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 There is decades long research interest in artificial neural networks (ANNs) that has 

led to several successful applications.  In forecasting, both in theoretical and empirical 

works, ANNs have shown evidence of good performance, in many cases outperforming 

established benchmark models. However, our understanding of their inner workings is still 

limited, which makes it difficult for academicians and practitioners alike to use them. 

Furthermore, while there is a growing literature supporting their good performance in 

forecasting, there is also a lot of scepticism whether ANNs are able to provide reliable and 

robust forecasts. This analysis presents the advances of ANNs in the time series forecasting 

field, highlighting the current state of the art, which modelling issues have been solved and 

which are still critical for forecasting with ANNs, indicating future research directions.  
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Advances in forecasting with artificial neural networks 
Nikolaos Kourentzes and Sven F. Crone, Lancaster Centre for Forecasting, Lancaster 

University Department of Management Science 

 

1. Introduction 

 It has been almost half a century since the first application of artificial neural 

networks (ANNs) to regression and forecasting problems. Since then, a lot of research has 

been invested to improve our knowledge of modelling and using them, which has generated 

a wide variety of applications in forecasting and several other fields like control, 

optimisation, classification, pattern recognition, data mining, etc [1, 2].  ANNs are biology 

inspired models that mimic neural networks in the human brain, which allows them to learn 

from the available information and generalise [3, 4]. A decade old survey [2] on ANNs 

identified the following key features that make them useful in forecasting: 

1. ANNs are data driven self-adaptive methods with very few a priori assumptions. 

They learn the underlying data generating process from the training data, without 

the need to input hard to infer theoretical knowledge. This makes them attractive as 

it is often easier to have wealth of data for a problem than good understanding of 

the laws that govern it.   

2. They can generalise in the future. Once an ANN has been trained to learn the known 

sample, they are able to infer the relationship between the inputs and the outputs 

and simulate well future behaviours, even in the presence of noise. This is a 

necessary model property for forecasting applications. 

3. They are universal function approximators. It has been shown that relatively simple 

structures of ANNs can approximate any function to an arbitrary degree of accuracy, 

with the same model form [5, 6]. This inherent flexibility allows them to model 

observed or unobserved relationships in the data, without assuming a rigid 

functional form, which is common in statistical models, thus allowing them to model 

complex real systems that are not always fully understood.  

4. They are flexible nonlinear models. In the forecasting literature there are several 

nonlinear models, however they usually assume a specific type of nonlinearity, which 
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may not describe well the observed data. ANNs have the advantage that there is no 

need for apriory knowledge of the nature of the nonlinearity and are entirely data-

driven.  

The same survey concludes with four important research questions that must be answered 

to improve of understanding of ANNs and make their use in forecasting accurate and 

reliable. How do ANNs model time series that allows them to produce better results than 

conventional methods? How to systematically build an ANN for a given forecasting 

problem? What is the best training algorithm/method for time series forecasting? What is 

the effect of sampling and data pre-processing for ANNs and how should they be carried 

out? 

 With this study we aim to explore the published forecasting literature since then and 

try to assess whether the evidence supports the portrayed key advantages of ANN in 

forecasting, investigate whether the stated key research challenges have been resolved and 

identify the current important research questions in the field. Since the last extensive 

review in forecasting with ANNs [2] a wealth of research has been published, but remains 

largely disconnected, making it difficult to extract conclusions about the application of ANNs 

in forecasting as a whole. With this study we try to highlight the big picture of ANNs in 

forecasting. To accomplish this, a literature review of major established management 

science and forecasting journals is done in order to identify the current trends. We show 

which are the current modelling methodologies for ANNs and the main application areas, 

the current advances and how ANNs fare when compared to more traditional forecasting 

models. Furthermore, we investigate the validity of the published research in the light of the 

criticism received by the forecasting literature. The study concludes with the current 

important modelling issues for ANNs and a discussion about future research. 

 This study is organised as follows. Section 2 provides a brief overview of the 

literature survey design. Section 3 discusses the findings of the survey while section 4 

presents the conclusions of this study.  
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2. Research methodology 

 The main bulk of the papers analysed here was collected by performing an online 

survey using the ISI Web of Knowledge database1. The search was focused on influential 

journals in forecasting, operational research and management science. The journals were 

selected due to their relevance with forecasting and their ranking in two different systems, 

the Vienna List2 [7] and the impact factor as measured at the ISI Web of Knowledge [8]. 

Table I lists these journals with their respective scores in both ranking systems. 

 Journals that mostly specialise in ANNs from an engineering perspective were not 

included due to their limited relevance with economic/business forecasting. This is a limiting 

factor of this survey, however the aim of this study was to explore extensively the ANN 

forecasting literature with a special interest to operational research and management 

science problems; therefore, we follow the criteria set by Adya and Collopy [9] to exclude 

weather, biological processes and other non-business applications which are numerous in 

those journals.  

 

Table I: Ranking of Journals in the Literature Survey 
 

Journal 
Vienna List ISI Web of Knowledge 

New 
list* 

Old 
list** 

Impact 
Factor 

5-Year Impact 
Factor 

Computers and Operations Research (C&OR) A A 1.366 1.789 
Decision Sciences (DS) A A 2.318 3.131 
European Journal of Operational Research (EJOR) A A 1.627 2.084 
International Journal of Forecasting (IJF) - B 1.685 1.596 
Journal of Forecasting (JF) A A 0.508 1.018 
Management Science (MS) A+ A+ 2.354 4.065 
Naval Research Logistics (NRL) A A 0.735 0.993 
Operations Research (OR) A+ A 1.463 2.547 

*The new list contains 322 journals ranked A+ (32) and A; ** The old list ranks 1,877 journals 
classified as A+ (42), A (701), B (735), C (250) and D (142). The numbers in brackets show the number 
of journals in each category. 

 

 The keywords used to perform the search were relatively broad, ensuring that all the 

articles of interest would be identified3. No publication year restrictions were enforced, 

                                                       
1 http://portal.isiknowledge.com/portal.cgi 
2 Vienna list is compiled by Wirtschafts Universitat Wien and the journals are graded from A+ to D. The 
journals used in this study are graded from A+ to B. 
3 Those were: "Neural AND Net*" and "Multilayer AND perce*". The results were manually filtered to identify 
relevant papers to forecasting. These words were selected after experimentation with different combinations 
to ensure a very wide range of results. "Forecasting" and similar words were not used as keywords in order to 
find related papers, even if they had no such keywords associated to them.  

http://portal.isiknowledge.com/portal.cgi
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however most online articles date after 1995. For older papers only their abstracts were 

available online. The printed articles were retrieved for the highly cited papers published 

before 1995. This is not a limiting factor of this study, since the majority of older 

publications are analysed in previous reviews [2]. The total number of relevant papers that 

were used in this study is 126 and a list of them can be found in table XIII. 

 To ensure a systematic analysis of the papers we follow the suggestions in the 

literature on what constitutes a well implemented and valid ANN paper. Adya and Collopy 

[9] stressed that several of the ANN forecasting papers do not provide reliable or valid 

conclusions, because of lacking experimental design, evaluation or documentation, or the 

networks were not implemented well. To measure these, they set some criteria. The ANN 

models have to be compared with well-accepted benchmarks, use ex-ante comparisons, a 

reasonable sample of forecasts, adequate training, stability of the performance and 

generalisation capabilities. Crone and Preβmar [10] go one step further and construct a 

framework that enables a systematic evaluation to identify heuristics and sound guidelines 

in ANN modelling by documenting the individual modelling decisions in each paper. They 

observe that due to the vast degrees of freedom in ANN modelling it is important that all 

these are analysed. This leads to an important point; it is imperative that the authors try to 

make their papers as replicable as possible by documenting all modelling decisions. This will 

allow transparent analysis of their models and eventually better understanding of what 

makes ANN models perform well or not. Furthermore, in the forecasting literature there are 

extensive guidelines of what constitutes an effective validation and a good experimental 

design [11, 12], which as we will discuss in the following sections is often overlooked in the 

ANN literature. Here, we create an amalgam of the suggestions briefly discussed above, 

which is implemented in practice by examining each paper across 42 different dimensions of 

analysis. The main benefit is that it allows a systematic investigation of the papers for 

contribution, validity of the evaluation and implementation, assess the replicability and 

extract knowledge on ANN modelling practices. The dimensions of analysis are classified in 

six major categories; the general information, like year of publication and area of 

publication, relevant information to the dataset used in the paper, the network 

architecture, the network training, the evaluation scheme and the conclusions. A detailed 

breakdown of these categories into the individual dimensions of analysis can be found in 

table II.  
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Table 0-II: Categories and dimensions of the literature survey 

General 

1 Author 3 Journal 
2 Year 4 Area of application 

Time Series 

5 Uni/Multivariate time series 10 Pre-processing 
6 Time series type 11 Scaling 
7 Real/Synthetic time series 12 Train/Valid/Test set sizes 
8 Sample size 13 No. of time series used 
9 Time series granularity 

  Architecture 

14 ANN type 21 Number of output nodes 
15 Method to model  the ANN 22 Forecat horizon 
16 Number of input nodes 23 Transfer function 
17 Method to identify input nodes 24 Output function 
18 Number of hidden layers 25 Shortcut connections 
19 Number of hidden nodes 26 Pruning 
20 Method to identify hidden layer/nodes 27 Iterative/Multiple step-ahead forecast 

Training 

28 Training method 32 Learning rate 
29 Epochs/Iterations 33 Momentum rate 
30 Error function 34 Initialisations 
31 Early stopping 

  Evaluation 

35 Error Metric 39 Comparison with other models 
36 In-sample evaluation 40 Which models 
37 Ex-ante evaluation 41 Generalisability of the results 
38 Fixed/Rolling origin evaluation 

  Evaluation 

42 ANN found better? 43 Additional info/notes 

 

 It was impossible to fill all the dimensions of analysis for each paper, since most of 

this information is either not documented or too vague. Furthermore, there is a strong lack 

of standardisation in the ANN nomenclature that makes the correct classification 

challenging. Once all the articles were analysed then the collected information was grouped 

to allow inference of meaningful information. The results are presented by category in the 

following section.  

3. Survey findings 

3.1. Publication trends 

 Initially, we explore the publication trends. Figure 1 presents the number of papers 

per year and journal since 1992. Note that the 2009 data includes only papers published in 

the first 7 months of the year. Over the years there is an increasing number of publications 
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that use ANNs in forecasting, demonstrating that it is an active research topic. There seems 

to be a cycle of 4 to 5 years that the number of publications peaks. More than 75% of the 

papers are published in three journals, the Journal of Forecasting, the International Journal 

of Forecasting and the European Journal of Operational Research, in order of percentage. 

Note that there are no forecasting related papers with ANNs in the Naval Research Logistic 

and Operations Research journals. 

 

 

 

Fig. 1: Publications per year and journal. Note that the 2009 figure includes only the first 7 months. 

 
 Comparing the number of ANN forecasting related papers with the total number of 

ANN papers, in the same journals, there is a similar trend. There is an increasing volume of 

papers that peaks every 4-5 years. The total number of ANN papers for the same period is 

449, which makes the 126 forecasting papers account for 28% of the total published 

research in the selected eight journals.  

 In figure 2 the areas of application or the broader topic of the papers are presented. 

The majority of the papers discuss ANN modelling issues, followed by finance and 

macroeconomic applications and electricity demand/load forecasting.  Under the category 

"other" all different smaller categories with only one paper are included. A few examples of 

the varied applications of ANNs include crime forecasting [13], success rates of countries in 

the Olympic games [14], ozone concentration forecast [15], television viewership [16] and 

call centre forecasting [17]. More numerous are the applications on traffic volume 

forecasting [18-20], retail demand forecasting [21-23] and marketing applications where the 



Page 8  

utility or the brand choice of consumers is forecasted [24-31]. It is apparent that there is a 

wide interest in ANN applications in forecasting.  

 

Fig. 2: Areas of application / broad topics of the papers. 

3.2. Dataset properties 

 Here we explore the dimensions related to the dataset that is used in the 

publications. Note that as some papers are not empirical or do not include experiments the 

total figures presented hereafter maybe less than the total of 126 papers. First we 

investigate the form of the dataset, i.e. if the papers use univariate data, multivariate data 

or both in their experiments. The majority of the articles address multivariate problems, as 

can be seen in table III. About 40% of the papers discuss univariate time series forecasting 

problems and only 7 papers (6.8%) examine both possible forms. Regarding the type of time 

series, i.e. if it is a real dataset or a synthetic, nearly all papers (92%) use real time series. 

Again 7 papers use both real and synthetic time series in their experiments. Although real 

time series have apparent practical importance, synthetic time series allows the researcher 

to control the properties of the dataset and get a better understanding of the modelling 

process. Therefore, the literature is lacking in that sense, since in many cases the authors of 

the papers conclude that it is unclear why the ANNs forecast or fail to do so accurately, 

because the true properties of the time series are unknown.  

 

Table III: Dataset form and type. 
 

Form # of papers Type # of papers 

Multivariate 60 Synthetic 8 
Univariate 42 Real 92 
Both* 7 Both* 7 

*Included in the above forms/types 
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 The next dimension of analysis is the sample size of the time series. Table IV provides 

descriptive statistics of the different sample sizes used in the literature and figure 3 

represents this visually with a boxplot. ANNs have been used in both short and long time 

series. The effect of the sample size is systematically analysed by Markham and Rakes [32] 

who find that at large sample sizes ANNs outperform linear regression, whereas the 

opposite is true for short samples. Therefore, they conclude that ANNs perform better when 

long samples are available. Hu et al. [33] model daily exchange rate time series and 

conclude that ANNs perform well with large sample sizes. Zhang [34] and Zhang et al. [35] 

find that sample size is not an important determinant for ANN accuracy. However they note 

that more data are found helpful to overcome overfitting problems.   

 

Table IV: Sample size statistics 
 

P
er

ce
n

ti
le

 

Min 18.0 
10% 68.1 
20% 111.2 
30% 130.0 
40% 153.6 
50% 234.0 
60% 385.8 
70% 720.1 
80% 1637.8 
90% 8866.2 
Max 105024.0 

 

10
1

10
2

10
3

10
4

10
5

Sample size (log scale)  

Fig. 3: Sample size used in the ANN literature 

 

   

The sample size is connected to the time series granularity. In the literature twelve 

different granularities are used, the shortest being observations every 20 seconds for road 

traffic data [18] and the longest being annual time series covering a variety of different data 

types. Although counting all the individual granularities has limited interest, it is important 

to distinguish between low and high frequency applications. There is no formal definition of 

what constitutes high frequency data, since the characterisation changes with the available 

techniques, computational resources and what is the most common time series granularity 

[36]. For this analysis we use the daily time series granularity as the boundary between high 

and low frequency time series. Any time series of daily or shorter intervals will be counted 

as high frequency. Granger [37] has observed that conventional statistical methods can have 

problems in interpreting high frequency information. Taylor et al. [38] suggest that 

conventional statistical methods need to be modified to forecast high frequency time series. 
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In their analysis they use a modification of the exponential smoothing and ARIMA models to 

forecast hourly electricity load data. Therefore, it is interesting to investigate whether ANNs 

are able to forecast both low and high frequency time series and if there is need for special 

modifications of the models. Table V shows the number of papers that use each time series 

granularity that is identified in the literature. The number of papers is provided for all area 

of applications and separately the three major ones, as shown in figure 2. Both high and low 

frequency problems are strongly represented in the literature. However, if the finance and 

electricity demand forecasting applications, which are inherently high frequency problems, 

are excluded then the majority of the applications is for low frequency problems. It is 

unclear whether this preference to low frequency applications is due to data availability or 

modelling problems. Figure 4 presents visually the number of papers per time granularity 

for all areas of ANN applications. 

 

Fig. 4: Number of papers per time series granularity 

 

Table V: Number of papers per time granularity 
 

Time granularity 
Area of application 

All areas Finance Electricity Macroeconomics 

H
ig

h
 f

re
q

u
en

cy
 

20 seconds 1       

Minute 2 1   

5 mins 1    

Half-Hourly 5  4  

Hourly 8  6  

3-Hourly 1    

Daily 25 11 2 5 

Total 43 12 12 5 

Lo
w

 f
re

q
u

en
cy

 Weekly 8 1 2  

Monthly 25 4  8 

Quarterly 11 2 1 4 

Annual 9 3  1 

Other* 2       

Total 55 10 3 13 
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*In these cases the time granularity is not defined due to the dataset 
characteristics 

 

 There is only one paper that uses both low and high frequency data [39]. In this 

study the authors use polynomial neural networks and common multilayer perceptrons to 

forecast the monthly airline passenger time series, a daily Dow Jones industrial index series 

and an hourly electricity load time series. They compare the ANNs with statistical 

benchmarks in order to establish whether the network models are better and if the 

proposed polynomial neural network outperforms multilayer perceptrons. The findings are 

mixed and it is difficult to assess whether ANNs are applicable to several different time 

series frequencies without modifications or different modelling practices. Note that this is 

not the main research question of this study, so the authors have not designed their 

experiment likewise. Hippert et al. [40] and Hahn et al. [41] discuss the application of ANNs 

in electricity load forecasting, a typically high frequency problem. Both conclude that ANNs 

have been successfully applied in this type of problem, outperforming established 

forecasting benchmarks. The first paper concludes that large overparametrised ANNs 

perform very well for electricity load forecasting problems and note that this may be due to 

the dataset properties, since such networks are typically avoided in other ANN forecasting 

applications. This provides some evidence that high frequency time series is a special case 

for ANN models, but there is no extensive research on the effects of the data frequency to 

the performance of the networks. Therefore, it is important that more research is invested 

on understanding the effects of the data frequency on ANN forecasting performance, 

especially since high frequency time series are becoming more common [36]. 

 Another issue that is connected with the dataset is the type of pre-processing of the 

data, if any, and the scaling that is applied to the inputs. 80.2% and 78.6% of the papers do 

not provide these figures respectively. Regarding the pre-processing of the time series 52% 

of the papers that report it (13 papers) transform the inputs by removing the trend and/or 

the seasonality of the time series. This is connected to an ongoing debate on how to best 

model time series with trend and season components. Hill et al. [42] use time series from 

the M1 competition and deseasonalise them. They fit ANNs models and find that they 

outperform standard statistical models. Nelson et al. [43] repeat the experiment without 

deseasonalising the time series and find that the performance gets significantly worse, 
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concluding that deseasonalising is a necessary step in time series forecasting with ANNs. 

They argue that by removing the seasonal component the network can learn better the 

trend and the cyclical components in the time series. Lachtermacher and Fuller [44] propose 

first and seasonal differencing as a pre-processing step, based on the ARIMA modelling 

procedure. The authors aim to model time series in their stationary form as it would be 

required by the Box-Jenkins model. In addition to that they consider Box-Cox transformation 

as an additional pre-processing step. When applied, the authors find significant 

improvement in the training time and the forecasting accuracy, however for the accuracy 

the exact magnitude of the improvement is not documented. Furthermore, it is unclear why 

this transformation is beneficial for such nonlinear models. They also do not provide 

evidence that using differenced inputs is better than modelling the time series in the 

original domain. Conversely, Balkin and Ord [45] quote that differencing is an unnecessary 

step, but they do not explore its effect. Zhang and Qi [46] investigate the effect on 

forecasting accuracy of different ways to remove trend and seasonality from time series for 

forecasting with ANNs. They conclude that removing both trend and season is beneficial for 

the accuracy of the forecasts and that the best way to do this is through 1st and seasonal 

differencing. They argue that the detrended and deseasonalised time series do not contain 

long dynamic autocorrelations that make it difficult to choose an appropriate input vector. 

Curry [47] address the issue from a theoretical perspective suggesting that for ANNs to 

model seasonality the input vector should be long enough to adequately capture the 

seasonal effects and that it is not a matter of pre-processing, implying that Zhang and Qi 

results can potentially hide input misspecification errors. Crone and Dhawan [48] 

demonstrate this, by modelling monthly seasonal patterns using only an adequate number 

lags of the time series and no deseasonalising. Zhang and Kline [49] verify their previous 

findings by using quarterly time series to model ANNs. They find that deseasonalising 

improves accuracy and the best results are achieved through seasonal differencing. They 

argue that coding seasonality with dummy variables does not allow the ANNs to capture the 

dynamic structure of the real time series, however they do not distinguish between 

deterministic and stochastic seasonality in their dataset, which conventionally requires a 

different modelling approach [50]. 

 In the literature there is support that both pre-processing and no pre-processing are 

necessary for ANNs in order to maximise forecasting accuracy, without specifying the 
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conditions that each would be preferable. This inconsistency complicates ANN modelling. 

However several aspects of the issue have been overlooked by the ANN literature, like the 

nature of the trend and the seasonality, i.e. if it deterministic or stochastic, what happens 

when multiple overlying seasonalities are present, as is common in high frequency time 

series, etc. Researching these special topics will provide additional understanding of ANNs 

and thus help to lift the current confusion. The remaining papers that use some form of pre-

processing refer to either transformation of the raw data to more useful formats (like taking 

the percentage difference of the raw time series) and is always connected to domain 

knowledge or calculate the logarithms of the time series before modelling it with the ANNs. 

The argument behind the use of logarithmic transformation is outlined by Balkin and Ord 

[45]. During their training ANNs usually minimise some sort of squared error. Efficient 

estimates result in least square optimisation when the error terms are independent and 

have equal variances. The logarithm does exactly that. However, there are no comparative 

studies that demonstrate a clear benefit of using the log transform of the time series with 

ANNs and therefore its use is rather limited. 

 ANNs require the inputs to be scaled to specific bounds that are defined by the 

transfer function of the hidden neurons [2, 44]. It is a necessary step to produce forecasts 

with ANNs and it can be safely assumed that most researchers in their papers use some sort 

of scaling. However, only 21.4% of the papers report the scaling that is used. This renders 

most of the published work impossible to replicate and also does not offer any evidence on 

the effect of the scaling on the accuracy of ANNs. In the literature there are no large scale 

studies concerning its effect on the accuracy and most focus on the effect on the ANN 

training, for which it is unclear whether it is beneficial or not and how it should be done [2]. 

Lachtermacher and Fuller [44] argue that scaling should be able to accommodate 

unobserved future values that are out of the bounds of the historic values. Therefore, 

scaling should result in values tighter than that required by the transfer function, in order to 

have room for values outside the range of the original training data. Wood and Dasgupta 

[51] quote that scaling is one way of reducing the impact of noise to the ANNs, but they do 

not provide the evidence to demonstrate this. Church and Curram [4] argue that the 

transfer function becomes increasingly nonlinear at its extremes, so by scaling the input 

data to tighter ranges overcomes this problem. Furthermore, they also argue that this way 

ANNs are robust to future unobserved values. Torres et al. [52] mention that scaling the 
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inputs to tighter ranges helps to avoid the saturation problem of the transfer functions. In 

the above papers the choice of the new tighter bounds is arbitrary, with the exception of 

Lachtermacher and Fuller who suggest scaling the time series by a factor of two times the 

initially intended range. However, it is not discussed why a factor of two is adequate. In the 

literature it is unclear which of the available scaling methodologies is better (for a discussion 

of the alternatives see Zhang et al. [2]). Although there are arguments in favour of tighter 

scaling bounds than those required by the transfer function, there is no rigorous evaluation. 

Furthermore, there is an open question regarding how one should set these new bounds.  

 Another dimension of this study related to the dataset is how to split it into training, 

validation and test sets. ANNs in order to train and avoid overfitting typically require the use 

of a validation set. Part of the original time series is used during the training of the ANNs to 

validate that the model has approximated the underlying data generating process and has 

not been overfitted to the training set, which is used for estimate the network's weights. 

Therefore, the size of the validation set limits the available sample size for the training of 

the ANNs. Deciding the size of the validation set is similar to setting the size of the test, 

which is used for the ex-ante evaluation, and is usually application specific. Therefore, we 

will not list in detail all the different ways that the time series are split in the literature, but I 

will refer only to the special cases. Bodyanskiy and Popov [53] use online training to fit their 

ANNs, which means that the network adapts continuously as new information becomes 

available. This makes the need for validation set obsolete, therefore none is used. Note that 

this is a different form of training and forecasting and does not discredit the common offline 

training of the ANNs that all the data are available and a validation subset can be created. 

Corcoran et al. [13] use a special scheme to avoid using a validation set. They use the M-

test, which is essentially a gamma test applied incrementally to an increasing sample size, to 

identify the number of training observation that minimises the effect of noise and therefore 

overfitting. Once this value is identified the appropriate training set is used and the rest of 

the data is used as test set. However, in their paper they do not provide the evidence that 

this gives better forecasting accuracy compared to the common use of the validation subset. 

Note that 29.4% of the accessed papers in this review do not provide information on how 

the available data are split in training, validation and test subsets. This limits the validity of 

those papers, as it is unclear how the ANNs are build, on what sample they are trained and 

how their evaluation is done. Furthermore, these experiments are not replicable.  
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 Table VI provides the descriptive statistics for the number of time series that are 

used in the literature. Figure 5 provides a visual representation of the same information as a 

boxplot. More than 70% of the papers use under 5 time series. There are 12 papers that use 

from 10 to 100 time series and only 8 than use more than 100 time series, up to the 

maximum of 367. In this classification the M3 competition [54], which has an ANN model 

submission that was evaluated on 3003 time series, among several other forecasting 

models, is not included. The relatively small number of time series that is used in most 

studies implies that it is hard to generalise from their conclusions and the statistical validity 

of the evaluation framework is questionable. This in conjunction with the limited use of 

rolling origin evaluation scheme, which is discussed in a following section, limits severely the 

papers that can be used to assess the performance of ANN models against benchmarks. It is 

imperative that more large scale studies are conducted in order to provide statistically valid 

evidence of the ANNs' forecasting performance and best modelling practices.  

Table VI: Number of time series 
 

P
er

ce
n

ti
le

 

Min 1.0 
10% 1.0 
20% 1.0 
30% 1.0 
40% 1.0 
50% 2.0 
60% 3.0 
70% 4.2 
80% 8.0 
90% 45.4 
Max 367.0 

 

10
0

10
1

10
2

10
3

Number of time series (log scale)  

Fig. 5: Number of time series in ANN papers 

 

3.3. ANN architecture 

 Here we discuss all the dimensions of analysis that are related with the ANNs’ 

architecture that are found in the literature. The questions that are discussed here include 

what are the types of ANN used, how the models are specified, the input variables and the 

size of the hidden layers specifically, whether a single or multiple outputs are used, what 

transfer functions are employed and other special considerations like pruning and shortcut 

connections.   

 First we present the most common types of ANNs that are used in the forecasting 

literature. Figure 6 shows the percentages of papers that use Multilayer Perceptrons (MLP), 

Recurrent Neural Networks (RNN), Generalised Regression Neural Networks (GRNN), Radial 
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Basis Function networks (RBF), Probabilistic Neural Networks (PNN) and all the other 

network types that are represented by only one paper in this review.  

The majority of the papers (75%) use MLPs. The second most common type is the 

RNNs with only 6% of the papers using it. RBF networks follow with 5%. GRNNs are used by 

4% of the papers and 1% uses PNNs. The remaining 9% of the papers use different types of 

ANNs that appear only once in this review and in most cases are variations of the MLP, like 

the DAN2 which captures the linear and the nonlinear part of the time series in separate 

neurons (for more information refer to Ghiassi et al. [55]). The dominance of MLPs seems to 

be unaltered since the last major review of ANNs in forecasting [2], however it does not 

mean that they are better suited for forecasting. For instance if we consider the papers that 

discuss RNNs they routinely report outperforming MLPs. Note the validity of several 

comparative evaluations is questionable, as is discussed in the following sections in more 

detail.  

 

Fig. 6: Type of ANN used 

 
From this point on, only for the papers that use MLPs and RNNs, which are the most 

common implementations, are discussed. The reason for this is the special nature of the 

GRNNs, RBFs, PNNs and other types of networks that require completely different 

architecture, design, modelling considerations and their use in forecasting represents less 

than 19% of all papers. 

 Next, we investigate how many papers present a complete methodology to model 

the ANNs architecture, including selection of inputs, number of hidden layers and nodes, 

connections and transfer functions. Only 16 papers suggest a unified methodology to specify 

systematically the inputs and the hidden layer. No papers provide guidelines for selecting 
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the transfer function. The same is true for shortcut connections, i.e. direct connections 

between the layers that bypass one or all the hidden layers. Both seem to be set according 

to the preferences of the modeller. In addition to these 16 papers there are a number of 

papers that address the selection of solely the input variables of the ANNs or the hidden 

layer. These papers are discussed together with the ones that offer a complete 

methodology to specify both. There are in total 25 papers that specify automatically the 

input variables of ANNs. These can be classified in seven major categories, as it can be seen 

in table VII. All methodologies based on regression analysis are classified under the category 

“Regression”. Methodologies that use autocorrelation analysis (ACF), partial autocorrelation 

analysis (PACF), mutual information (MI) or any other similar metric, individually or in 

combinations, are categorised as “ACF & PACF or similar”. Any methodology that makes use 

of heuristics or rule-based analysis or information criteria is under the category “Heuristic & 

rule based”. All papers than use pruning algorithms to identify the input variables belong to 

category “Pruning”. Methodologies that are based on genetic algorithms and other 

evolutionary algorithms are under “Genetic algorithms” and finally the single paper that 

identifies the input variables by means of sensitivity analysis is on a separate category 

named “Sensitivity analysis”. The remaining papers, which is the majority (71.3%) do not 

present or use a systematic way to choose the input variables for the ANNs they use. In 

most cases the selection methodology is done using a trial and error approach or arbitrarily 

that limits significantly the input search space and can easily lead to suboptimal and myopic 

selections. However, there is a lot of evidence in the literature that the input variable 

selection is the most important modelling variable for ANNs in forecasting. Zhang et al. [2] 

observed in their review that there are very few systematic input variable selection 

methodologies available, although the inputs of the ANNs are very important for their 

forecasting accuracy. Anders and Korn [56] identify the same problem in the ANN literature 

and in addition they point out that there is no widely accepted or used methodology either. 

Zhang [34] and Zhang et al. [35] explore the ability of ANNs to model linear and nonlinear 

time series respectively and conclude that the selection of the input variables is the leading 

determinant of accuracy, followed by the specification of the hidden layer. There are 

numerous empirical studies that highlight the importance of the input variable selection for 

ANNs application (for example Darbellay and Slama [3] stress this issue in electricity load 
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forecasting problems). Since then there are several publications focused on how to specify 

the input variables for ANNs for forecasting problems, as it can be seen in table VII.  

 

Table VII: Papers that use input variable selection methodologies 
 

Regression Heuristic & rule based Hypothesis testing 

Balkin and Ord [45] 
Church and Curram [4] 
Dahl and Hylleberg  [57] 
Prybutok et al. [15] 
Qi and Madalla [58] 
Swanson and White [59] 

Corcoran et al. [13] 
Liao and Fildes [60] 
Moreno and Olmeda [61] 
Qi and Zhang [62] 

Anders et al. [63] 
Medeiros et al. [64] 
Refenes and Zapranis [65] 

ACF & PACF or similar Pruning Genetic algorithms 

da Silva et al. [66] 
Darbellay and Slama [3] 
Kajitani et al. [67] 
Lachtermacher and Fuller [44] 
Moshiri and Brown [68] 

Kaashoek and Van Dijk [69] 
Setiono and Thong [70] 
Terasvirta et al. [71] 

Kim et al. [27] 
Motiwalla and Wahab [72] 
Nag and Mitra [73] 

Sensitivity analysis 

Dougherty and Cobbett [19] 

 

 However, the number of the different categories of methodologies that has been 

published illustrates that there is still no consensus on how to specify the input variables of 

ANNs. Another important observation is that most of these papers use a filter approach to 

specify the inputs, with the exception of Liao and Fildes [60] who provide a wrapper 

framework that essentially iterates among a large number of possible candidates and da 

Silva et al. [66] who use as a possible input variable selection methodology a wrapper that 

tries several different combinations of inputs automatically. They briefly discuss the 

distinction between wrappers and filters and identify as the key distinction the higher 

computation cost of the first. To illustrate the advances in the topic, the different 

methodologies are discussed by category in chronological order. 

 The most common specification methodology is based on variants of regression 

analysis. Church and Curram [4] compare MLPs with econometric ordinary least squares 

regression models. They suggest modelling the ANN using the same inputs that they 

identified through the regression analysis. This offers a systematic framework to select the 

input variables for MLPs. However, the identification of the inputs for a nonlinear model, 

like the MLPs, is based on linear regression; hence, there is the risk of missing useful 

nonlinear information. Swanson and White [59] simplify the procedure by using a forward 

stepwise linear regression to identify the significant input variables. Regressors are added 

one at a time until the Schwarz Information Criterion (SIC) cannot be improved more. 
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Although this methodology fails to identify nonlinear information like the previous one, it 

offers a more automated approach to input variable selection, minimising the required 

intervention from an expert modeller. However, the use of SIC is criticised by Qi and Zhang 

[62] as inappropriate. They evaluated its use, along with AIC, as a mean to identify the 

appropriate number of lags for MLPs and concluded that there is no connection between 

these information criteria and the forecasting performance of networks. Qi and Maddala 

[58] identify the inputs for their MLP model through means of linear regression. Initially 

they build a linear regression and use the significant variables of the regression as inputs to 

the ANN. These variables, like in the previous cases, can be lagged. The weaknesses of this 

methodology are similar. The linear regression does not capture nonlinear information, 

therefore may miss some important nonlinear inputs for the ANN. Furthermore, in this 

implementation the regression modelling is not automated and a human expert is required. 

Balkin and Ord [45] propose a hybrid heuristic-regression approach. First, they consider the 

problem of the maximum lag of the time series that should be evaluated with the regression 

model. To solve this, which is unanswered by the previous papers, they use a heuristic rule. 

Depending on the frequency of the time series they provide a maximum number of lags that 

should be evaluated; for annual time series this is 4 lags, for quarterly 6, for monthly 15 and 

for any other frequency they propose 6 lags. The possible lags are then evaluated using a 

forward linear regression. From all the different regressions that are built by combining 

these lags, those that have an F-statistic greater than 4 are selected. From the selected ones 

the least parsimonious is chosen to identify the inputs for the ANN. This methodology is 

fully automatic; however it has a series of problems. First of all, it is calibrated only for low 

frequency time series, since the heuristic would not be able to provide a reasonable 

maximum lag for time series of higher than monthly frequency. On the other hand, it is the 

only attempt to address the issue of maximum lag length in the literature. Secondly, like the 

previous methodologies it is restricted to identifying linear information. Prybutok and 

Mitchell [15] chose the input in their study using stepwise linear regression. They deal with 

a multivariate problem and they do not consider lagged variables, however their 

methodology can be easily extended to include such. The main weakness is that the 

identification of the inputs is done considering only linear information. Dahl and Hylleberg 

[57] try to overcome this  by using a nonlinear regression model. They choose to use the 

random field regression, proposed initially by Hamilton [74]. This model allows identifying 
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separately linear and nonlinear explanatory variables, thus overcoming the main weakness 

of the previously mentioned methodologies. In their implementation they use forward 

regression with AIC and BIC optimisation to build the nonlinear regression model and then 

use the significant variables as inputs to the ANN. Although this is the only regression based 

methodology that tries to capture nonlinear information in the inputs of the ANN it can be 

criticised for using AIC and BIC optimisation for identifying the appropriate number of 

inputs, which is discouraged in the literature [62]. In addition, this methodology is very 

computationally expensive due to the estimation of the random field regression models. 

Interestingly, in the literature only the stepwise and the forward regression models have 

been considered. Backward regression has not been used.  

 The second most common category of methodologies is based on analysing the ACF 

or PACF of the time series, or similar metrics like mutual information criterion. 

Lachtermacher and Fuller [44] propose a methodology to model ANNs similar to the ARIMA 

modelling methodology. ANNs are autoregressive models and naturally make use of the 

autoregressive structure of the time series, which is captured in the PACF. Therefore, they 

suggest that identifying the autoregressive structure of the time series in a similar way to 

what Box and Jenkins describe [75] can help identifying the input variables for an ANN. They 

also suggest using the autocorrelation information in an attempt to capture the additional 

nonlinear information that is not identified by the linear PACF. Note, that following the 

ARIMA methodology the lagged observations of the time series may need to be differenced. 

This methodology fails to provide evidence why the inclusion of the ACF is beneficial and 

like most of the previously mentioned methodologies, is based on linear identification tools, 

which may be a limiting factor for ANNs. Darbellay and Slama [3] try to overcome this by 

using the nonlinear autocorrelation function. This is defined as the mutual information 

scaled between 0 and 1. This metric is able to capture nonlinear dependencies and 

therefore provide a more complete set of inputs to the ANN. The authors identify the 

significant lagged inputs of the time series using a similar approach to the normal ACF 

analysis, arguing that all the extra identified significant lags, compared to ACF analysis, 

contain the nonlinear information. However, this is not entirely true as the ACF and the 

scaled MI have different bounds and are not directly comparable. Moshiri and Brown [68] 

use only the PACF information to identify significant lags that should be included as inputs 

to the ANNs. In contrast to the previous methodology, using only PACF information will 
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restrict the nature of the identified interactions to linear. Furthermore, as Lachtermacher 

and Fuller [44] quote, to correctly identify the structure of the autoregressive information it 

may be necessary to include differenced observations of the time series, which is not 

considered in this case. Kajitani et al. [67] opt to use the ACF to identify significant lags that 

should be used as inputs for ANNs. In theory MLPs, which are used in their paper, are 

autoregressive models and therefore PACF should be preferred, in contrast to RNNs that can 

capture both autoregressive and moving average processes. Considering that in this study 

MLPs outperform the benchmarks, it should be explored why this is so, which is not 

discussed in detail by the authors. Again, this methodology tries to identify inputs for the 

nonlinear ANNs using a linear filter. Da Silva et al. [66] consider several alternative to 

specifying the ANN input variables. They consider both filters and wrappers. As a filter they 

use the interdependence redundancy, which is a normalised mutual information measure. 

Before applying this filter they first difference the time series for trend and seasonality in 

order to achieve stationarity. They also consider a Bayesian wrapper which essentially 

iterates among a large combination of alterative inputs until the best model is identified. 

This is computationally expensive and the authors first preselect heuristically a set of inputs 

to consider. The authors propose methodologies that can capture the nonlinear structure of 

the time series, at additional computational cost, which is side-stepped by using heuristics 

to preselect a set of possible inputs. The heuristics are not described in the paper, but it is 

possible that restricting the search space can have negative effects on accuracy. 

Furthermore, differencing of the time series is used to remove the trend and season 

components. However, differencing is not established as a necessary step for ANN 

modelling and furthermore it may lead to model misspecification if the trend or season 

components are deterministic. 

 Another set of methodologies makes use of heuristics and rules to identify the 

appropriate inputs for ANNs. In this category methodologies that minimise some form of 

information criteria are also included. Qi and Zhang [62] investigate if the use of in-sample 

model selection criteria is a reliable guide for out-of-sample performance. They use the 

Akaike information criterion (AIC), the Bayesian information criterion (BIC) and their 

common variants to investigate if they are useful indicators in selecting the inputs for ANNs 

and the size of the hidden layer. They conclude that there is no apparent connection 

between the values of the information criteria and the forecasting performance of the 
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ANNs. This finding has significant implications for several papers that use some variant of 

the either the AIC or BIC to choose the ANN topology. A limitation of the paper is that they 

consider a relatively limited number of lags and hidden nodes (up to 5 for both cases). 

Moreno and Olmeda [61] use AIC to identify the correct number of inputs to model MLPs 

and compare them against linear models. They extend the search space to 10 lags, but fail 

to find MLP models that clearly outperform the benchmarks, providing evidence in 

agreement with the previous study. Corcoran et al. [13] propose a heuristic based on the 

Gamma statistic. The statistic is calculated for incremental lag lengths until the minimum 

Gamma statistic is identified. All lags up to this point are used as input for ANNs. In 

principle, this methodology is similar to the previous heuristic approaches. All of them force 

all lags up to a specific order to be included in the input vector, in contrast to the 

methodologies that are based on regression and ACF/PACF analysis that create sparse input 

vectors. It has not been explored which method is more appropriate for the ANNs. 

Furthermore, depending on the dataset properties and especially its frequency, the 

nonsparse specification of the inputs may lead to very long input vectors that affect 

negatively the training of the ANNs. Liao and Fildes [60] discuss the difficulty to 

parameterise ANN models and propose a heuristic framework that allows a systematic 

search for inputs, number of hidden nodes and learning parameters that will provide the 

best model for the dataset. Essentially, they suggest a wrapper with heuristics that help to 

standardise the search. They also suggest using as an additional input a time series 

constructed by the median of all the past values up to each historical observation. This was 

found to provide more robust results for their dataset. The main problem of this 

methodology is its computational cost and that it is time series specific, since it is based on a 

wrapper [66], which can make it impractical for large scale implementations. In their study 

they show that their proposed methodology worked well on a dataset of 261 

telecommunication time series. 

 Another approach to the problem of specifying the input variables is to start with an 

arbitrarily large vector of inputs and prune it to a smaller size of significant inputs. Kaashoek 

and Van Dijk [69] propose a methodology that the modeller sets the maximum number of 

inputs and then calculates the incremental contribution of each input in terms of R2 by 

removing one input at a time. The residuals that are calculated after removing each input 

are stored as vectors which are analysed by means of principal components analysis. The 
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relevant components of the first principal component are used as additional indicators of 

the significance of the inputs. The inputs with minimal incremental contribution and the 

smallest components are pruned. The elimination continues until all insignificant inputs are 

removed. The authors identify that a limitation of this methodology is how to identify what 

is a low or minimal contribution and an insignificant component. Furthermore, this method 

is computational intensive, since the ANN model has to be re-estimated several times. 

Another weakness is that it is hard to know what an adequate starting number of possible 

inputs is. This is especially important when dealing with time series of different frequencies. 

Setiono and Thong [70] use pruning to identify the inputs, however the criterion used to 

decide which input to prune is the ANN accuracy. If removing an input does not harm the 

accuracy of the network then that input is removed. This is again a top-down pruning 

approach, i.e. it is necessary to start with a large number of inputs, which may be difficult to 

specify in advance. Terasvirta et al. [71] uses the methodology described in Medeiros et al. 

[64] with the addition of pruning to get parsimonious networks. Note that in all these 

papers, pruning is used to identify the number of hidden nodes as well. In the literature 

there are arguments that pruning may not always be desirable, especially in the cases of 

high frequency data [40] or seasonal time series [47], where a large network can provide the 

flexibility for a better fit.  

 In an attempt to increase our understanding of ANNs, there are methodologies that 

are based entirely on statistical hypothesis testing. Anders et al. [63] propose a complete 

framework to specify both the number of hidden nodes and inputs. Once the number of 

hidden nodes is identified the ANN is trained with all inputs. Each single input connection 

(and not the whole input node) is evaluated using the Wald test. The connection with the 

most insignificant p-value is dropped and the network is retrained. The process is repeated 

until only significant connections remain. The limitations of this methodology are similar to 

the pruning ones that are described before. It involves high computational cost and it is 

difficult to specify in advance the starting set of all the inputs, especially in temporal 

modelling. Refenes and Zapranis [65] propose a similar top-down approach which is based 

on different statistical test. They suggest starting with a model that includes all possible 

inputs and calculate the MFS value [76] for each input. The least significant input (below a 

set threshold) is dropped from the model. Another difference with the previous 

methodology is that in this one the number of hidden nodes is reidentified in each iteration 
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and the next input is evaluated with the "best" number of hidden nodes. The weaknesses of 

this methodology are similar, but with much higher computational cost, since now the 

hidden layer is respecified in each iteration. Medeiros et al. [64] try to address the problem 

of high computational cost by proposing a bottom up approach. For the selection of the 

input vector a methodology proposed by Rech et al. [77] is used. This methodology is based 

on the idea of approximating a stationary nonlinear time series by a polynomial of 

sufficiently high order. Combination of variables (or lags) are included in the polynomial and 

a model selection criterion (AIC or BIC) is calculated. The polynomial with the lowest 

selection criterion is selected and indicates which inputs should be used in the ANN. Once 

the input vector is set the methodology addresses the hidden layer. This methodology uses 

indirectly AIC or BIC to specify the input variables of the ANN. It is not clear in this case if the 

findings of Qi and Zhang [62] that such criteria are inappropriate to specify the inputs of 

ANNs hold and it should be evaluated if this methodology overcomes this problem.  

 Another group of papers propose to identify the input variables for ANNs using 

genetic algorithms. Motiwalla and Wahab [72], Nag and Mitra [73] and Kim et al. [27] 

propose different variations of genetic algorithms to identify the best set of inputs. The 

principal idea is that an initial set of networks is created, trained and evaluated. The best 

performing networks are then used as "genetic material" for the next generation of 

networks. The process continues until the best solution is reached. Although these 

methodologies are not identical they share common points of criticism. All these methods 

are very computationally intensive, as they require to train and evaluate a very large 

number of ANN for each time series, which is highlighted by the authors as well. 

Furthermore, these methodologies will not select every time the same inputs, due to the 

stochastic nature of the genetic algorithms.  

 The last methodology is related to sensitivity analysis. Dougherty and Cobett [19] 

suggest training a ANN with all the inputs and then change the values of one input variable 

by a small percentage at a time. By measuring the effect of these changes in the accuracy of 

the ANN it is possible to identify strong positive or negative relationship of inputs to the 

output of the ANN and relatively neutral inputs. The authors suggest keeping only the inputs 

that have strong effects on ANN's outputs. Although this methodology overcomes the 

problem of identifying which inputs capture useful nonlinear information for ANNs, it is 

limited in the sense that it cannot evaluate synergies between input variables.  
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 A wide variety of input variable selection methodologies have been proposed in the 

literature, which are classified in this study in six main categories. Methodologies under 

each category share common limitations, which are usually overcome in other categories. 

However, there is no identified best methodology. These alternative methodologies have 

not been compared to each other, even when they belong to the same category. This 

increases the confusion of what is a good way to specify the input vector. Given the 

significance of the input vector for the forecasting accuracy of ANNs it is necessary to 

evaluate the proposed methodologies against each other. This will provide insights why 

some methodologies work or fail and how ANNs are best modelled.  

 The specification of the hidden layers and the number of hidden nodes is less 

researched. A major influence has been the proof that single hidden layer MLPs are 

universal approximators [5, 6]. Based on this theorem most of the literature uses a single 

hidden layer and the problem is reduced to identifying the number of hidden nodes in this 

hidden layer. Zhang [34] and Zhang et al. [35] in their study conclude that the number of 

hidden nodes is of lesser importance in comparison to the input variables of the ANN and 

find that a small number of hidden nodes is adequate for most cases. Hippert et al. [40] 

reach a different conclusion. For electricity load forecasting large ANNs prove to be more 

flexible in capturing the complex dynamics of the time series and therefore should be 

preferred to small networks. Levelt [78] observes that the universal approximation theorem 

requires an infinitely large number of hidden nodes and does not necessarily hold for a 

small number of hidden nodes, suggesting that more complex architectures might be 

preferable. Curry et al. [25] argue that with finite data points and finite number of hidden 

nodes more hidden layers can produce more accurate networks in comparison to single 

hidden layer ANNs. Nikolopoulos et al. [16] suggest that two hidden layers perform better in 

television viewership datasets than a single hidden layer. From the accessed papers that use 

either MLPs or RNNs only 8 articles (less than 10%) use more than a single hidden layer. 

None provides a systematic way to identify the required number of hidden layers and resort 

to using the suggestions of previous studies or iterative trial and error approaches.  

 

Table VIII: Hidden nodes selection methodologies 
 

Heuristic & rule based Hypothesis testing 

Balkin and Ord [45] 
Church and Curram [4] 

Prybutok et al. [15] 
Refenes and Zapranis [65] 

Anders et al. [63] 
Medeiros et al. [64] 
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Dahl and Hylleberg [57] 
Lachtermacher and Fuller [44] 
Leung et al. [79] 
Moshiri and Brown [68] 
Motiwalla and Wahab [72] 
Olson and Mossman [80] 

Qi and Zhang [62] 
Sahin et al. [81] 
Sexton et al. [82] 
Swanson and White [59] 
Swanson and Zeng [83] 

Terasvirta et al. [71] 

Pruning 

Kaashoek and Van Dijk [69] 
Setiono and Thong [70] 

Genetic algorithms 

Nag and Mitra [73] 

 

 The number of hidden nodes in most studies is identified through a trial and error 

approach or it is arbitrarily preset to a specific number. A minority of papers (24%) provide 

methodologies that can be used to select the number of hidden nodes. These can be 

classified in four categories, as it can be seen in table VIII, those that are based on heuristics 

and rule based decisions, on pruning, on hypothesis testing and those that use genetic 

algorithms.  

 The heuristic approaches can be subdivided in three categories. The first category 

sets the number of hidden nodes (on a single hidden layer) as a function of the number of 

inputs and/or outputs or training samples of the ANN. Lachtermacher and Fuller [44] 

suggest to use a number of hidden nodes that will make the total weights of the network be 

between 1.1 to 3 times more than the number of training samples divided by ten. The 

rationale behind this selection is that it will offer good generalisation properties. Leung et al. 

[79] use 75% of the number of inputs as a guideline to identify the number of hidden nodes. 

Prybutok et al. [15] initially calculate the number of hidden nodes by dividing the number of 

training cases by 5 times the sum of the number of inputs and outputs. Then they evaluate 

neighbouring values as well and choose the one that performs best. Olson and Mossman 

[80] set the number of hidden nodes by rounding up the average number of inputs and 

outputs. These approaches have been used to provide guidelines to restrict the search 

space for identifying the best number of hidden nodes, rather than strict definitions of the 

number of neurons.  

Church and Curram [4] argue that too few hidden nodes will not allow the network 

to capture the structure of the time series, while too many will cause overfitting. Therefore, 

this can be used to identify the number of hidden nodes. In the proposed methodology the 

validation error is monitored during the training of the network. If the validation error does 

not get continuously worse it means that the network does not have enough nodes to 

overfit the data. In this case the training is stopped and more hidden nodes are added to the 
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MLP, since the current number will be unable to capture fully the underlying structure. 

Motiwalla and Wahab [72] employ a heuristic called cascade learning. In contrast to the 

previous papers this heuristic allows several hidden layers and creates shortcut connections 

to the inputs as well as the previous hidden layers. The principal idea of cascade learning is 

that the ANN starts with a small number of nodes. New nodes are added one or more at a 

time until performance cannot be further improved. Sahin et al. [81] start with 2 hidden 

nodes and incrementally increase the size of the hidden layer as long as the residuals 

decrease. All the last three papers use bottom-up construction approaches, starting from a 

small number of hidden nodes and increase until some error metric cannot be improved 

further. It is important to note that in their description none of these methodologies would 

overcome possible local minima of the performance criteria and the search would stop 

there.  

The remaining methodologies follow a similar bottom-up approach but instead of 

the errors they employ information criteria that penalise for the number of parameters. 

Swanson and White [59] and Swanson and Zeng [83] use BIC. Balkin and Ord [45] prefer to 

use the GCV metric, which allows parametric cost for the additional model parameters. Dahl 

and Hylleberg [57] consider both the AIC and BIC metrics. They add hidden units in a single 

hidden layer until the performance criterion cannot be improved or the number of hidden 

nodes has reached 5. Moshiri and Brown [68] consider only the AIC. Qi and Zhang [62], 

similarly to their analysis for the input variable specification, investigate the usefulness of 

AIC and BIC in selecting the number of hidden nodes. Their finding is that there is no 

relationship between the information criteria and ANNs’ performance. They conclude that 

different specification strategies are needed. Refenes and Zapranis [65] use the prediction 

risk instead. They propose an iterative heuristic that calculates the predictions risk for 

different number of hidden nodes, up to a specified maximum, and select the one that 

minimises it. The prediction risk essentially measures the error adjusted for the complexity 

of the model. The authors note that any other similar metric could be used in the current 

framework. By replacing the prediction risk with AIC or BIC the proposed heuristic becomes 

very similar to the methodologies proposed by the previous authors.  

The hidden layer specification methodologies that are based on hypothesis testing 

follow a bottom-up approach, starting from small or linear models and testing the relevance 

of the nonlinear hidden nodes. Anders and Korn [56, 63], Terasvirta et al. [71] and Medeiros  
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et al. [64] employ the LM-test [84, 85] to compare between models with H and H+1 number 

of hidden nodes, until iteratively the optimum number is identified.  

Nag and Mitra [73] employ genetic algorithms to identify the number of hidden 

nodes and layers. They restrict the search space to a maximum of 16 nodes per layer and 

the maximum number of layers to 2. Similarly, Kaashoek and Van Dijk [69] and Setiono and 

Thong [70] use the same pruning methodology that they employ to select inputs in order to 

choose the number of hidden nodes for a single hidden layer. The weaknesses of genetic 

algorithm specification methodologies are similar to those discussed for the input variable 

selection.   

It is clear that there are numerous alternatives how to specify the hidden layer. 

Although most authors prefer to use some heuristic or optimisation scheme based on 

information criteria that penalises for complexity, their performance is not proven. Similarly 

to methodologies for the selection of the input variables, there is no rigorous comparative 

evaluation that demonstrates which of these methodologies, or family of methodologies, is 

better. Furthermore, these methodologies have to be assessed against the simplest 

approach of selecting the number of hidden nodes arbitrarily or randomly. In order to justify 

the extra computational cost involved they have to be proven better. Due to our limited 

understanding of the interaction of the inputs with the hidden layer most of this 

methodologies resolve to iterative refinement of the hidden layer, which requires retraining 

the network in each step and do not provide an explanation why the selected number of 

hidden nodes is adequate. 

In addition, it is unclear how the selection of the transfer function interacts with 

number of hidden nodes. There is no guidance in the literature on how to choose the 

transfer function of the hidden layer. Figure 7 shows the types and the usage of the hidden 

layer transfer functions in the literature. Logistic sigmoid is the most common type. It is 

followed by the hyperbolic tangent (tanh) and lastly two papers use linear transfer function. 

The transfer function defines the bounds that the inputs should be scaled to. However, in 

the literature there are papers that report good results with neural networks that use 

different scaling outside these bounds; for instance Wood and Dasgupta [51] use logistic 

transfer function that is bounded between 0 and 1, but scale the inputs between -0.5 and 

0.5. The interaction of the transfer function with the hidden layer, the inputs, the pre-

processing and scaling of the inputs is not adequately researched. The literature [34, 35] 
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suggests that the input variables and the specification of the hidden layers are the most 

important determinants of ANNs accuracy, however there is no evidence that the choice of 

the transfer function is of lesser importance. It is imperative that the effect of the transfer 

function selection is researched more thoroughly in order to evaluate its significance for 

ANN accuracy and provide guideline on how to select it.  

 

Fig. 7: Percentage of hidden layer transfer functions in the literature. 

 
 Selecting the size of the output layer is connected with the forecasting application of 

the ANNs. Each output node produces a forecast for a single lead time. The modeller can 

produce a forecast of lead time t+n by training directly the network to output forecasts of 

this lead time, or to produce forecasts with lead time t+1, which will be used to produce 

forecasts of lead time t+2 until iteratively forecasts of lead time t+n are produced. Similarly 

if the modeller is interested in several lead times, the ANN can be modelled to produce 

these directly through several output nodes or iteratively through single node. Similarly, an 

ANN can be trained to output forecasts of several variables simultaneously through multiple 

output nodes. Table IX summarises the number of output nodes used in the literature.  
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Table IX: Number of output nodes 
 

Output nodes Number of papers 

1 69 
2 2 
3 3 
4 2 
24 1 

  

Fig. 8: Output layer transfer function and percentage of 

ANN papers 

 Most of the papers (89.6%) use a single output node and only 8 papers use multiple 

nodes, while 10 papers do not record this information. There has been limited consideration 

in the literature for directly forecasting simultaneously several lead times or even a single 

one, but with a longer than t+1 forecast horizon, through the appropriate selection of the 

output nodes, even though there is evidence of accuracy advantages [40].  

 Typically, the output node uses a linear transfer function; however this is not always 

the case, as it can be seen in figure 8. There are 6 papers that use a logistic sigmoid function 

instead of linear. A single paper uses logarithm [86]. These papers allow the ANN to capture 

additional nonlinear behaviour in the output layer. This is not equivalent to an additional 

hidden layer, since the latter would still use a linear output layer for summing and scaling 

the intermediate information from the hidden layers. Again, the relative advantage of using 

nonlinear transfer functions in the output node, instead of additional hidden layers or a 

simple linear function is unclear and it has not been evaluated. Note that 28 papers do not 

report the choice of the transfer function of the output node. 

 Another aspect of the network architecture is related with the connecting weights. 

The modellers can use ordinary fully connected ANNs, pruned networks, which do not have 

all nodes fully connected, or opt for shortcut connections, which are connections that 

bypass intermediate layers, usually connecting the inputs directly to the output node. Only 

two papers use input to output layer shortcut connections [57, 59]. Both these papers use 

linear transfer function for the output layer and argue that this allows the ANN to model 

nonlinear information through the hidden layer and linear information directly through the 

shortcut connections. However, linear behaviour can be approximated by ANN without 

shortcut connections as it has been shown empirically [34]. It has not been evaluated 
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whether the shortcut connections benefit the forecasting accuracy or the training of the 

network by separating the information flow across the network’s layers. Pruned networks, 

are not fully connected and the rationale behind this decision is keeping only the important 

connections in order to aid the training of the ANN. Pruned networks are typically created 

by starting from a fully connected network and removing the least significant connections. 

This approach was described as an input and hidden layer specification methodology. The 

modeller can achieve a similar result by establishing only the important connections 

between the neurons iteratively, instead of starting from a fully connected network. An 

example of this is Swanson and White [59] who use BIC to decide which connections are 

important to add to a network. Algorithmically these approaches are different, but the end 

effect of both is a partially connected network. A critique to the partially connected 

networks is that in most cases (this is true for all 9 papers identified in this review that use 

partially connected ANNs) the resulting ANN is constructed following a greedy algorithm, i.e. 

the decision of cutting or creating a connection is not revaluated once more connections are 

altered.   

 The architecture of the ANNs contains some of the most important decisions that 

the modeller must make in order to use them for forecasting. The different variety of 

approaches to solve the modelling issues that are presented above, illustrate that there is 

no generally accepted methodology how to systematically construct neural networks. In 

many cases different modelling alternatives are not comparatively evaluated, making it 

difficult to assess if a particular setup is beneficial to forecasting accuracy or not. The 

literature has been focused in proposing several different methodologies to solve common 

problems, like the selection of the input variables, and has largely ignored to reconcile the 

accumulated knowledge, by assessing what works better and thereafter building on that. 

This has resulted in several publications arguing that the exact opposite is good modelling 

practice. A good example of this is the use of information criteria like AIC and BIC to select 

the appropriate inputs and specify the hidden layer for ANNs. Another significant weakness 

of the literature, which is connected to the architecture, is that important modelling 

decisions are documented vaguely or not at all. Several papers do not provide a selection 

methodology for input and hidden nodes and chose them either arbitrarily or by using a trial 

and error approach. To their support, this is an unsolved problem and there is no best 

practice. On the other hand, there are papers that do not document other important 
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architecture information, like the nature of the transfer functions, which makes it 

impossible to assess the validity of the implementation and replicate the experiments. This 

calls for stricter evaluation of the ANN literature. 

3.4. ANN training  

 Once the architecture of the ANN is established the modeller has to decide the 

training algorithm and parameters. This involves a variety of decisions, some of which are 

directly connected to the training algorithm, like the learning rate, and some which are 

connected to the modellers approach to training, like the early stopping criterion. In this 

section we will discuss the findings from the literature that are associated with the ANN 

training.  

 

Fig. 9: Training algorithms employed in ANN forecasting literature 

 

 Several different training algorithms have been used in forecasting applications, as 

figure 9 summarises. The dominant algorithm is the gradient descent backpropagation 

training algorithm (52% of the papers). In figure 9, methods which are applied only to one 

paper are classified under the category “other” and include algorithms like BFGS quasi-

Newton [70], Bayesian regularisation [87], simulated annealing [66], etc. Furthermore, there 

are 14 papers that do not record the training algorithm that was used. There are a number 

of papers that compare training algorithms for forecasting applications [25, 52, 66, 87-90]. 

Typically the gradient descend backpropagation algorithm is a benchmark in these studies 

and it is always outperformed. However, these studies should be viewed critically, since 

there is a publication bias. Gradient descent is an established algorithm so only papers that 

show improved results over it are expected to be published. Furthermore, there is an issue 
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of implementation validity, since the majority of these papers do not report the training 

parameters that were selected and use very few training initialisations, which are 

inadequate to overcome the problems caused by the stochastic nature of ANN training. The 

limited number of initialisations also limits the statistical analysis that can be done, as we 

discuss in more detail below. The high percentage of papers that use gradient descent can 

be explained by several factors; it has well studied and documented properties, the fact that 

the superiority of other alternatives is debatable and gradient descend has shown good 

performance in numerous studies and finally the limited selection of implemented 

algorithms in the widespread ANN software. 

 There are several cost functions that can be used to train ANNs. In this review 

numerous alternatives were identified, which are presented in figure 10. The measured cost 

is typically associated with the one step ahead in sample error. Teixeira and Rodrigues [91] 

use the four step ahead in sample error, which matches the forecasting horizon of their 

forecasting problem. This cost function is more appropriate as it minimises the error that is 

related with the objective of the forecasting exercise. The use of sum of squared errors 

(SSE), mean squared error and root mean squared error provide the same training result, 

but the latter two have higher computational cost, therefore there is no advantage in using 

them instead of the SSE. However a penalised for complexity version of SSE is bound to give 

different results. The same is true for cost functions that are based on different type of 

errors, like absolute errors, which are classified in figure 2.10 under the category “other”, 

which includes all the cost functions that appear only once. The majority of the papers 

(57.4%) do not report the cost function that was used to train the ANNs. 

 

Fig. 10: Cost function in ANN forecasting literature. 

  

Parameters like the training epochs/iterations, the learning parameters, the 

momentum and what stopping criterion was used, if any, are not recorded in many cases 
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either. Only 33% of the papers document for how many epochs the network was trained. 

The learning and the momentum is not documented in 75% of the papers, while the early 

stopping criterion is not discussed in 85% of the papers. For the latter, it is possible that in 

those papers that it is not discussed it is not used, as it is not necessary to produce 

forecasts. Ill documentations of these parameters harms the validity and the replicability of 

these papers [9, 10]. 

 Another important parameter of the training of ANNs is the number of times that 

the network is initialised. Every time the network is initialised its weights are randomised 

and therefore produce a random starting point for the nonlinear optimisation that is 

performed during training. Because the training of the ANN can get stuck in local minima it 

is important that the networks are initialised several times to ensure a wide search of the 

error surface. If very few initialisations are evaluated then the reliability of the results is 

questionable, since they can be either good or bad due to randomness in the training and 

not due to the properties of the ANNs. On the other hand, if several initialisations are 

trained, the modeller can look at the distribution of the errors and evaluate if a good (or 

bad) solution is an outlier or close to the average behaviour of the model. Therefore it is 

important that the ANNs in forecasting studies are initialised multiple times and this number 

is reported. Table X summarises the reported multiple training initialisation in the literature.  

 

Table X: Multiple training initialisations in the literature 
 

Number of initialisations Number of papers 

3 1 
5 2 
10 4 
15 1 
20 1 
50 1 

 

 Only 10 papers have multiple initialisations and from those only one [33] has over 30 

initialisations that would typically allow statistical analysis of the results [92]. This 

represents a very small minority of the literature (11%). Liao and Fildes [60] do not initialise 

the training several times, but pick different initial weights with values between different 

bounds every time.  The difference is that this does not guarantee that the ranges of the 

initial weights overlap, which therefore is equivalent to building a different model setups. 

For this reason this paper is not included in table X. The remaining papers do not report 
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multiple training initialisations. It is possible that more papers consider it, but it is not 

reported. This is a major problem for the literature. Considering that ANNs are extremely 

difficult to replicate, since the random seed used during training has to be identical to get 

the same results, it is principal that the robustness and the distribution of the errors of the 

ANNs due to training are evaluated. Results that are extracted after a single iteration of 

initialisation and training cannot be used to evaluate reliably the accuracy of the network 

and are impossible to replicate. On the other hand, if the behaviour of the network is 

examined over several initialisations, it can be expected that the results of the network, the 

next time it is trained, will be within easy to define bounds with a given confidence. This 

allows extracting valid and reliable conclusions. Note that in order to achieve full replication 

of ANN results several conditions must be satisfied; the software that simulates the ANNs 

must be identical, the random number generator that is used must be the same, the seed of 

the generator must be the same and the computer architecture, i.e. 32 or 64 bit, should be 

fixed and of course all the modelling parameters must be know. Therefore, it is unrealistic to 

expect replication of ANN papers results to the exact reported figures. However, it is 

relatively easy to ensure that the comparisons and the conclusions of a study hold with 

statistical confidence if the network is trained with multiple initialisations and the modelling 

parameters are reported fully and in detail. Naturally, in order to infer the level of 

confidence the number of initialisations must be known. Hence, to advance our 

understanding of ANNs it is imperative that multiple training initialisations become common 

practice. 

3.5. ANN evaluation 

 The experimental design and evaluation framework of the papers that use ANN is 

strongly connected with designing a valid experiment and evaluation for any forecasting 

study. In forecasting literature there are several papers that discuss the design and the 

selection of the error measures [9, 11, 12, 93, 94]. What is important to evaluate in the case 

of the ANN forecasting literature is how closely these guidelines are followed and how valid 

are the comparisons.  

 One of the basic principles in forecasting evaluation is to use benchmarks to evaluate 

how good a model is. The majority of papers (85%) use non-ANN benchmarks to evaluate 

their models. Twelve papers do not use benchmarks. From those that use benchmarks only 
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5 include the random walk model. In forecasting studies it is important to include always a 

simple model like the random walk in order to have a desired accuracy minimum. If a model 

does not outperform a simple forecasting model such as the random walk, then there is no 

reason to use a more complicated model.  Therefore, it is good practice to always include a 

random walk model or an equally simple model. Another important dimension of the 

evaluation is the error measure. Table XI includes the main error measure categories that 

can be found in the ANN literature. Note that most categories describe the family of the 

error measure, like “absolute error measures” and not the exact error metric, like mean 

absolute error, or median absolute error. This is done for economy of space, as there are 

192 error measures employed in the literature. Note that under the category “other” 

measures several problem or domain specific measures are included, like the annualised 

returns or the Sharpe ratio.  

 

Table XI: Error types in ANN literature 
 

Error type 
Number of 

papers 

Absolute error measures 27 
Absolute percentage error 
measures 

30 

AIC, BIC and variants 9 
Correlation, R2 and similar 12 
Direction errors 8 
Mean error 5 
Relative absolute error 
measures 

3 

Squared error measures 53 
Squared percentage error 
measures 

1 

Theil-U 3 
Other 36 

 

Table XII: Number of error measures used 
 

Number of error measures 
Number of 

papers 

1 40 

2 23 

3 7 

4 8 

5 5 

6 1 

10 1 

11 1 
 

 

 The most common error measures are based on some form of squared error. 

Forecasting literature has suggested using alternative measures [12, 93], since this family of 

errors is scale dependent, making them inappropriate for comparisons with several time 

series, and tends to overweight outliers due to the squaring. Absolute errors, which are the 

fourth most common family of errors, do not overemphasise outliers, but they still do not 

allow comparing across different time series. The most common error measure family to 

compare across different time series in the ANN literature is based on absolute percentage 

error metrics. Although these metrics are scale independent, and usually easy to interpret, 
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they have been criticised for being biased [12, 94]. The forecasting literature in order to 

remedy this has suggested a set of different error measures that are scale independent and 

less biased, like corrections on the common mean absolute percentage error [54], the 

absolute scaled errors [94] and the geometric root mean squared error [95, 96]. Such 

advances in error measures are not adopted in the ANN forecasting literature. On the other 

hand, there is a limited use of relative errors, which to some extent addresses the criticism 

to the other error measures [12]. One other positive of the evaluation metrics used in the 

ANN literature is that a lot of domain specific measures are used, which allow to make use 

of the dataset properties in order to get meaningful performance measures. Table XII 

summarises the number of error measures used in the ANN papers. About half of the papers 

(47%) use a single error measure, while a smaller portion uses several error measures, 

identifying that different accuracy calculations can provide different ranking of the models 

[54]. 

 Adya and Collopy [9] investigated the validity of a number of ANN papers and 

suggested that it is important to provide both the in-sample and out-of-sample errors, since 

this way it can be assessed whether the ANN model has captured the structure of the time 

series and generalises well. In ANN literature only 32% of the papers report the errors in 

both subsets. The majority (64%) of the paper do not report the in-sample errors and a 

small part of papers (7%) do not provide out-of-sample errors. 

 Forecasting literature has stressed the importance of having a large sample of errors 

through multiple time series or rolling origin evaluation [12]. Both allow having more errors 

to construct the error summary statistics and therefore, better confidence in the results. 

Table VI and figure 5 illustrate the number of time series in the ANN literature and as 

discussed before the majority of papers use a single time series and only 12 papers consider 

10 or more time series. Therefore one would expect the authors to use rolling origin 

evaluation in order to increase the sample of errors. However, only three papers state 

clearly that such an evaluation scheme was used. This limits considerably the confidence of 

the results of most ANN papers.  

 The ANN literature seems to be lagging in following the recommendations of the 

literature for designing an adequate experimental design for empirical evaluations [9, 11, 

12, 93, 94]. This in conjunction with the problems discussed in the previous section 

regarding the reliability, robustness and replicability of the results limits the number of 
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papers from which safe conclusions can be drawn, something that was also identified by 

Adya and Collopy [9]. 

3.6. Findings regarding ANN forecasting performance 

 Adya and Collopy [9] found that ANNs outperform benchmarks 73% of the time, if 

only the papers that meet the criteria for valid evaluation are considered. In the M3 

competition, which used 3003 time series, ANNs did not perform well and failed to 

outperform simpler models [54]. Armstrong [97] argues that too much research effort is 

devoted on ANNs, taking into consideration the modelling difficulties and their unproven 

performance. However he points out that there are studies that demonstrate good 

performance, referring to Liao and Fildes [60], and we need to identify the conditions under 

which ANNs are useful. Callen [98] advises caution on reading the positive results of ANN, 

warning of a possible publication bias, that usually the successful applications are published. 

Bunn [99] argues that even if there is empirical evidence in favour of ANNs, it will require 

advances in their explainability and robustness diagnostics before forecasters use them with 

confidence.  

 In this survey if the limitations stressed in the previous sections are not considered, 

ANNs outperform benchmarks in 70% of the papers. However, under stricter evaluation 

only a handful of papers can be considered and this percentage changes. By restricting the 

results to papers that use either reported rolling origin evaluation or more than 10 time 

series and follow a valid evaluation scheme only 14 papers can be considered, from which 

64% report that ANNs outperform the benchmarks that were used in these studies. Callen 

et al. [98] forecast quarterly firm earnings and find ANNs unable to outperform linear 

models. Cao et al. [100] find that both the univariate and the multivariate ANNs perform 

better than linear models in forecasting daily stock returns from the Shanghai stock market. 

Heravi et al. [101] try to model the European industrial production and find that linear 

models perform better than ANN, but the latter can pick up directional changes more 

accurate. Hill et al. [42] use data from the M1 competition and find that ANN perform better 

for all time series apart from the annual data, for which the ANN were not significantly 

different, indicating an effect of the time series frequency on the ANN performance. 

Kotsialos et al. [21] find ANNs to perform marginally better, but due to their complexity they 

advise the use of  exponential smoothing models instead. Liao and Fildes [60] use a large 
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telecommunication time series dataset and find that overall robust trend model is better, 

but ANNs have very similar accuracy outperforming all other benchmarks. Motiwalla and 

Wahab [72] find that ANN have better investment performance than linear regression 

models and a passive buy and hold strategy. Nelson et al. [43] revisit the M1 dataset and 

provide evidence that deseasonalising the time series helps to improve the forecasting 

performance of ANNs, validating the results of Hill et al. [42]. Terasvirta et al. [71] find that 

ANN models are better than the benchmarks at long forecasting horizons, but overall are 

worse, in forecasting monthly macroeconomic variables. Thomassey et al. [23] find that 

ANNs are better at predicting weekly textile sales than linear benchmarks. Zhang and Qi [46] 

evaluate the effect of detrending and deseasonlising time series for forecasting with ANN 

and find that this step helps and that ANN are able to outperform ARIMA models. Zhang et 

al. [102] find that ANN perform better than univariate and multivariate linear models at 

predicting the quarterly earnings per share. Jursa and Rohrig [103] find that ANNs are better 

than a nearest neighbourhood search forecasting model at predicting short term wind farm 

production. Moreno and Olmeda [61] do not find any clear advantage of ANNs against AR 

and ARX models in forecasting Morgan Stanley capital international indices. Note that the 

above papers do not consider the problem of multiple initialisations that was discussed 

before, with the exception of Liao and Fildes [60].  

 Overall, ANNs show evidence of good performance, repeating the findings of 

previous reviews [2, 9] that reported ANNs being able to surpass in performance established 

benchmarks. However, an important finding is that the majority of ANN papers cannot be 

used in this meta-evaluation of ANNs due to several limitations in their experimental design. 

Addressing these limitations and raising the degree of replicability of the ANN studies 

should be important targets for ANN research.  

4. Conclusions 

 This study aims to provide a critical overview of the advances in forecasting with 

ANNs. The contribution of the research is analysed in seven main axes and the current state-

of-the-art in forecasting with ANN models is presented, along with the pressing research 

questions. More than a decade ago Zhang et al. [2] set a number of future research 

questions for the field of ANNs in forecasting. This study tries to see how these have been 

addressed since then. A key question set then was how do ANNs model time series that 
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allows them to outperform conventional methods. Unfortunately our understanding of the 

inner workings of ANNs is still incomplete and limited research effort has been put towards 

that target [70]. Another key question that was set was how to systematically build an ANN 

for a given problem. On this front there have been substantial advances. We know now that 

the input vector is the key determinant of ANN accuracy, followed by the specification of 

the hidden layer. There have been several papers that try to address these issues, yet no 

consensus on what is the best way has been reached. Other modelling decisions, like the 

choice of the transfer functions, have been less researched. There have been several papers 

that try to systematically build ANN models with relatively few arbitrary modelling choices; 

however there is still no fully systematic or automated modelling methodology. 

Furthermore, the majority of ANN papers do not address these modelling issues in a 

methodical way, resolving to trial and error approaches that do not advance our 

understanding of ANNs. Another question that was set was related to identifying the best 

training algorithm or method for time series forecasting. Although the standard gradient 

descent backpropagation is still the most widely applied training algorithm, different 

alternatives have been developed. There is some evidence that these algorithms perform 

better, but rigorous comparative evaluations that adhere to the criteria set by the 

established forecasting research do not exist. The last question posed was related to data 

pre-processing and sampling. The literature agrees that ANNs perform better when large 

samples are available, but the best way to pre-process the input data, if needed at all, is still 

debatable. The debate is mainly focused on the issue of how to best model trend and 

seasonality with ANNs. There is evidence that removing those as a pre-processing step, 

through first and seasonal differences, is beneficial to the accuracy of ANNs. However, there 

is also evidence that ANNs can forecast these time series at least as good as benchmarks 

without the need to pre-process the inputs. Other pre-processing methodologies, like using 

the logarithm of the time series to aid the training of the models or the Box-Cox 

transformation, have been proposed, but they have not been widely used. 

 This study identifies a set of problems in the ANN literature, which are outlined here. 

Key modelling issues are overlooked. Very few papers were found to address the issue of 

initialising multiple times the networks weights during initialisation. Multiple initialisations 

are necessary in order to evaluate the robustness and the reliability of the ANN model, due 

to the stochastic nature of the training and the problem of local minima. In addition to that, 
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multiple initialisations provide a better search for parameters. Furthermore, several 

parameters of the ANN models are set either arbitrarily or following a trial and error 

approach that does not advance out knowledge of ANNs and makes questionable the 

implementation validity of several papers.  

Another principal problem is that several modelling decisions are not properly 

documented in the papers. This harms the reliability of the results, limits the contribution to 

our understanding of ANNs and makes the replication of experiments impossible. 

Furthermore, it hinders further meta-analysis of the results.  

The ANN literature is lagging behind in implementing the suggestions of the 

forecasting literature on what constitutes a valid experimental design for empirical 

evaluation. Selecting a large number of time series, using rolling origin evaluation and 

selecting appropriate benchmarks and error measures is important in order to be able to 

provide valid and reliable conclusions. These decisions, like the ANN modelling decisions, 

must be clearly documented, to raise transparency in the literature and allow meta-analysis 

of the results in order to advance our understanding of ANNs. Once the experimental design 

allows producing detailed error data it is then possible to perform valid statistical analysis of 

the results, which will result in more reliable findings and evaluation of the conditions under 

which this results are valid. 

 Several open research questions are identified. There is evidence in the literature 

that the frequency of the time series is related to the performance of ANNs [32, 40, 42]. 

Furthermore, it has been long established that time series of different frequencies require 

different forecasting methodologies and exploration tools [37, 38]. Therefore, we need to 

explore whether ANNs are able to forecast both low and high frequency data, and what the 

required changes are in the modelling methodology, if any. This becomes especially 

important as there are more high frequency datasets available and the constant increase of 

computational resources allows us to use them [36]. Another key issue is the reconciliation 

of the literature that is addressing the issue of specifying the input variables and the hidden 

layers for ANNs. Several different methodologies have been proposed, most of which 

outperform all benchmarks in the limited number of studies that they have been applied. 

However, there is no direct comparison between them. It is necessary to rigorously evaluate 

the competing ANN modelling methodologies. This will reveal best practices and also allow 

us to better understand why some methods work better than others. Keeping in mind the 
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current findings of the literature that the most important determinant of ANN performance 

is the input vector, the specification of the ANNs’ input variables should be addressed first, 

before other ANN modelling variables such as the hidden layers and nodes. Furthermore, 

one issue related to the time series frequency is whether these methodologies are equally 

applicable to different frequencies or not, and which are better suited for each problem. 

The issue of selecting the transfer functions has not been adequately researched either, 

leading most researchers to arbitrarily choose between the most common types. Their 

impact in forecasting is not well understood and should be explored further. The scaling of 

the inputs is also inadequately researched. In the literature there is no large scale empirical 

evaluation or a theoretical proof that answers how this problem should be tackled. There 

are several alternatives on how to scale the inputs of an ANN and also there is the option of 

restricting the bounds of the scaling more than what is required by the transfer functions. 

The effects of these choices are unclear, as is the magnitude of their impact in ANNs’ 

forecasting accuracy. Finally, it is important to invest more research in the meta-analysis of 

the results in the literature in order to understand better how ANNs work and explain the 

evidence of superior performance over established benchmarks. This is a key step for 

making the use of ANNs more widespread and accepted.  
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Table XIII: List of journal papers retrieved for the survey 
 

Computers and Operations 
Research 

Vroomen et al.  [30] Amaral et al. [104] 

Desilets et al. [105] El-Fallahi [90] Cancelo et al. [106] 
Markham and Rakes [32] Zhang and Qi [46] Jursa and Rohrig [103] 
Condon et al.  [14] Bodyanskiy and Popov [53] Soares and Medeiros [107] 
Leung et al.  [108] Casqueiro and Rodrigues [109] Journal of Forecasting 

Lind and Sulek [110] Curry and Morgan [89] Lachtermacher and Fuller [44] 
Motiwalla and Wahab [72] Freitas and Rodrigues [111] Connor [112] 
Zhang [34] Lin and Chen [113] Donaldson and Kamstra [114] 
Zhang et al. [35] Curry [47] Haefke and Helmenstein [115] 
Curry et al. [25] Landajo et al. [116] Adya and Collopy [9] 
Chen et al. [117] Moreno and Olmeda [61] Anders et al. [63] 
Chen and Leung [118] Nikolopoulos et al. [16] Cottrell et al.  [119] 
Marti and El-Fallahi [120] Andreou et al.  [121] Li et al. [122] 
Cao et al. [100] Carbonneau et al. [123] Nelson et al. [43] 
Gupta and Singh [124] Hahn et al. [41] Qi and Maddala [58] 
Liao and Fildes [60] International Journal of Forecasting Refenes and Zapranis [65] 

Torres et al. [52] Gorr et al. [125] Venkatachalam and Sohl [126] 
Yu et al. [127] Hill et al. [128] Bentz and Merunka [24] 
Setzler et al. [17] Callen et al. [98] Lam and Lam [129] 

Decision Sciences Church and Curran [4] Moshiri and Cameron [130] 

Jain and Nag [131] Dougherty and Cobbett [19] Schittenkopf et al. [132] 
Swanson and White [59] Kirby et al. [20] Taylor [133] 
Desai and Bharati [134] Kim and Chun [135] Swanson and Zeng [83] 
Hu et al. [33] Zhang et al. [2] Dunis and Huang [136] 
Jiang et al. [26] Balkin and Ord [45] Kaashoek and Dijk [69] 
Papatla and Zahedi [29] Darbellay and Slama [3] Nag and Mitra [73] 
Sexton et al. [82] Leung et al.  [79] Amilon [86] 
Zhang et al. [102] Thomas [137] Kanas [138] 

European Journal of 
Operational Research 

Gencay and Selcuk [139] Dahl and Hylleberg [57] 

Hruschka [140] Qi [141] Lindemann et al. [142] 
Bunn [99] Tkacz [143] Moshiri and Brown [68] 
Wang [144] Corcoran et al. [13] Chen and Leung [145] 
Wittkemper and Steiner [146] Olson and Mossman [80] Kajitani et al. [67] 
Wood and Dasgupta [51] Heravi et al. [101] Kotsialos et al.  [21] 
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