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 This study explores both from a theoretical and empirical perspective how to model 

deterministic seasonality with artificial neural networks (ANN) to achieve the best forecasting 

accuracy. The aim of this study is to maximise the available seasonal information to the ANN while 

identifying the most economic form to code it; hence reducing the modelling degrees of freedom 

and simplifying the network’s training. An empirical evaluation on simulated and real data is 

performed and in agreement with the theoretical analysis no deseasonalising is required. A 

parsimonious coding based on seasonal indices is proposed that showed the best forecasting 

accuracy.  
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Modelling Deterministic Seasonality with Artificial Neural Networks 

for Time Series Forecasting 

Nikolaos Kourentzes and Sven F. Crone, Lancaster Centre for Forecasting, Lancaster University 

Department of Management Science 

 

1. Introduction 

Artificial neural networks (ANNs) are nowadays widely recognised as a potent forecasting 

tool with several research and practical applications (Hippert, et al., 2005; Zhang, et al., 1998). 

Theoretically ANNs are universal approximators, which is desirable in forecasting (Hornik, et al., 

1989). They have been shown to be able to forecast linear and nonlinear synthetic series and real 

time series at least as well as established benchmarks, like exponential smoothing and ARIMA 

models (Hill, et al., 1996; Zhang, 2001; Zhang, et al., 2001). Furthermore, ANNs are able to forecast 

across a wide range of data frequencies, when the appropriate input variables are provided (Crone 

and Kourentzes, 2009) making them a potent and flexible forecasting tool. However, they are 

criticised to have inconsistent performance across different applications and in empirical evaluations 

(Armstrong, 2006; Callen, et al., 1996; Makridakis and Hibon, 2000). The ANN literature suggests that 

the observed inconsistency is a product of bad modelling practices or limited understanding of the 

modelling process; for instance, there is no consensus on how to select a relevant set of input 

variables and lags (Anders and Korn, 1999; Zhang, et al., 1998). A literature survey identified that 

71% (out of 105) published papers model ANNs based on trial and error approaches. This has a 

significant impact on the consistency of their performance and also hinders our understanding of 

how to model them (Adya and Collopy, 1998). It is therefore important to rigorously evaluate 

competing ANN modelling strategies in order to gain insight on best practices.  

The ANN literature has identified a set of open questions in modelling neural networks that 

need to be solved before their application can become more consistent and potentially perform 

better (Curry, 2007; Zhang, et al., 1998). One such open research question is whether ANNs are able 

to model seasonal time series or if the time series need to be deseasonalised first. A standard way of 

performing this is through seasonal integration of the time series, which follows the same ideas of 

ARIMA modelling (Zhang and Kline, 2007). Hill et al. (1996) show that ANN using deseasonalised time 

series from the M1 competition outperformed standard statistical models, suggesting significant 

improvements in ANNs performance. Nelson et al. (1999) verifies that deseasonalising the M1 
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forecasting competition time series provided ANNs with the performance edge. They repeated the 

experiment without deseasonalising the time series and the forecasting performance got 

significantly worse, therefore arguing that deseasonalising was a necessary step. They argued that 

this way ANNs can focus on learning the trend and the cyclical components. To learn seasonality in 

addition would require larger networks, meaning a larger input vector, which may lead to 

overfitting. Zhang and Qi (2005) reached the same conclusion that deseasonalising helps. They 

suggest that deseasonalised time series do not contain long dynamic autocorrelation structures that 

would make the choice of the input vector more difficult, thus leading to smaller more parsimonious 

models. Curry (2007) examines the ability of ANN to model seasonality from a theoretical 

perspective. He suggests that for ANN to model seasonality they should have adequately long input 

vector to capture the seasonal effects. Ill selected input vector can make the ANN unable to forecast 

seasonality, implying that Zhang and Qi results can potentially hide input misspecification errors. 

Crone and Dhawan (2007) demonstrate that ANNs are able to model robustly monthly seasonal 

patterns using only an adequate number lags of the time series. Zhang and Kline (2007) explore the 

ability of ANNs to forecast quarterly time series. They again find that deseasonalising helps, however 

this time they also evaluated a large variety of models, including models with deterministic dummy 

variables. They argue that such additional variables do not help because they cannot capture 

dynamic and complex seasonal structures. 

The papers above do not distinguish between different forms of seasonality. Deterministic 

seasonality and seasonal unit root theoretically require a different modelling approach (Ghysels and 

Osborn, 2001; Matas-Mir and Osborn, 2004; Osborn, et al., 1999), which has been largely ignored in 

the ANN literature and the respective debate on how to model seasonality. In this analysis, we 

discuss that this distinction implies a different modelling procedure from a theoretical perspective. 

Modelling deterministic seasonality is impaired by deseasonalising the time series and different 

modelling practises should be followed. An empirical evaluation of competing methods to model 

seasonality is performed on simulated and real time series. We found that using a set of dummy 

variables can improve forecasting accuracy over the standard ANN modelling practise. Removing 

seasonality does not perform well for the case of deterministic seasonality. Finally, a parsimonious 

coding based on seasonal indices is proposed, which outperforms other candidate models while 

keeping the modelling degrees of freedom to a minimum.  

The paper is organised as follows: section 2 discusses the different types of seasonality from 

a theoretical perspective. Section 3 introduces the methods that will be used to model deterministic 

seasonality. Section 4 provides information on the experimental design for the empirical evaluation 
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on synthetic data, followed by section 5 where the results are discussed.  In section 6 the empirical 

evaluation on real time series from the T-competition is presented and analysed. Conclusions and 

limitations of this study are discussed together with further research objectives in section 7. 

2. Seasonal Time Series 

2.1. Deterministic Seasonality 

A time series is said to have deterministic seasonality when its unconditional mean varies 

with the season and can be represented using seasonal dummy variables, 





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s

tstst zmy
1

 ,        (1) 

where yt is the value of the time series at time t, μ is the level of the time series, ms is the seasonal 

level shift due to the deterministic seasonality for season s, δst is the seasonal dummy variable for 

season s at time t, zt is a weak stationary stochastic process with zero mean and S is the length of the 

seasonality. Furthermore, the level of the time series μ can be generalised to include trend. Note 

that the seasonality is defined as a series of seasonal level shifts ms, which describe the seasonal 

profile and are constant across time, i.e. ms = mst. Also note that the ∑ms = 0 over a full season. This 

implies that with the appropriate transformations of μ and ms a set of S-1 or S seasonal dummies can 

be used to code seasonality. Furthermore, due to zt each value of the time series deviates over its 

respective seasonal mean with a constant variance over both s and t, which means that the 

deterministic seasonal process forces the observations to remain close to their underlying mean 

(Ghysels and Osborn, 2001). Modelling (1) with S seasonal dummies and μ ≠ 0 using a linear model, 

like linear regression, introduces the problem of multicollinearity, therefore S-1 dummies should be 

used in this case (Kvanli, et al., 2002). 

An alternative way to code deterministic seasonality is through its trigonometric 

representation. In respect to (1) seasonality can be expressed as 
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where αk and βk create linear combinations of S/2 sines and cosines of different frequencies 

following the idea of spectral analysis of seasonality. Equations (1) and (2) have μ and zt expressed as 

individual components in both cases, allowing separate modelling of seasonality and the remaining 

time series components (Ghysels and Osborn, 2001). Note that if less than S/2 linear combinations 
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of sines and cosines are used, the representation of seasonality is imperfect and it is approximated 

with some error, the size of which is related to the number of combinations used.  

2.2. Seasonal Unit Root 

Seasonality can also be the result of an autoregressive integrated moving average (ARIMA) 

process,  

     LyL tS  ,        (3) 

where L is the lag operator, ΔS is the seasonal difference operator, φ and θ are the coefficients of the 

autoregressive and moving average process respectively, γ is a drift, and εt i.i.d. N(0,σ2). The variance 

of yt under the case of deterministic seasonality is constant over t and the seasonal period s, which is 

not true here.  This stochastic seasonal process can be viewed as a seasonal unit root process, i.e. for 

each s there is a unit root, which in turn requires seasonal differencing. More details about the 

seasonal unit root process can be found in (Ghysels and Osborn, 2001; Matas-Mir and Osborn, 2004; 

Osborn, et al., 1999). 

It is interesting to examine what happens if deterministic seasonality is misspecified as a 

seasonal unit root process. Considering seasonal differences (1) becomes 

tStS zy  .          (4) 

Essentially in (4) seasonality has been removed, i.e. a deseasonalised form of yt is modelled. 

Comparing (1) and (4) we can deduce that it is now impossible to estimate ms and furthermore ΔSzt is 

overdifferenced (Ghysels and Osborn, 2001). Therefore, it is preferable to keep deterministic 

seasonality and model it appropriately.  

3. Forecasting with artificial neural networks 

3.1. Multilayer Perceptrons for Time Series Prediction 

We use the common multilayer perceptron (MLP), which represents the most widely 

employed ANN architecture (Zhang, et al., 1998). MLPs are well researched and have proven abilities 

in time series prediction to approximate and generalise any linear or nonlinear functional 

relationship to any degree of accuracy (Hornik, 1991) without any prior assumptions about the 

underlying data generating process (Qi and Zhang, 2001), providing a potentially powerful 

forecasting method for linear or non-linear, non-parametric, data driven modelling. In univariate 

forecasting MLPs are used similarly to autoregressive models, capable of using as inputs a set of 

lagged observations of the time series and explanatory variables to predict its next value (Anders 
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and Korn, 1999). Data are presented to the network as a sliding window over the time series history. 

The ANN tries to learn the underlying data generation process during training so that valid forecasts 

are made when new input values are provided (Lachtermacher and Fuller, 1995). In this analysis 

single hidden layer ANN are used, based on the proof of universal approximation (Hornik, 1991). The 

general function of single hidden layer networks is 

 
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X = [x0, x1, …, xn] is the vector of the lagged observations (inputs) of the time series. X can also 

contain observations of explanatory variables. The network weights are w = (β, γ), β = *β1, β2…,βh] 

and γ = *γ11, γ12…, γhi+. The β0 and γ0i are the biases of each respective neuron. I and H are the 

number of input and hidden units in the network and g(∙) is a non-linear transfer function (Anders, et 

al., 1998). In this analysis the hyperbolic tangent transfer function is used. For computational 

reasons this can be approximated as  

  11

2
)tanh(

2 


 xe
x ,        (6) 

which is frequently used for modelling ANNs (Vogl, et al., 1988).   

3.2. Coding Deterministic Seasonality 

It is easy to include seasonal information in ANNs. Seasonal dummy variables can be 

included as explanatory variables. As noted in section 2.1 if S dummy variables are included in linear 

models the problem of multicollinearity appears, so only S-1 dummies should be used. For ANNs this 

is more complicated. Assuming only linear transfer functions and H>1 multicollinearity can exist even 

for S-1 dummies, since they are inputted in several hidden nodes. This hinders inference from a 

ANN, but does not necessarily harm its predictive power, which is also true for the nonlinear transfer 

function case (Zhang, et al., 1998). Based on this observation both S-1 and S number of seasonal 

dummies make sense for ANN models. Deterministic seasonality as expressed in (2) can be modelled 

easily through the use of dummy variables. Note that an alternative is to approximate (2) using 

fewer frequencies by increasing the number of hidden nodes H in a network (Hornik, et al., 1989). 

Following the same procedure, based on the increase of H, ANN are able to approximate seasonal 

patterns by combining seasonal dummies in a single integer dummy defined as δ = *1, 2...S+ (Crone 

and Kourentzes, 2007). Alternatively ms can be combined to form a series of seasonal indices that 

can be used as an explanatory variable for the ANN. The problem that arises in this alternative is 

how to estimate the unknown ms. It is also possible to model seasonality as a misspecified stochastic 
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seasonal unit root process, with the problems discussed in section 2.2. Another alternative is to use 

seasonal integration to remove seasonality and another alternative would be to use an adequate AR 

structure to model the seasonality as discussed in (Curry, 2007). Note that much of the debate in 

literature, as mentioned in section 1, regarding deseasonalising time series or not falls in the latter 

two alternatives which in theory are not advisable for deterministic seasonality. However, for 

practical applications with small samples it can be shown that it is difficult to distinguish between 

deterministic and stochastic seasonality (Ghysels and Osborn, 2001), therefore these alternatives are 

still viable options.  

4. Synthetic Data Simulations Setup 

4.1. Time Series Data 

Eight synthetic time series are used to evaluate the competing ways discussed in section 3.2 

to model deterministic seasonality using ANN. The time series are constructed using as a data 

generating process the dummy variable representation of deterministic seasonality (1). Two 

different sets of ms are modelled, reflecting two different seasonal patterns (A & B). The first 

seasonal pattern resembles retail data that peak during Christmas sales, whereas pattern B 

approximates sales of products that sell more during the summer months. The parameter μ is set to 

240 units and zt ~ i.i.d. N(0, σj
2). Four different levels of noise are simulated through σj

2. For no noise 

σ = 0, reflecting a zero error for all t. For low, medium and high noise levels σ is 1, 5 and 10 

respectively. Note that these synthetic time series are constructed in a stricter way than that 

required by (1). This is done in order to create time series in which only the effect of the 

deterministic seasonal pattern needs to be modelled, simplifying the modelling of the input vector of 

the ANN and allowing to focus solely on the effects of the different seasonal coding schemes. All 

time series have S=12, i.e. simulate monthly data, and are 480 observations long. For the purpose of 

this experiment the time series are divided in three equal training, validation and test subsets, to 

facilitate the ANN training. The first 72 observations of each time series are plotted in figure 1 to 

provide a visual representation of the two seasonal patterns and the different noise levels. 

4.2. Experimental setup  

The forecast horizon for all competing models is 12 months. Rolling origin evaluation is used 

to assess the error 1 to 12 months in the future. This evaluation scheme is preferred because it 

provides a reliable estimation of the out of sample error (Tashman, 2000). Two error measures are 

used. Firstly, the mean absolute error (MAE) that allows a direct comparison of the predictive 



Page 8 

 

accuracy and the known noise level. For given actuals Xt and forecasts Ft for all periods t in the 

sample 

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tt FX
n
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1

1
.         (7) 

The symmetric mean absolute percent error (sMAPE) is also used to measure accuracy. This measure 

is scale independent and allows comparing accuracy across time series. It can be calculated as  
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Note that the formula used here is the corrected form of sMAPE as in (Chen and Yang, 2004). Both 

validation and test sets contain 160 observations (1/3 of the total sample each). The accuracy of the 

competing ANN models is evaluated for statistically significant differences using the nonparametric 

Friedman test and the Nemenyi test, to facilitate an evaluation of nonparametric models without the 

need to relax assumptions of ANOVA or similar parametric tests (Demšar, 2006). To compare the 

models against the benchmark the best ANN initialisation is selected by minimum validation set 

error. 
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Fig. 1: Plot of the first 72 observations of each synthetic time series. 

4.3. Neural Network Models 

MLP models that code the deterministic seasonality with the seven alternative ways 

described in section 3.2 are compared. To model seasonality as stochastic, we use an adequate 
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univariate MLP model which employs lags t-1 and t-12, which is named AR. To model seasonality as a 

seasonal unit root process the time series is used after seasonal differencing. No lags are used and 

the correct level is estimated by the MLP by assigning the correct weights to the bias terms in the 

different nodes. This is named SRoot and essentially covers the case where seasonality is removed 

before inputting the time series to the MLP. The common deterministic seasonality coding through 

seasonal dummy variables is implemented in models Bin11 and Bin12 which use 11 and 12 seasonal 

binary dummy variables respectively to model each month. No past lags of the time series are used 

for these models. The integer dummy variable representation uses only an integer dummy that 

repeats values from 1 to 12, which is implemented in model Int. The trigonometric representation is 

modelled through the use of two additional variables, one for sin(2πt/12) and one for cos(2πτ/12) 

and is named SinCos. Finally, seasonal indices for the time series are identified by calculating the 

average value for each period of the season in the training set. This is an adequate estimation since 

the time series exhibit no trend or irregularities. The seasonal indices are repeated to create an 

explanatory variable which is then used as the only input to the MLP model SIndex. An overview of 

the inputs for each model is provided in table I.  

Table I: Summary of MLP Inputs 
 

Model Lags* Explanatory variables** No of inputs 

AR 1, 12 - 2 
Bin11 - 11 Seasonal Dummies 11 
Bin12 - 12 Seasonal Dummies 12 
Int - Integer Dummy [1,2...12] 1 
SinCos - sin(2πt/12), cos(2πt/12) 2 
Sindex - Seasonal Indices 1 
SRoot -*** - 0 
* The Lags specify the time lagged realisations t-n used as inputs; ** For all explanatory 

variables only the contemporary lag is used; *** Time series is modelled after seasonal 

integration, i.e. ΔSyt.  

 

The remaining parameters of the MLP are constant for all models. This allows attributing any 

differences in the performance of the models solely to the differences in modelling seasonality. All 

use a single hidden layer with six hidden nodes. The topology of the AR model can be seen in figure 

2. The networks are trained using the Levenberg-Marquardt algorithm, which requires setting the 

μLM and its increase and decrease steps. Here μLM=10-3, with an increase step of μinc=10 and a 

decrease step of μdec=10-1. For a detailed description of the algorithm and the parameters see 

(Hagan, et al., 1996). The maximum training epochs are set to 1000. The training can stop earlier if 

μLM becomes equal of greater than μmax=1010 or the validation error increases for more than 50 

epochs. This is done to avoid over-fitting. When training is stopped the network weights that gave 
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the lowest validation error during training are used. Each MLP is initialised 50 times with randomised 

starting weights to accommodate the nonlinear optimisation and to provide an adequate sample to 

estimate the distribution of the forecast errors in order to conduct the statistical tests. The MLP 

initialisation with the lowest error for each time series on the validation dataset is selected to 

predict all values of the test set. Lastly, the time series and all explanatory variables that are not 

binary are linearly scaled between [-0.5, 0.5].  

4.4. Statistical Benchmark 

Any empirical evaluation of time series methods requires the comparison of their accuracy 

with established statistical benchmark methods, in order to assess the increase in accuracy and its 

contribution to forecasting research. This is often overlooked in ANN experiments (Adya and 

Collopy, 1998). In this analysis seasonal exponential smoothing models (EXSM) are used. The 

seasonality is coded as additive seasonality, which is appropriate for the deterministic seasonality in 

the simulated dataset. The smoothing parameters are identified by optimising the one step ahead 

in-sample mean squared error. This model is selected as a benchmark due to its proven track record 

in univariate time series forecasting (Makridakis and Hibon, 2000). For more details on exponential 

smoothing models and the guidelines that were used to implement them in this analysis see 

(Gardner, 2006a).  

AR neural network topology 

Multilayer Perceptron

TanH Linear

 

Multilayer Perceptron

TanH Linear  

Fig. 2: Plot of the AR neural network model, showing the transfer functions of each layer. All other ANN models 

have similar topology other than the different number of inputs. 

5. Simulation Results 

5.1. Nonparametric MLP Comparisons 

The competing MLP are tested for statistically significant differences using the Friedman and 

the post-hoc Nemenyi tests. Both use the mean rank of the errors. In this analysis MAE and sMAPE 
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provided the same ranking, so there is no difference which error is used for these tests. The results 

of the MLP comparisons are provided in table II.   

The Friedman test indicates that across all time series, across different noise levels and for all time 

series separately there are statistically significant differences among the MLP models. Inspecting the 

results of the Nemenyi tests in table II a more detailed view on the ranking of each individual model 

is revealed, along with statistically significant differences among them. It can be observed that 

across all different noise levels and across all time series at 5% significance level the SIndex 

outperforms all other models with a statistically significant difference from the second best model. 

Bin11 and Bin12 perform equally with no statistically significant differences both ranking second 

after SIndex in all cases apart from the high noise case. At 1% significance level BIn11 and Bin12 have 

no significant differences in all cases. This means that for ANN models there is no essential 

difference between using S-1 or S binary dummies. When only the no, low and medium noise time 

series are considered, the SinCos has no statistically significant differences with the seasonal binary 

dummies Bin11 and Bin12 models. For the case of high noise time series the SinCos ranks third after 

the SIndex and seasonal binary dummy variables models. This demonstrates that although the 

SinCos model is not equivalent to the trigonometrical representation of deterministic seasonality as 

expressed in (2) it is able to approximate it and in many cases with no statistically significant 

differences from the equivalent seasonal dummy coding. Furthermore, this representation is S/4 

times more economical in inputs compared to (2). Compared to (1) or Bin11 and Bin12 this coding is 

S-2 and S-1 inputs more economical respectively. For the low, medium and high noise the Int model 

follows in ranking. Although this model performs worse than the previous seasonality encodings it 

still outperforms the misspecified seasonal models AR and SRoot. This is not true for the no noise 

time series, which also affects the overall ranking across time series as well. The AR model follows 

second to the last in all cases. This demonstrates that it is better to code the deterministic 

seasonality through explanatory dummy variables, than as an autoregressive process, as it would be 

fitting for stochastic seasonality. Furthermore, in agreement to the discussion in section 2.2, 

removing the seasonality through seasonal integration, as in SRoot, performs poorly and ranks last in 

most cases. The reason for this is that the ANNs are not able to estimate directly the ms and ΔSyt is 

overdifferenced. Note that in the case of no noise all models with the exception of Int are able to 

capture the seasonality perfectly with no error.  
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Table II: Summary of MLP nonparametric comparisons 

Time series All  No noise Low noise Medium noise High noise 

 Friedman p-value 0.000 0.000 0.000 0.000 0.000 

  Mean Model Rank 

AR 240.59 165.25 260.01 261.01 276.10 
Bin11 140.38 165.25 140.43 129.43 126.41 
Bin12 142.08 165.25 136.90 132.96 133.20 

Int 201.85 237.00 212.43 198.76 159.21 
SinCos 146.22 165.25 139.22 137.40 143.03 
Sindex 85.01 165.25 42.53 57.45 74.81 
SRoot 272.38 165.25 297.00 311.50 315.75 

  Ranking 

AR 5 1 4 4 6 
Bin11 2 1 2 2 2 
Bin12 2 1 2 2 3 

Int 4 2 3 3 5 
SinCos 3 1 2 2 4 
Sindex 1 1 1 1 1 
SRoot 6 1 5 5 7 

* In each column MLP with no statistically significant differences under the Nemenyi test at 5% significance are 

underlined; the critical distance for the Nemenyi test for all time series at 1% significance level is 3.73, at 5% 

significance level is 3.18 and at 10% significance level is 2.91. The critical distance for any noise category at 1% 

significance level is 7.46, at 5% significance level is 6.37 and at 10% significance level is 5.82. 

 

It is apparent that the best method to model the deterministic seasonality is to use the 

seasonal indices as an explanatory input variable for the MLP. Not only does this method perform 

best, but also it is very parsimonious, requiring a single input to model the deterministic seasonality, 

as shown in table I.  

5.2. Comparisons against Benchmarks and Noise Level 

Taking advantage of the synthetic nature of the time series the error of each forecasting 

model with the artificially introduced error level can be compared directly and derive how close each 

model is to an ideal accuracy. The ideal accuracy is when the model’s error is exactly equal to the 

noise, since that would mean that the model has captured perfectly the data generating process and 

ignores completely the randomness. On the other hand, a lower error than the noise level would 

imply possible overfitting to randomness. The comparison is done in MAE for each time series 

individually. The results are presented in figure 3. Moreover the benchmark accuracy in MAE for 

each time series is provided in the same figure.  

In figure 3 it is clear than when there is no noise, for both seasonal patterns, all MLP models 

and the benchmark forecast the time series perfectly with zero error. Comparing the MLP models to 

the benchmark the misspecified AR and SRoot models perform worse than EXSM, with the SRoot 

model ranking consistently last. This demonstrates that for the case of deterministic seasonality 
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deseasonalising the time series, here through seasonal integration, hinders the ANN to forecast the 

time series accurately. For both seasonal patterns for the low noise time series 2 and 6 all MLP 

perform worse than the benchmark. The opposite is true for the Bin11, Bin12, Int, SinCos and SIndex 

MLP models for the higher noise level time series. This implies that ANN perform better than the 

statistical benchmark in high noise time series, being able to capture the true data generating 

process better.  

When comparing the models’ accuracy with the known error due to noise all the MLP 

models, with the exception of the misspecified AR and SRoot, for all time series are very close to the 

ideal accuracy, i.e. having error only due to randomness. Note that for the validation set, on which 

the best performing initialisation for each of the ANN models was chosen, their error is practically 

only due to noise. The benchmark error consistently increases as the noise level increases. For the 

case of low noise time series EXSM manages to forecast the time series with the error being solely 

due to randomness, implying a very good fit to the data generating process, however this is not true 

for higher noise levels. The results are consistent across both seasonal patterns.  

Evaluating the performance of all models across the three training, validation and test 

subsets the models perform consistently, with no evidence of overfitting to the training set and all 

models are able to generalise well on the test set.  

Due to the fact that it is impossible to aggregate results across different time series using 

MAE, only figures for sMAPE are reported, which is scale independent. Summary accuracy sMAPE 

figures for all time series are provided in table III.  

Table III: Summary sMAPE across all synthetic time series 
 

Model Training subset Validation subset Test subset 

AR 1.90% 1.94% 1.72% 
Bin11 1.60% 1.59% 1.45% 
Bin12 1.58% 1.58% 1.46% 
Int 1.62% 1.61% 1.49% 
SinCos 1.59% 1.59% 1.47% 
Sindex 1.60% 1.58% 1.44% 
SRoot 2.36% 2.21% 1.91% 
EXSM 1.86% 1.68% 1.52% 

The best performing model in each set is marked with bold numbers. The models that are 

outperformed by the EXSM benchmark are underlined 
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Time Series 5 – MAE – No Noise – Seasonal Pattern B 
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Time Series 6 – MAE – Low Noise – Seasonal Pattern B 

0 5 10 15

AR
Bin11
Bin12

Int
SinCos
SIndex
SRoot
EXSM

Training set
0.88
0.83
0.74
0.73
0.73
0.83
1.11
0.83

N 0 5 10 15

AR
Bin11
Bin12

Int
SinCos
SIndex
SRoot
EXSM

Validation set
0.94
0.87
0.88
0.89
0.89
0.85
1.11
0.91

N 0 5 10 15

AR
Bin11
Bin12

Int
SinCos
SIndex
SRoot
EXSM

Test set
0.97
0.84
0.87
0.91
0.89
0.85
1.05
0.83

N  
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Fig. 3: MAE for each time series for each subset for all models. The noise level is marked by a thick black 

vertical line. Light coloured bars are models which are better than the benchmark (EXSM). The value of each 

error is provided at the right side. 
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The results are in accordance with figure 3. The AR and SRoot models are outperformed by 

the benchmark, which is turn is outperformed by all other MLP models. In agreement with the 

results in table II the SIndex model is overall the most accurate, followed by the Bin12 and Bin11. 

Note that the small sMAPE figures imply that all the models managed to capture the seasonal profile 

in all the time series and a visual inspection of the forecasts would reveal very small if no differences 

at all. Finally, the overall error level seems to be different between the three subsets. This is due to 

the random noise. Although each set contains 160 observations, which simulates in total 40 years of 

data, longer sample was required to ensure equal noise distribution across all subsets. 

6. Transportation Data Experiments 

6.1. The Dataset 

A dataset of 60 time series from the T-competition (Hibon, et al., 2007) was selected to 

evaluate the ANN models on real time series. The T-competition dataset contains transportation 

time series of different frequencies. From the complete dataset of 161 monthly time series a subset 

that was tested for deterministic seasonality was selected.  

Initially the presence of seasonality is verified. To accomplish this, a series of steps was 

performed. Firstly, for each time series a moving average filter of 12 periods was used to remove the 

trend from the time series. Following that, for each time series, all the seasonal indices were 

calculated and compared for statistically significant differences using the Friedman test. The time 

series that did not present significant differences were concluded to be not seasonal, i.e. all ms for s 

= 1...12 were equal, and therefore were dropped from the final dataset.  

Furthermore, not all seasonal time series are deterministic. Two different statistical tests 

were used to test for presence of deterministic seasonality. The first test is the Canova-Hansen test 

for seasonal stability (Canova and Hansen, 1995; Ghysels and Osborn, 2001). The null hypothesis is 

that the seasonal pattern is deterministic. Assuming a stochastic seasonal process for each ms there 

is an associated residual term ηs ~ i.i.d. N(0,σηs
2). If for any s in S the σηs

2 is greater than zero the 

process is stochastic. The Canova-Hansen test corresponds to jointly testing for all s in S if σηs
2 = 0. 

The second test is based on the definition of deterministic seasonality (1). After a low pass filter is 

applied to the time series, so that the seasonal component is separated, a regression model with S-1 

binary dummies is fitted. The residuals are calculated and tested if they follow the assumptions of 

(1). This is done by an Augmented Dickey-Fuller (ADF) test. If the null is rejected then the residuals 

are stationary, i.e. (1) describes the data generating process of the time series. The order of the ADF 

test is selected automatically using the Bayesian Information Criterion (BIC) (Cheung and Lai, 1998). 
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The time series that pass both tests at a 5% significance level constitute the sample that is used for 

this empirical evaluation. The shortest selected time series is 87 months and the longest is 228 

months long. Figure 4 provides a histogram of the length of the time series in the final sample, 

showing the distribution of short and long time series. The exact time series that were selecting can 

be found in table VI. For all the time series, the last 38 observations are split equally to validation 

and test sets, leaving all the remaining observations for the training set.  

Histogram of T-competition time series length 
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Fig. 4: The histogram reveals that most time series are between 120 and 140 months long and there are a few 

below 100 and above 160 months. 

6.2. The Experimental Setup 

The experimental design is similar to the one presented in section 5, with some differences 

in the model setup, which are discussed here. The ANN models have differences in the input vectors. 

In order to capture the trend and irregular components of the time series some additional non-

seasonal time series lags are used for each model. These lags are identified using backward stepwise 

regression (Balkin and Ord, 2000; Swanson and White, 1997). The regression model is fitted to the 

time series and the significant lags are used as inputs to the ANNs. Only lags from t-1 up to t-11 are 

evaluated, therefore no seasonal lags are included. The resulting additional inputs are used together 

with the different approaches to model seasonality, as presented before in section 4.3. Note that for 

the SRoot model the identification of the additional inputs is done on the seasonally integrated time 

series.  

Exponential smoothing family of models is used as a benchmark. The only difference in 

comparison to the previous experiment is that both seasonal and trend-seasonal exponential 

smoothing models are considered, according to the suggestions of Gardner (2006b).  

6.3. Results 

The competing MLP are tested for statistically significant differences using the Friedman 

test. At least one model is found to be different with a p-value = 0, so the post-hoc Nemenyi test is 
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used to identify significant differences between the models and their ranking, as before. The results 

are provided in table IV. 

Table IV: Summary of MLP nonparametric comparisons 
 

Friedman p-value 0.000 

Models Mean Rank* Ranking 

AR 166.81 2 
Bin11 177.09 5 
Bin12 172.44 4 

Int 191.54 6 
SinCos 170.53 3 
Sindex 139.77 1 
SRoot 210.33 7 

All MLP have statistically significant differences under the Nemenyi test at 5% 

significance level; *the critical distance for the Nemenyi test at 1% significance 

level is 1.36, at 5% significance level is 1.16 and at 10% significance level is 1.06. 

 

The results differ from the simulated time series presented before. SIndex is still ranked first 

with statistically significant better performance than the second best candidate. AR model follows, 

which outperforms SinCos, Bin12 and Bin11 in order of performance. This is in contrast to the results 

in table II, where the AR model ranked 5th. This can be attributed to the limited sample size as 

discussed in section 3. Note that the margin of difference between the SinCos, Bin12 and Bin11 is 

much smaller relatively to the difference of SIndex to AR or the difference of SRoot to the previous 

best model. Int and SRoot models perform as observed before, with the SRoot ranking last. This 

means that although the limited sample size affected the ranking between the AR model and the 

seasonal dummy models, deseasonalising for the case of deterministic seasonality still harms the 

performance significantly.  

Using sMAPE the ANN models are compared against the benchmarks and the results across 

all time series are presented in table V.  

Table V: Summary sMAPE across all time series 
 

Model Training Validation Test 

AR 16.30% 13.08% 20.10% 
Bin11 15.80% 12.53% 17.51% 
Bin12 13.87% 12.49% 16.85% 
Int 14.92% 12.47% 17.85% 
SinCos 14.40% 12.07% 17.53% 
Sindex 14.61% 11.92% 16.70% 
SRoot 19.44% 15.49% 20.69% 
EXSM 14.80% 17.58% 17.64% 

The best performing model in each set is marked with bold numbers. The 

models that are outperformed by the EXSM benchmark are underlined 
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The SIndex model performs best, in agreement with table III for the simulated time series. 

On the test set the AR, Int and SRoot models fail to outperform the benchmarks. This shows that 

although the best trained AR model is less accurate than the Bin11, Bin12 and SinCos in all training 

validation and test sets, its error has less extreme values, resulting in the lower mean rank observed 

in table IV. The SRoot model is consistently worse than all other ANN models providing more 

evidence that seasonal differences for the case of deterministic seasonality has a negative effect on 

accuracy. Overall, the results of the evaluation of the real time series dataset agree with the 

synthetic data evaluation. 

7. Conclusions 

Different methodologies to model time series with deterministic seasonality were evaluated. 

By exploring the theoretical properties of deterministic seasonality it was shown that the current 

debate in the literature, on how to model seasonality with ANN, does not address the problem 

correctly for this type of seasonality. Seven competing approaches to model the seasonality were 

evaluated and compared against exponential smoothing model on two datasets, a set of synthetic 

time series with known properties and a subset of the T-competition that has real transportation 

time series.  

 We found that for deterministic seasonality it is not advisable to deseasonalise the time 

series. Deseasonalising (through seasonal differences) hindered the model to accurately estimate 

the ms and therefore affected forecasting accuracy negatively. The SRoot model performed 

consistently worse compared to all other ANN models and several times failed to outperform the 

exponential smoothing benchmarks.  

Using S-1 or S dummy variables to code the seasonality did not have important differences 

for ANN models. For the synthetic time series, where the properties of the time series were 

controlled, the differences proved to be insignificant, while for the real time series using S dummy 

variables proved marginally better. Furthermore, we found that a sine-cosine encoding of the time 

series performed more robustly than binary seasonal dummy variables, resulting in significantly 

lower mean rank for the transportation dataset and minimal differences in the synthetic dataset. 

The sine-cosine encoding that was used here is not the equivalent to the trigonometric 

representation of seasonality, which uses sine and cosine waves of several frequencies. The degrees 

of freedom of the model were reduced by using a pair of sine and cosine of fixed frequency, making 

use of the approximation capabilities of MLPs, through the use of several hidden nodes. Note that 
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the same did not seem to work well when a single integer dummy variable was used to code the 

seasonality. This seems to be the case due to the monotonic coding of each season. 

We propose a coding that is based on seasonal indices. This approach used as a single 

explanatory variable a series of seasonal indices. This model outperformed significantly all 

competing ANN and the benchmarks for both datasets. Furthermore, this model was the most 

parsimonious, requiring a single additional input to model the deterministic seasonality. This can 

have significant implications for high frequency data that have long seasonal periods and the 

dimensionality of the input vector can become a problem for ANN training. 

This study does not address thoroughly the issue of how to best estimate the seasonal indices. In 

the literature several methods have been suggested on how to estimate the seasonal indices of a 

time series. Here a very simple approach is employed that is found to be adequate. Under the 

assumption of deterministic seasonality the seasonal indices remain constant thus making the 

estimation easier. However, in real time series sample size and irregularities can possibly affect 

adversely their estimation, evidence of which was not found in this analysis, but has not been 

examined in detail. Similar difficulties would arise in the presence of multiple overlaying 

seasonalities. It is important to evaluate the robustness of the findings with different approaches to 

estimate the seasonal indices. In this study we focused on monthly time series. In future research, 

this study will be extended to a wider range of seasonal frequencies to validate the findings and 

provide a reliable solution for a range of practical applications. 
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