 0.2 0.5 1 2 3.5 5 7.5 10 15 20 25 50
Around an 0.026 | 0.025 | 0.033 | 0.042 | 0.059 | 0.085 | 0.105 | 0.135 | 0.166 | 0.241 | 0.334 | 0.438 | 1.185
NRIS
Around a 0.021 | 0.023 | 0.027 | 0.030 | 0.036 | 0.042 | 0.049 | 0.071 | 0.094 | 0.171 | 0.273 | 0.412 | 1.738
final solution

Table 10: Average PAWS values for the 100-city TSP
Temperature 0.1 0.2 0.5 1 2 3.5 5 7.5 10 15 20 25 50
Around an 0.008 0.011 0.018 0.022 0.031 0.054 0.069 0.105 0.128 0.216 0.283 0.380 0.984
NRIS
Around a 0.005 | 0.007 | 0.008 | 0.012 | 0.016 | 0.026 | 0.034 | 0.054 | 0.080 | 0.152 | 0.262 | 0.422 | 1.740
final solution

Table 11: Average PAWS values for the 200-city TSP

The figures look surprising for the higher temperature values, but this can be simply explained,
because for high ending temperatures the final solutions are generally worse (far worse in the
case of Ty = 50) than the initial solutions produced by Successive Inclusion. As can be seen from
Figures 1 and 4 above, these values of Ty are highly suboptimal so need not concern us further.

The more interesting and relevant range of ending temperatures is between 2 and 10, as shown

in Tables 2, 3, 5 and 6. In this range we see from Tables 10 and 11 that typically the PAWS value
around a non-random initial solution is about twice that around a final solution.
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Thus an initial analysis that starts from such an initial solution may be helpful towards setting a
good final temperature. For example, if we are looking for an ending temperature that gives a
0.05 value for PAWS around the final solution, then we can construct a non-random initial
solution and look for a temperature which gives a PAWS value around that solution of about 0.1.

Translating these results into action

Based on the above results, we can put forward a suggested plan of action to use when
implementing a standard form of SA for a simple TSP or similar problem, given a fixed limit to the
amount of solution time available.

We should aim to find a starting temperature with a PAWS value (around a random initial starting
solution) of between 5 and 8 (see Figures 7 and 9 in conjunction with Tables 2 and 5) for medium
to long runs, decreasing down to around 1 or 2 for short or very short runs (as an approximate
heuristic we can perhaps regard a run as short if the number of iterations is less than about ten
times the neighbourhood size and very short if it less than three times the neighbourhood size).
Alternatively we could start from a non-random initial solution and use a PAWS value of between
1 and 2, decreasing down to about 0.1 to 0.2 for very short runs.

For our ending temperature, for medium to long runs we require a PAWS value around a final
solution of around 0.05, which appears to equate to a PAWS value around a non-random starting
solution of around 0.1; and for short or very short runs these figures should perhaps decrease
down to around 0.01 and 0.02. However, as can be seen from Figures 1 and 4, it is much better
to err on the low side than on the high side when choosing an ending temperature, and so maybe
these values should be reduced a little in practice.

Ben-Ameur's (2004) method can then be used. Ben-Ameur, who used a 100-city TSP as one of his
test data sets, reported that 2500 perturbations was sometimes but not always sufficient to
obtain "a good approximation", without explaining precisely what this means. Given that we may
be looking for PAWS values around 0.1 (or 1 in a 1000), a single acceptance out of 2500 would
make a significant difference to the estimated PAWS value, and so maybe a larger number
(perhaps 10000 or more?) would be required for a reasonable estimate to be reached, as long as
the time available is not so short that this takes up a significant proportion.

Summing everything up, the following steps are proposed:

1. LetT be the computer time available — this is specified in advance;

Construct a good initial solution by means of Sl (or similar fast method);

3. Generate 2500 random perturbations around this solution and calculate the average
computer time taken (t) for each;

4. Set N = (T/t)—2500 (or perhaps a little less so as to err on the side of caution) ;

5. If Nis very large compared with 2500 (e.g. at least 100000), generate a further 7500
perturbations and reset N = ( T/t ) — 10000;

6. Calculate a factor Z equal to N divided by the neighbourhood size (for a TSP using 2-opt
the neighbourhood size is approximately the square of the number of cities — for other
implementations it is usually easy to estimate the neighbourhood size very quickly);

7. Use Ben-Ameur's method on these 2500 or 10000 perturbations to calculate a value for
Ty corresponding to a PAWS value equal to about 0.1if Z>10,0.01ifZ<1,0r0.01 *Z
otherwise;

N
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8. IfZ>10, go to Step 9, otherwise go to Step 12;

9. Discard the Sl solution and create a new random initial solution;

10. Carry out 10000 random perturbations around this and use Ben-Ameur's method to
calculate a value for Ty corresponding to a PAWS value between 5 and 8;

11. Go to Step 12;

12. Use Ben-Ameur's method on the 2500 or 5000 perturbations already created around the
Sl initial solution to calculate a value for Ty corresponding to a PAWS value between 1 and
2;

13. Start SA from the initial solution created either at random (in Step 9) or non-randomly (in
Step 2, if Step 8 not undertaken), with the values calculated for Ty, Ty and N.

Summary

Experiments have been carried out on two TSPs to produce a suggested plan for automating
parameter setting within simple SA so as to produce solutions of high quality, given in advance
only the time available.

The results show a number of interesting features. One result of particular interest is that the
initial temperature suggested by these results is far lower than the prevailing orthodoxy,
corresponding to a Percentage Acceptance rate for Worsening Solutions around a random initial
solution of only around 5% to 8%, compared to figures close to 100% suggested by many other
authors. If the initial solution is already of reasonable quality then this value should be between
1% and 2%.

Another interesting result is that, unless the runs are very short indeed, there is no sign of the
best initial or final temperature values increasing as the number of iterations available increases.
While even the longest runs carried out here may be short compared with many real-life
implementations, this suggests that the main features of these results may be valid whatever the
run length.

Of course, these results have only been demonstrated for randomly-generated Euclidean TSPs,
and the conclusions may turn out to be significantly different for other problems. However, this
work represents an important first step which needs to be built upon by carrying out similar
research for other implementations.
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