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We develop an approximate dynamic programming approach to network revenue management models with

customer choice that approximates the value function of the Markov decision process with a non-linear

function which is separable across resource inventory levels. This approximation can exhibit significantly

improved accuracy compared to currently available methods. It further allows for arbitrary aggregation

of inventory units and thereby reduction of computational workload, yields upper bounds on the optimal

expected revenue that are provably at least as tight as those obtained from previous approaches, and is

asymptotically optimal under fluid scaling. Computational experiments for the multinomial logit choice

model with distinct consideration sets show that policies derived from our approach outperform available

alternatives, and we demonstrate how aggregation can be used to balance solution quality and runtime.

Key words : revenue management. dynamic programming/optimal control: applications, approximate.

1. Introduction

A particular area of revenue management (RM) that currently receives much interest is the approx-

imate solution of the RM network problem including models of customer choice behavior. Network

problems arise in many applications such as hospitality or transportation where the managed prod-

ucts might require more than one resource, for example a hotel that sells rooms over several nights.

While network models have been around for some time already, only in recent years researchers

devoted themselves to advancing discrete choice models where the purchase decisions also depend

on the offered product alternatives. The need for such models is heightened by the rise of low

cost service providers since they cut many of the traditional restrictions meant to segment the

market, leaving the customer with similar products whose essentially only distinguishing feature

is the price. Even if there are still some restrictions, customers increasingly tend to ignore them

in their purchase decision so that in some business applications demand can only be observed for

the product with the lowest available price, as pointed out by Boyd and Kallesen (2004). Such a

behavior is in stark contrast to the traditional independent demand setting where it is assumed

that demand is associated with a product and does not depend on market conditions such as which
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other products the firm offers. Therefore it is crucial to incorporate customer choice models into

RM; more on the advantages of customer choice in the RM context can be found in van Ryzin

(2005) and, for a comprehensive treatment of RM, in Talluri and van Ryzin (2004b).

We base our investigations on the particularly interesting work of Zhang and Adelman (2009) who

extend the previous independent demand RM model of Adelman (2007) to incorporate customer

choice behavior. Their approach differs from others in that they use an affine function of the

state vector to approximate the value function of the exact dynamic programming formulation

with a linear program (LP) in a way such that it yields time-dependent estimates of the marginal

capacity values. The optimal objective of this LP constitutes an upper bound on the exact optimal

expected revenue which is tighter than those obtained by several other currently available methods.

Since the LP possesses many variables, solving the problem by column generation is shown for

the multinomial logit choice model (MNL) with disjoint consideration sets to reduce essentially

to solving smaller mixed integer linear programs and is thus implementable in practice. They

construct policies directly from the dual solution as well as through a dynamic programming

decomposition scheme and show that both perform very well. The most important reason for the

improved performance is that the LP naturally generates time-dependent marginal capacity value

estimates which gives this approach a cutting edge compared to methods that generate static

values.

However, intuitively these values should not only depend on time to departure (for the ease of

presentation we will stick to airline terminology), but also on the inventory levels. This dependence

on intermediate capacity levels of the resources is not captured by current approaches to network

RM with choice behavior. In the independent demand setting, a suitable approximation function

was recently proposed by Farias and Van Roy (2007). Instead of using constraint generation to deal

with the many constraints of the arising linear program they propose using a constraint sampling

procedure which is based on the work of de Farias and Van Roy (2003) and de Farias and Van Roy

(2004). The same approximation was independently proposed by Talluri (2008) under the name

of strong affine relaxation and shown to provide tighter upper bounds on the optimal expected

revenue than other available methods for the no-choice setting. Also Topaloglu (2009) recently

focussed on time- and capacity-dependent bid prices: He proposed a network RM approach based

on Lagrangian relaxation, but again without inclusion of choice behavior.

Our key contributions are the following:

• We propose a new linear programming approach to approximate dynamic programming that

approximates the value function with a nonlinear function of the state vector which is separable

http://www.meiss.com/
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over arbitrarily chosen ranges of resource inventory levels. As a special case, we can choose this

approximation to be separable over each possible inventory level, which then corresponds to the

approximation proposed by Farias and Van Roy (2007), but, in contrast to their approach, our

model also accounts for customer choice behavior.

• We show that all the linear programs of Liu and van Ryzin (2008), Zhang and Adelman (2009)

and Kunnumkal and Topaloglu (2008) can be seen as special cases of our linear programming

formulation. In particular, for that reason we obtain tighter upper bounds on the objective value

than these other approaches and that are asymptotically optimal as time horizon, demand and

capacities are linearly scaled up.

• We prove that column generation essentially reduces to solving small mixed integer linear

programs. Policies for the MNL model with disjoint consideration sets are numerically tested and

show significantly improved results.

• Due to the larger number of constraints, our approach is considerably more expensive than

others if we allow the marginal capacity value estimates to change from any possible inventory

level to another. However, we find that sensitivity to inventory levels is most pronounced only

relatively close to the departures: Therefore, in order to cut down computational requirements for

large networks without much deterioration of the solution quality, we can exploit the flexibility of

our model with respect to arbitrary aggregations of inventory levels to solve it with high inventory

aggregation at the beginning of the booking horizon, and later to re-solve it with lower aggrega-

tion and thus higher accuracy so that we capture the typically more pronounced nonlinearity in

inventory levels of the value function closer to the end of the time horizon.

• A seemingly new upper bound relationship between the approaches of Zhang and Adelman

(2009) and Kunnumkal and Topaloglu (2008) is shown, namely that the former provides a tighter

upper bound on the objective value than the latter.

The paper at hand is organized as follows: In the next section we briefly review the related

literature, then in Section 3 we present our model including the required notation followed by the

resulting Markov decision process and its equivalent linear programming form in Section 4. We

introduce the linear programming models that we compare our approach with in Sections 4.1, 4.2

and 5. Our own approach is derived in Section 5 as well. We show that the column generation

subproblem is reducible to a mixed integer linear program in Section 6 and describe bid price

policies in Section 7. Finally, we present the computational results in Section 8 and conclude in

Section 9.

http://www.meiss.com/
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2. Literature Review

The earliest contributions to single leg RM with choice behavior include Brumelle et al. (1990) and

Belobaba and Weatherford (1996), amongst others, and for networks the PODS simulation stud-

ies by Belobaba and Hopperstad (1999). Zhang and Cooper (2005) consider an inventory control

problem of a set of parallel flights including a customer choice model yielding a stochastic opti-

mization problem which is being solved by simulation-based methods. Another simulation-based

approach is van Ryzin and Vulcano (2008), who compute virtual nesting controls by constructing

a stochastic steepest ascent algorithm designed to find stationary points of the expected revenue

function. More contributions have been made, but we refer at this point to the literature reviews of

McGill and van Ryzin (1999) and Chiang et al. (2007) and instead focus on papers closer related

our approach. The underlying theory of approximate dynamic programming is presented in the

well-written books of Bertsekas and Tsitsiklis (1996) and Powell (2007).

Network problems are computationally intensive even without consideration of customer choice

behavior, thus good heuristics need to be found. Among the efficient techniques that have been

proposed is the so-called choice-based linear program (CDLP) of Gallego et al. (2004). Based on this

work, Liu and van Ryzin (2008) present an extension of the standard deterministic linear program

approach to include choice behavior. It returns a vector with as many components as there are

possible offer sets, and each component represents the number of time periods out the finite time

horizon that the corresponding offer set should be available. The notion of efficient sets introduced

by Talluri and van Ryzin (2004a) for the single leg case is translated into the network context and

the authors show that CDLP only uses efficient sets in its optimal solution. Unfortunately, for the

network problem the exact optimal policy does not necessarily only use efficient sets like the single

leg case, but Liu and van Ryzin (2008) can show asymptotic optimality of the CDLP which indicates

that using efficient sets only might be a good choice. A dynamic programming decomposition

approach is taken to obtain policies from the static solution of the CDLP and applied to the

multinomial logit (MNL) choice model with disjoint consideration sets. Furthermore, the solution

to the CDLP constitutes an upper bound on the optimal expected revenue. A generalization of the

CDLP that can also handle the MNL choice model with overlapping consideration sets is presented

in Miranda Bront et al. (2009), who employ column generation to solve the arising large linear

program.

Kunnumkal and Topaloglu (2008) propose an alternative deterministic linear programming

approach (ADLP) that exhibits a very similar structure like the CDLP, but they extend the lat-

ter to allow for time dependent bid prices in contrast to the static ones produced by the CDLP.

http://www.meiss.com/
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Although no formulation can be proven to dominate the other, their numerical experiments indi-

cate tighter upper bounds on the optimal expected revenue and better policies as well. They also

apply their model to the MNL choice model with disjoint consideration sets. Similar results like for

the CDLP are presented, including asymptotic optimality, the fact that ADLP provides an upper

bound on the objective value and a dynamic programming decomposition approach. The extension

comes at the cost of having significantly more constraints in the arising linear program.

3. Model

Products. Let our network consist of m resources—that means flight legs in the airline

application—and n products. A product consists of a seat on one or several flight legs in combina-

tion with a fare class and departure date. Each resource i has a fixed capacity of ci, and the network

capacity is given by the corresponding vector c= [c1, . . . , cm]T . The capacity is homogenous, that

means all seats are perfectly substitutable and do not differ, hence allowing us to accommodate all

kind of requests from the given general capacity on a given flight leg. The set of products is denoted

by N = {1, . . . , n}. Every product j has an associated revenue fj. By defining aij = 1 if resource i

is used by product j, and aij = 0 otherwise, we obtain the incidence matrix A= (aij) ∈ {0,1}m×n

whose columns shall be denoted by Aj. We assume that each product uses at most one unit of any

resource, so aij ≤ 1. Group requests can easily accommodated by allowing aij to be larger than 1.

This does not affect the analysis within this paper, however, we will stick to the assumption aij ≤ 1

since it simplifies the notation for our proposed aggregated model in Section 5. Each column Aj

gives us information about which resources product j uses, and accordingly we write i ∈ Aj if

resource i is being used by product j. The state of the system is given by the vector of unused

capacity x= [x1, . . . , xm]T , and selling product j changes x to x−Aj.

Customer Choice. Potential customers usually do not come with a predetermined idea of

which product to purchase. Rather, they only know some particular features that the product

should possess and compare several alternatives that have these features in common before coming

to a purchase or non-purchase decision. For example, a customer might be interested in a flight

from A to B, but considers several flights with close-by departure times, or several class options.

The probability that the customer chooses product j given the set of offered fares S (conditioned

to arrival of a customer) is denoted by Pj(S). It satisfies
∑

j∈S
Pj(S)+P0(S) = 1 for any offer set S,

where j = 0 denotes the non-purchase option. We keep the choice model general until discussing the

column generation procedure where we assume that customers choose according to the multinomial

logit choice model with distinct consideration sets.
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Table 1 Notation.

m quantity of resources in the network

c = [c1, . . . , cm]T vector of capacities

n total number of products

i index for resources

j index for products

fj fare for product j

A = (aij) incidence matrix, aij > 0 if and only if product j needs aij

units (integer) of resource i

Aj jth column of A

τ amount of discrete time periods (departure in period τ +1)

λ arrival probability of a customer.

N = {1, . . . , n} set of all products

N(x) set of all feasible products under available capacity x

u = [u1, . . . , un]T set of products that are available for purchase (expressed as
binary vector with n components)

S ⊂N set of products that are available for purchase (expressed as
subset of N)

Pj(S) general purchase probability of an arrived customer for prod-
uct j given offer set S

X = {0, . . . , , c1}× · · ·× {0, . . . , cm} state space

Decisions on which products to offer are made at discrete points in time such that the time

intervals are small enough to have a negligible probability that two or more arrivals occur. A

customer arrives in time period t with probability λ. These decision time points are indexed with t

starting at time t= 1 until the end of the booking horizon t= τ . All flights depart at time t= τ +1.

The index t can also refer to the time interval between decisions at t and t+ 1 and will be clear

from the context.

At each time t we need to decide which products out of the total of n ones shall be offered

during time period t. We represent this decision by the binary vector ut ∈ {0,1}n or, when it is

more convenient to do so, equivalently as a set S ⊂N where j ∈ S⇔ uj = 1. All customers show up

at departure and no cancelations are allowed, thus overbooking is redundant. As a consequence,

an offer set is called feasible if there is sufficient network capacity x available to accommodate at

least one request for an arbitrary product j ∈ S, and we denote the collection of all feasible offer

sets by N(x) := {j ∈N : aij ≤ xi ∀ i}. Note that we omit the time dependence of u, S and x in order

to keep the notation simple. The notation is summarized in Table 1.
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4. Current Solution Approaches

Let vt(x) denote the expected revenue-to-go from time period t until the final period τ , given the

vector x ∈X of still available resources in the network. The well-known optimality equation for

maximizing expected revenue is then given by

vt(x) = max
S⊆N(x)

∑

j∈S

λPj(S)(fj + vt+1(x−Aj)) + (λP0(S) + 1−λ)vt+1(x),

= max
S⊆N(x)

∑

j∈S

λPj(S)
[

fj − (vt+1(x)− vt+1(x−Aj))
]

+ vt+1(x), ∀t, x, (1)

with boundary condition vτ+1(x) = 0 for all x. The decision to be made within each time period is

which set of products to offer before we can observe demand in the corresponding period. Under

the independent demand assumption, in contrast, decisions and demand are decoupled. If we could

somehow compute the value function v, then, for given t and x, the optimal policy is to offer

S∗(t, x) := argmax
S⊆N(x)

∑

j∈S

λPj(S)
[

fj −
(

vt+1(x)− vt+1(x−Aj)
)]

. (2)

Note that the value function v is only required for the expression vt+1(x)−vt+1(x−A
j) that denotes

the so-called opportunity cost of selling product j in time period t at capacity state x. Having

correct opportunity costs thus means having the optimal policy. The problem (1) is intractable

due to the large state space, so in the following we restate several heuristics that can be used to

estimate the opportunity cost and thus to obtain a policy.

4.1. Choice-Based Deterministic LP

In order to reduce the problem to a tractable size, Gallego et al. (2004) and Liu and van Ryzin

(2008) propose a choice-based deterministic linear program (CDLP) where demand is treated as

known and being equal to its expected value. The problem reduces then to an allocation problem

where we need to decide for how many time periods a certain set of products S shall be offered,

denoted by h(S). Denote the expected total revenue from offering S by

R(S) =
∑

j∈S

Pj(S)fj,

and the expected total consumption of resource i from offering S by

Qi(S) =
∑

j∈S

Pj(S)aij, ∀i.

Then the choice-based deterministic linear program is given by

(CDLP) zCDLP =max
h

∑

S⊆N

λR(S)h(S)
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∑

S⊆N

λQi(S)h(S)≤ ci, ∀i,

∑

S⊆N

h(S) = τ,

h(S)≥ 0, ∀S ⊆N.

It essentially parallels the well-known deterministic LP for the no-choice case, provides with zCDLP

an asymptotically tight upper bound on the optimal expected revenue under fluid scaling and is

very fast, but has the disadvantage that it does not provide the order in which the optimal sets

shall be used since every order yields the same expected revenue under these model assumptions.

In order to construct a policy we can use the dual values πi associated with the capacity constraints

of CDLP. These values represent an estimation of the marginal value of capacity of each resource

so that we can approximate the opportunity cost by

vt+1(x)− vt+1(x−Aj)≈
∑

i∈Aj

πi, (3)

and subsequently obtain a policy by substituting the opportunity cost with the above estimate in

the optimal policy (2). However, these estimates π suffer from being neither time- nor inventory-

level dependent. To remedy this shortcoming, Liu and van Ryzin (2008) propose a dynamic pro-

gramming decomposition which we outline in Section 7.2.

4.2. Alternative Deterministic LP

Kunnumkal and Topaloglu (2008) propose to generate time-depdent marginal capacity value esti-

mates with an alternative deterministic linear program (ADLP). This formulation also results in

an asymptotically tight upper bound on the optimal expected revenue, but none of the bounds gen-

erated by CDLP and ADLP dominate each other in general. However, their numerical experiments

indicate that the ADLP can provide tighter bounds than the CDLP.

(ADLP) zADLP = max
h

τ
∑

t=1

∑

S⊆N

λR(S)ht(S)

t−1
∑

k=1

∑

S⊆N

λQi(S)hk(S) +
∑

S⊆N

1{j∈S}aijht(S)≤ ci, ∀i, t, j ∈N,

∑

S⊆N

ht(S) = 1, ∀t,

ht(S)≥ 0, ∀S ⊆N, t.

Note that the CDLP and ADLP have a similar structure: While h(S) was in the CDLP the scalar

that indicated how much time to allocate over the full time horizon for the offer set S, in the
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ADLP, the variable ht(S) indicates how much time to allocate within time period t to the offer

set S. We can also interpret ht(S) as the frequency of offering S in period t.

As a policy, we can use the dual values πi,t,j of the capacity constraints to approximate the

opportunity cost by

vt+1(x)− vt+1(x−Aj)≈
∑

i∈Aj

[

τ
∑

u=t+1

∑

k∈N

πi,u,k

]

. (4)

The expression in brackets can be interpreted as the marginal value of resource i over the remaining

time horizon.

5. Approximation Based on the Equivalent LP

The following linear programming formulation will serve as the starting point of our considerations.

It is equivalent to the dynamic program (1) and, for that reason, we denote it by (EQ). The

equivalence can be derived from fundamental results of value iteration, see Powell (2007), for

example.

(EQ) min
v(·)

v1(c)

vt(x)≥ λ
∑

j∈S

Pj(S)
[

fj − (vt+1(x)− vt+1(x−Aj))
]

+ vt+1(x), ∀t, x,S ⊆N(x).

The decision variables are vt(x), for all t, x, and therefore the problem is also intractable for a large

state space. The basic idea is now to approximate vt(·) by a given set of κ basis functions φk(·) in

order to reduce the number of variables vt(x)≈
∑κ

k=1 Vt,kφk(x), for all t, x. Our approach is based

on Zhang and Adelman (2009), who consider the affine approximation

vt(x)≈ θt +
m

∑

i=1

Vt,ixi, ∀ t, x,

with boundary conditions θτ+1 = 0 and Vτ+1,i = 0 for all flight legs i. In this approximation, Vt,i

estimates the marginal inventory value on flight i in period t without taking into account how

many seats are still available on this flight leg. The optimal marginal capacity values V ∗
t,i provide

an estimation of the opportunity cost via

vt+1(x)− vt+1(x−Aj)≈
∑

i∈Aj

V ∗
t+1,i. (5)

Their basis functions are given by

φk(x) :=

{

xi, k= i∈ {1, . . . ,m},

1, k=m+1.
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Figure 1 Examples of inventory aggregations on a resource i with ci = 5.

1 2 3 4 5 Inventory level h

Vt,i,h

Substituting the resulting approximation into (EQ) and constructing its dual yields the linear

program:

(AFF) zAFF =max
Y

∑

t,x,S⊆N(x)

∑

j∈S

λPj(S)fjYt,x,S

∑

x,S

xiYt,x,S =

{

ci, for t= 1,
∑

x,S
(xi −

∑

j∈S
λPj(S)aij)Yt−1,x,S, ∀ t= 2, . . . , τ,

∀ i, t,

∑

x,S

Yt,x,S =

{

1, for t= 1,
∑

x,S
Yt−1,x,S, ∀ t= 2, . . . , τ,

Yt,x,S ≥ 0, ∀t, x,S ⊆N(x).

Their approach can be seen as a special case of our approximation, which we elaborate in the

following: Our essential refinement is to split the inventory of every resource i into Ki inventory

level ranges, and then to assign for each range k a variable Vt,i,k which estimates the marginal

resource value at any inventory level within this range at time period t. The number of inventory

levels contained within range k is denoted by si
k, and can reach from unit size 1 to resource capacity

ci. Note, in particular, that it can vary between resources. Naturally, the sum of all range sizes

must equal the total capacity of resource i, that is
∑Ki

k=1 s
i
k = ci. For notational convenience, we

introduce for each resource i a function

r(·) : {0,1, . . . , ci}→N,

for which r(0) := 0 and for xi > 0 we set r(xi) := k if and only if inventory level xi is contained in

range k. In particular, ri(ci) =Ki. For example, in Figure 1 we depict an aggregation into Ki = 2

ranges by a dotted line; the first range has size si
1 = 2 including the inventory levels 1 and 2, and

the second has size si
2 = 3 including inventory levels 3, 4 and 5. Therefore, we have ri(1) = ri(2) = 1

and ri(3) = ri(4) = ri(5) = 2 for this aggregation. The marginal capacity value Vt,i,k corresponding

to the two ranges is represented by the dotted lines. In the following, we omit the subscript i in the



Meissner and Strauss: Network RM with Inventory-Sensitive Bid Prices and Customer Choice 11

function ri(·) because its argument, as for example in r(xi), will make it clear that the function

depends on the resource i.

We approximate the value function with

vt(x)≈ θt +
m

∑

i=1

[ r(xi)−1
∑

k=1

si
kVt,i,k +(xi −

r(xi)−1
∑

k=1

si
k)Vt,i,r(xi)

]

. (6)

On the boundary we define Vτ+1,i,k = 0 for all i, k, and θτ+1 = 0. Note that in the range of xi (denoted

by r(xi)), there are only xi −
∑r(xi)−1

k=1 si
k units of inventory left. The non-linear approximation has

the particular advantage that the estimated marginal value of capacity depends on both time and

inventory level. We therefore refer to our approach as the “Time and Inventory Sensitive Approach

(TISA)”.

Figure 1 gives three examples of how we could aggregate inventory levels: The solid line repre-

sents aggregation of the entire inventory of a resource, so that we only have one marginal inventory

value Vt,i for any inventory level. If done for all resources, then the problem reduces to the affine

approximation by Zhang and Adelman (2009). On the other extreme, we might disaggregate com-

pletely so that we have a potentially different marginal value Vt,i,h for each inventory level h,

which would correspond to the dots in Figure 1, however, computationally it becomes quickly

expensive to solve the associated problem for larger networks. Any other aggregation is possible,

for example, we could split the inventory and obtain two dashed ranges. Furthermore, it is also

possible to aggregate across time to further reduce the size of the linear program by exploiting

that the marginal values of capacity typically stay nearly constant when there is much time left to

departure. Likewise, inventory aggregations could be designed to change over time. In this paper,

however, we stick to static inventory aggregation to increase readability.

Plugging the approximation (6) into (EQ) results in the following linear program, where we

made use of the assumption aij ≤ 1 in order to simplify notation, since it implies that 0≤ r(xi)−

r(xi − aij)≤ 1.

(D) min
θ,V

m
∑

i=1

Ki
∑

k=1

si
kV1,i,k + θ1

θt − θt+1 +
m

∑

i=1

[r(xi)−1
∑

k=1

si
kVt,i,k +

(

xi −

r(xi)−1
∑

k=1

si
k

)

Vt,i,r(xi) −

r(xi)−2
∑

k=1

si
kVt+1,i,k

+

(

− si
r(xi)−1 +λ

∑

j∈S

Pj(S)1{r(xi−aij)<r(xi)}

[

si
r(xi)−1 −xi + aij

+

r(xi−aij)−1
∑

k=1

si
k

]

)

Vt+1,i,r(xi)−1 +

(

(

r(xi)−1
∑

k=1

si
k −xi) +λ

∑

j∈S

Pj(S)
[

xi
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−

r(xi)−1
∑

k=1

si
k − (xi − aij −

r(xi−aij)−1
∑

k=1

si
k)1{r(xi−aij)=r(xi)}

]

)

Vt+1,i,r(xi)

]

≥ λ
∑

j∈S

Pj(S)fj, ∀t, x,S ⊆N(x).

To increase readability, let us abbreviate the coefficients of Vt+1,i,r(xi)−1 and Vt+1,i,r(xi) as stated in

(D) by βi,x,S and γi,x,S, respectively. The dual of the above problem is given by:

(P) zTISA = max
Y

∑

t,x,S

λ
∑

j∈S

Pj(S)fjYt,x,S

∑

x,S

(

si
k1{k≤r(xi)−1} +(xi −

r(xi)−1
∑

k̃=1

si

k̃
)1{k=r(xi)}

)

Yt,x,S = si
k, for t= 1,∀i, k,

∑

x,S

(

− si
k1{k≤r(xi)−2} +βi,x,S1{k=r(xi)−1} + γi,x,S1{k=r(xi)}

)

Yt−1,x,S +
∑

x,S

(

si
k1{k≤r(xi)−1}

+(xi −

r(xi)−1
∑

k̃=1

si

k̃
)1{k=r(xi)}

)

Yt,x,S = 0, for t > 1,∀i, k,

∑

x,S

Yt,x,S = 1, for t= 1,

∑

x,S

(Yt,x,S −Yt−1,x,S) = 0, ∀t > 1,

Yt,x,S ≥ 0, ∀ t, x,S ⊆N(x).

We refer to (P) in the special case that Ki = ci, s
i
k = 1, ∀k, i as TISAC, and for Ki = 2, si

k = ⌊ci/2⌋,

∀k, i as TISA2. To provide some intuition regarding constraints and variables of (P), note that

the decision variables Yt,x,S can be interpreted as state-action probabilities since they are non-

negative and satisfy
∑

x,S
Yt,x,S = 1 for all t. With this in mind, the first set of constraints in (P)

can be understood as the expected available capacity on resource i within inventory range k at the

beginning of the booking horizon, which has to equal the size of the range si
k. The second set of

constraints can similarly be seen as expected available capacity in range k on resource i at time t,

which equals expected available capacity in that range at time t− 1 minus expected consumption

within period t− 1.

Proposition 1 For an arbitrary inventory aggregation, any feasible solution to the corresponding

linear program (P) yields a feasible solution to (AFF) having the same objective function value.

We have the following upper bounds on the optimal expected revenue v1(c):

zCDLP ≥ zAFF ≥ zTISA ≥ v1(c).

In particular, the objective in problem (P) is asymptotically optimal.
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Proof. Suppose (Y ) solves (P). In order to show the second inequality, we need to show that

Y yields a feasible solution to (AFF) yielding the same objective function value. Apparent from

feasibility to (P), we have

∑

x,S

Yt,x,S = 1, for t= 1,

∑

x,S

Yt,x,S =
∑

x,S

Yt−1,x,S, ∀ t > 1,

Yt,x,S ≥ 0, ∀ t, x,S ⊆N(x).

From the first set of constraints in (P), we obtain for a fixed resource i and t= 1 by summation

over all inventory level ranges k ∈ {1, . . . ,Ki}:

∑

x,S

(

r(xi)−1
∑

k=1

si
k +xi −

r(xi)−1
∑

k=1

si
k

)

Yt,x,S =

Ki
∑

k=1

si
k

⇔
∑

x,S

Yt,x,Sxi = ci.

For t > 1, fix a resource i and sum the second set of constraints in (P) over all ranges k= 1, . . . ,Ki:

∑

x,S

Yt,x,Sxi +
∑

x,S

Yt−1,x,S

{

−

r(xi)−2
∑

k=1

si
k +1{r(xi)>1}

(

− si
r(xi)−1 +λ

∑

j∈S

Pj(S)[si
r(xi)−1 −xi + aij

+

r(xi−aij)−1
∑

k=1

si
k]1{r(xi−aij)<r(xi)}

)

+

( r(xi)−1
∑

k=1

si
k −xi +λ

∑

j∈S

Pj(S)[xi −

r(xi)−1
∑

k=1

si
k

− (xi − aij −

r(xi−aij)−1
∑

k=1

si
k)1{r(xi−aij)=r(xi)}]

)

}

= 0.

Let us denote the term in curly brackets by ψ:

• If r(xi) = 0, then xi = 0, and due to S ⊆N(x) we have aij = 0 for all j ∈ S, resulting in ψ=−xi.

• If r(xi) = 1, then ψ =−xi +λ
∑

j
Pj(S)aij follows directly.

• If r(xi) ∈ {2, . . . ,Ki}: then we obtain the following: (without loss of generality, we assume

aij ≤ 1 to simplify notation)

ψ =−xi +λ
∑

j∈S

Pj(S)[(si
r(xi)−1 −xi + aij +

r(xi−aij)−1
∑

k=1

si
k)1{r(xi−aij)<r(xi)}

+xi −

r(xi)−1
∑

k=1

si
k − (xi − aij −

r(xi−aij)−1
∑

k=1

si
k)1{r(xi−aij)=r(xi)}]

=−xi +λ
∑

j∈S

Pj(S)aij.

Thus we obtain feasibility to (AFF), and therefore validity of the inequality zAFF ≥ zconc. Alter-

natively, we can obtain this result from using the dual instead of the primal problem by starting
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from an optimal dual solution (θ∗, V ∗
t,i) to (AFF). Setting θ := θ∗ and Vt,i,k := V ∗

t,i yields a solution

feasible to (D) with the same objective, yielding the desired result.

The last inequality zTISA ≥ v1(c) follows from the fact that every feasible solution to (EQ) is an

upper bound to the exact value function. This fact is a standard result in value iteration, see for

example Theorem 3.4.1 in Powell (2007).

Zhang and Adelman (2009) showed that (AFF) has a tighter bound than the deterministic LP,

and since Liu and van Ryzin (2008) proved that the deterministic LP is asymptotically optimal

(that is, zCDLP converges to v1(c) as demand, capacity and time horizon are linearly scaled up),

both (AFF) and (P) are as well asymptotical optimal in that respect. �

Furthermore, we can also show that the affine approximation problem (AFF) results in a tighter

upper bound on the optimal expected revenue than the ADLP, which likewise seems to be a new

result.

Proposition 2 Any feasible solution to (AFF) yields a feasible solution to (ADLP) having the

same objective value. We have the following bounds on the objective value v1(c):

zADLP ≥ zAFF ≥ v1(c).

Proof. Let Y be a feasible solution to (AFF). We define

ht(S) :=
∑

x

Yt,x,S, ∀S ⊆N, t,

and need to show that this is a feasible solution to (ADLP) with the same objective value.

First, we have directly from Y ≥ 0 and the definition of ht(S) that ht(S) ≥ 0 for all S, t.

Next, note that the second set of equality constraints in (AFF) actually reduces to the condition
∑

x,S⊆N(x)Yt,x,S = 1 for all t. Using the definition of ht(S), we obtain

∑

S⊆N(x)

ht(S) =
∑

S⊆N

ht(S) = 1,

for all t as required, where the first equality stems from Yt,x,S = 0 if S * N(x) because of Y ’s

feasibility to (AFF). It remains to show that the first set of inequalities in (ADLP) holds, and

that the objective value stays the same. As for the objective value, we defined earlier the total

expected revenue from offering set S by R(S) :=
∑

j∈S
Pj(S)fj. Substituting this into the objective

in (AFF) and making use of the definition of ht(S) shows the equivalence of the objective. Finally,
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in order to show that the first set of inequalities in (ADLP) holds, we keep i fixed and sum the

first set of equality constraints of (AFF) over time from 1 to some fixed t∈ {1, . . . , τ}:

t
∑

k=1

∑

x,S

xiYk,x,S = ci +
t

∑

k=2

∑

x,S

xiYk−1,x,S −
t

∑

k=2

∑

x,S

∑

j∈S

λPj(S)aijYk−1,x,S.

Canceling terms and rearranging yields

ci =
∑

x,S

xiYt,x,S +
t−1
∑

k=1

∑

S

λQi(S)hk(S),

where the total expected consumption on resource i is Qi(S) :=
∑

j∈S
Pj(S)aij as defined earlier.

Due to the feasibility of Y to (AFF), Yt,x,S > 0 only if S ⊆ N(x) = {j ∈ N : aij ≤ xi ∀i ∈ Aj}.

Therefore we have
∑

x,S

xiYt,x,S ≥
∑

S

1{j∈S}aijht(S), ∀j ∈N,

which concludes the proof. �

From Proposition 1 and Proposition 2 it follows that our approach (P) provides also a tighter

bound than the ADLP.

Corollary 1 We have the following bounds on the optimal expected revenue v1(c):

zADLP ≥ zTISA ≥ v1(c).

6. Solution via Column Generation

The problem (P) has O(τ
∏m

i=1(ci +1)2n) variables and, for realistic network sizes, cannot be solved

in moderate time unless techniques such as column generation are used to deal with problem size.

This method builds upon the observation that for large problems most columns never enter the

basis matrix and therefore do not need to be stored. Apparently, the main task is then to provide

a way of how to find the next column to enter the basis without having to generate the whole

coefficient matrix. We show in the following that if we use the multinomial logit choice model

with disjoint consideration sets this so-called column generation subproblem reduces to solving

a small linear mixed integer program. For the sake of improved readability, we confine ourselves

to demonstrate the derivation of the pricing problem for a special case only, namely Ki = ci for

every resource i. For any other choice of aggregation, the derivation works in the same way. The

considered case is the approximation proposed by Farias and Van Roy (2007) in the no-choice

context which reflects the fact that the marginal value of capacity also depends on the quantity of

remaining unused inventory. Our approximation for general aggregation (6) reduces in this case to

vt(x)≈ θt +
m

∑

i=1

xi
∑

k=1

Vt,i,k,
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with boundary conditions Vτ+1,i,k = 0 for all i, k and θτ+1 = 0. An initial feasible solution for the

column generation procedure is given by

Yt,x,S =

{

1, if x= c,S = ∅,∀ t

0, otherwise.

Next, we need to check for optimality and in case that it is not attained yet, we also need to

find the next column that shall enter the basis. Given the dual values V at some iteration, this is

achieved by finding the column with maximal reduced profit, the latter being given by

max
t,x,S⊆N(x)

(

λ
∑

j∈S

Pj(S)fj −
m

∑

i=1

[ xi
∑

k=1

Vt,i,k −

xi−1
∑

k=1

Vt+1,i,k − (1−λ
∑

j∈S

Pj(S)aij)Vt+1,i,xi

]

+ θt+1 − θt

)

.

(7)

We refer to the problem (7) as the pricing problem. If the result is nonpositive then optimality

has been reached, otherwise we add the corresponding column to the basis. Several variants of the

column generation algorithm exist, for example, we could retain all columns that once entered the

basis and thus obtain a system of growing size, or we could remove all columns that exit the basis,

or use some other rule in between. The most important question, however, is whether the maximal

reduced profit can be found quickly and inexpensively. The maximization in (7) could potentially

be expensive to solve, so let us focus on this subproblem. Rearrangement of terms yields:

max
t,x,S⊆N(x)

λ
∑

j∈S

Pj(S)(fj −
m

∑

i=1

aijVt+1,i,xi
)−

m
∑

i=1

xi
∑

k=1

(Vt,i,k −Vt+1,i,k) + θt+1 − θt. (8)

Difficulties stem from the probability term Pj(S) since it makes the problem nonlinear, and in

particular the requirement S ⊆ N(x) forces S to be dependent on x which makes the two vari-

ables non-separable. So far, we have not specified a choice model from which we can derive Pj(S),

however, we need to do so now in order to solve the pricing problem. We consider choice prob-

abilities Pj(S) derived from the multinomial logit choice model with disjoint consideration sets.

For this model, we divide customers into L segments, where customers within a given segment

l ∈ {1, . . . ,L} =: L̃ are considered to be homogenous in that they all have the same consideration

set Cl ⊂N and product preferences vlj for all products j ∈Cl in their consideration set. The means

of segmentation are left unspecified; they could base for example on itinerary and departure time

(early morning, midday etc). We assume that the consideration sets are disjoint, that is Cl1 ∩Cl2 = ∅

for any segments l1 6= l2 ∈ L̃. The probability that a customer in segment l purchases product j

when we offer the fare set S is given by Plj(S) = vlj/(
∑

j∈Cl∩S
vlj + vl0) for S ⊆N, where vl0 is the

preference for not buying anything. These preference values could, for example, be derived from

the reservation price of the segment for a particular product, and set equal to the maximum of
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this reservation price minus the actual price and zero. An arriving customer belongs to segment l

with probability pl such that
∑

l
pl = 1, hence we can define arrival probabilities λl := plλ for every

segment. Taken together we have λ=
∑

l
λl. For a given segment l, let the vector ul describe the

product availability such that ulj = 1 if product j ∈Cl is available and ulj = 0 otherwise. Accord-

ingly, the probability that a customer from segment l purchases product j can be rewritten in the

following form:

Plj(ul) =
uljvlj

∑

k∈Cl
ulkvlk + vl0

.

The purchase probability for product j given the arrival of a customer is then defined by

Pj(S) = plPlj(ul(S)),

where pl = λl/λ and ul(S) is a vector with ulj = 1 if j ∈ S ∩Cl and ulj = 0 otherwise.

We substitute this choice probability into the pricing problem (8) and keep a time period t fixed.

This results in a nonlinear maximization problem over the variables x and u:

max
x,u

∑

l∈L̃

∑

j∈Cl

λlvljulj
∑

k∈Cl
vlkulk + vl0

[

fj −
m

∑

i=1

aijVt+1,i,xi

]

−
m

∑

i=1

xi
∑

k=1

(Vt,i,k −Vt+1,i,k) + θt+1 − θt

xi ≥ aijulj , ∀ i, j ∈Cl, l ∈ L̃, (9)

xi ∈ {0, . . . , ci}, ∀ i, (10)

ulj ∈ {0,1}, ∀ j ∈Cl, l ∈ L̃. (11)

Next, we perform a change of variables as done in Chapter 4.3.2 of Boyd and Vandenberghe (2004):

Define zlj = ulj/(
∑

k∈Cl
vlkulk + vl0) for all products j ∈ Cl and all segments l ∈ L̃, furthermore,

define αl := 1/(
∑

k∈Cl
vlkulk + vl0) for all segments l ∈ L̃. Note that zlj = uljαl, hence zlj ∈ {0, αl}.

The latter constraint can be expressed by

zlj ≥ 0, ∀ j ∈Cl, l ∈ L̃, (12)

zlj ≤ αl, ∀ j ∈Cl, l ∈ L̃, (13)

M(1−ulj) + zlj ≥ αl, ∀ j ∈Cl, l ∈ L̃, (14)

zlj ≤Mulj, ∀ j ∈Cl, l ∈ L̃. (15)

We use here a so-called “Big M”-method to enforce the correct relationship between zlj , αl and ulj .

It is well-known that this method can be very detrimental to solving mixed integer programmes,

see Camm et al. (1990), for instance. To avoid numerical difficulties and slow convergence we
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should keep the scalar M as small as possible. It is not difficult to see that M := maxl 1/vl0 is both

sufficiently large and constitutes a tight upper bound on zlj and αl. Even though some solvers

might be able to handle the constraints zlj ∈ {0, αl} directly, we still give the formulation above in

particular because it allows to link the variable u in capacity availability constraint (9) to z and

thereby avoids having to replace ulj by the nonlinear expression zlj/αl.

By definition of zlj and αl we have

αl ≥ 0, ∀ l ∈ L̃, (16)
∑

j∈Cl

vljzlj + vl0αl = 1, ∀ l ∈ L̃. (17)

We call the resulting nonlinear auxiliary problem (AUX) for reference:

max
u,x,z,α

∑

l∈L̃

∑

j∈Cl

λlvlj

[

fj −
m

∑

i=1

aijVt+1,i,xi

]

zlj −
m

∑

i=1

xi
∑

k=1

(Vt,i,k −Vt+1,i,k) + θt+1 − θt

subject to (9)–(17).

The parameters Vt+1,i,xi
depend on x, so some more auxiliary binary variables are needed to

reformulate the problem as a linear mixed integer program:

Proposition 3 Suppose the preference for non-purchase is positive for all segments, that means

vl0 > 0 for all l ∈ L̃ := {1, . . . ,L}, aij ∈ {0,1} and let M be an arbitrary scalar greater than or equal

to 1. We only need to solve the following linear mixed integer program to find the solution for

problem (8) for each t≥ 1:

max
u,x,y,z,α

∑

l

∑

j∈Cl

∑

i

(−λlvljaij)

[

Vt+1,i,1y
1,i
lj +

ci
∑

k=2

(Vt+1,i,k −Vt+1,i,k−1)y
ki
lj

]

+

+
∑

l

∑

j∈Cl

(λlvljfj)zlj +
∑

i

ci
∑

k=1

(Vt+1,i,k −Vt,i,k)x
ki + θt+1 − θt

ci
∑

k=1

xki ≥ aijvl0zlj , ∀ i, l, j ∈Cl, (18)

xk−1,i ≥ xki, ∀ i, k ∈ {2, . . . , ci}, (19)

yki
lj ≤ xki, ∀ l, j ∈Cl, k, i, (20)

yki
lj ≤ zlj , ∀ l, j ∈Cl, k, i, (21)

yki
lj ≥ zlj −M(1−xki) ∀ l, j ∈Cl, k, i, (22)

xki ∈ {0,1}, ∀ i, k ∈ {1, . . . , ci},

yki
lj ≥ 0, ∀ l, j ∈Cl, k, i, (23)

subject to (11)–(17).
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Proof. We start from problem (AUX) and introduce new binary variables xki ∈ {0,1} for all

k ∈ {1, . . . , n} and all resources i such that xi =
∑

k
xki. With these new variables we can rewrite

∑

i

xi
∑

k=1

(Vt+1,i,k −Vt,i,k) =
∑

i

ci
∑

k=1

(Vt+1,i,k −Vt,i,k)x
ki.

By imposing constraints (19) we ensure that xki is monotone decreasing in k for fixed i and hence

that we have a one-to-one correspondence between a vector [x1,i, . . . , xci,i] and xi. Furthermore,

Vt+1,i,xi
=

ci−1
∑

k=1

Vt+1,i,k(x
ki −xk+1,i) +Vt+1,i,ci

xci,i. (24)

The constraints (9), which ensure that only allowable offer sets are used, become under the new

variable (xki) the constraints (18). Note that by allowable offer sets we mean offer sets S ⊆N(x),

that is we have sufficient capacity to accommodate at least one request for any product j ∈ S.

We carry out the change of variables from x to (xki), which leaves us with an indefinite quadratic

programme featuring the nonlinear terms xkizlj (originating from substituting (24) for Vt+1,i,xi
)

in the objective. Hence we further introduce new variables yki
lj = xkizlj ∈ {0, zlj}. Imposing the

constraints (20–23) guarantees that yki
lj = zlj if xki = 1 and yki

lj = 0 otherwise. Since zlj ≤ 1 by

definition, every M ≥ 1 can be used in (22). �

For any segment l, the non-purchase preference vl0 must not be equal to zero because otherwise

we would divide by zero in the definition of αl if we choose to close all products in Cl. The

assumption is reasonable because typically the customers’ choices depend on their limited budget

as well as on available products of competitors.

7. Policies

In this section, we address the question of how the solution to (D) can actually be used to obtain

a control policy that tells us which set of fares S to offer at any given time t and state x of the

network. Again, in order to improve readability we discuss the policies for the entirely disaggregated

case, that is Ki = ci for all resources i. For any other aggregation of inventory, similar policies can

be derived by the same argumentation.

7.1. Opportunity Cost Estimates Directly from (D)

A standard approach of finding such a policy is to use the optimal dual solution of the capacity

constraints of the respective linear programme as a means to approximate the opportunity cost of

the resources. In a given time period t and having a given available network inventory x, we approx-

imate the opportunity cost of selling a product j with the sum of the marginal inventory values
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of the resources i∈Aj that this product uses. In a formula, the opportunity cost approximation—

using the optimal dual values V ∗ to (D)—is the following expression:

vt+1(x)− vt+1(x−Aj)≈
∑

i

xi
∑

k=xi−aij+1

V ∗
t+1,i,k.

Since the consideration sets Cl are assumed to be disjoint, segment-wise maximization is feasible.

We need to solve a maximization problem hence for each segment l in each time period t and

state x to obtain the optimal offer set S∗
l , and Bellman equation (1) indicates that it has the form

S∗
l = argmax

Sl⊆Cl∩N(x)

∑

j∈Cl

Pj(Sl)



fj −
m

∑

i=1

xi
∑

k=xi−aij+1

V ∗
t+1,i,k



 . (25)

The term in brackets is the “worth” of product j, that means its revenue minus its approximated

opportunity cost. We abbreviate this term with wj:

wj := fj −
m

∑

i=1

xi
∑

k=xi−aij+1

V ∗
t+1,i,k.

For the MNL choice model with preference vector vl for segment l, rewriting the above maximization

problem (25) in terms of a binary availability vector ul yields a system of the form

max
ul∈{0,1}|Cl|

∑

j∈Cl

vljuljwj
∑

k∈Cl
vlkulk + vl0

, ∀x, t, (26)

ulj ≤ 1{x≥Aj}, ∀ j ∈Cl,

The maximization (26) can be solved in the following way:

Proposition 4 Consider the optimization problem (26). Rank the values wj in a decreasing order;

that is, w[1] ≥ · · · ≥w[i] ≥ · · · ≥w[|Cl|]. Then there is a critical value h∗, 1≤ h∗ ≤ |Cl|, such that the

optimal solution to the above problem is given by

u∗
lj =

{

1 if wj ≥w[h∗] and x≥Aj,

0 otherwise.

Proof. Defining ṽlj := vlj1{x≥Aj}∀ j ∈Cl in the maximization (26), the ranking procedure follows

by applying Proposition 6 in Liu and van Ryzin (2008). The optimal policy ũ∗
l is such that

ũ∗
lj =

{

1 if wj ≥w[h∗],

0 otherwise.

It is trivial that this policy leads to the same objective value like using the policy u∗
l as defined

above for the original preference vector vl. �
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We denote this policy by TISAC, where the “c” refers to the property that for each resource i

inventory is split in as many ranges as we have capacity ci. That means, TISAC is based on

an entirely disaggregated approximation and is given in (25). In Section 8 we present numerical

results for this policy, as well as for a so-called TISA2 policy. The latter relies on splitting the

inventory of each resource i into two equal ranges and assuming that the marginal value of capacity

Vt,i,a and Vt,i,b are constant across each range, respectively (see Figure 1). The policy TISA2

is defined in the same way as TISAC, except that the opportunity cost approximation is now

vt+1(x)− vt+1(x−Aj)≈
∑

i
νi, where νi is defined by

νi =

{

aijVt+1,i,a, xi ≤ ⌊ci/2⌋,

aijVt+1,i,b, xi > ⌊ci/2⌋,
for all i.

In the same manner, the solutions of (CDLP), (AFF) and (ADLP) can be used to construct

policies based on the dual values of the corresponding capacity constraints. We call the resulting

policies CDLP, AFF and ADLP, respectively.

7.2. Dynamic Programming Decomposition using CDLP

A popular method of solving network revenue management problems is to decompose them into

a set of resource-level problems, that is for every resource i in the network we have one single

leg problem with associated value function vi
t(xi). One possible approach is to use the choice-

based deterministic linear program which was introduced in Section 4.1: Given a resource i, we

approximate the network value function by

vt(x)≈ vi
t(xi) +

∑

k 6=i

π∗
kxk,

where π∗ is the static vector of optimal bid prices obtained from (CDLP), that means the dual

variables to the capacity constraints in (CDLP) at the optimal solution. We substitute this approx-

imation into the dynamic programming formulation (1) and obtain a one-dimensional problem

with displacement-adjusted revenues fj −
∑

k 6=i
π∗

kakj which can be quickly solving by backwards

induction. Having done that for all resources i, the network value function is then approximated

by

vt(x)≈
∑

i

vi
t(xi).

Again substituting this approximation into the Bellman equation (1) yields a maximization like

in (26) but with wj := fj −
∑

i
(vi

t(xi)− vi
t(xi − aij)). We call this policy DCDLP and refer to Liu

and van Ryzin (2008) for a more detailed discussion of this approach. Through this procedure we

obtain dynamic marginal capacity value estimates. However, their quality is based on the relatively
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Figure 2 Hub & Spoke network example HS-a.

A H B

Leg a Leg b

Leg cLeg d

Figure 3 Hub & Spoke network example HS-b.

A H B

Leg a Leg c

Leg b Leg d

crude opportunity cost approximation in terms of π; the estimates resulting from our approach are

already dynamic and approximate the opportunity cost better. For any aggregation of inventory

levels, the resulting estimates can potentially also be improved by DP decomposition where we

would need to solve a one-dimensional dynamic program for every resource. The corresponding

Bellman equations share the same structure with the column generation sub-problem (7) so that we

can solve them via mixed integer linear programs. Intuitively, the decomposition approach should

exhibit better policy performance than DP decomposition based on the CDLP since the input

of the decomposition procedure is more accurate. However, the finer the approximation the less

improvement the decomposition seems to be able to achieve while even for the fully aggregated affine

approach the results of Zhang and Adelman (2009) show little improvement of the decomposition

approach based on (AFF) over AFF.

8. Numerical Results

In this section, we present the results of numerical experiments that shed light on the quality of

the upper bounds and performance of policies obtained for our approach, compared with the above

mentioned alternative approaches. We consider TISA with different aggregations. The rationale is

that we intend to demonstrate the obtainable gains by splitting up the inventory while balancing

the computational effort required to solve (P). Our numerical examples provide a framework of

what improvements can be expected for approximations in between the demonstrated ones. All

computations were carried out with matlab using cplex on a 3 GHz PC.

Problem Instances

We test our approach on two small networks called HS-a and HS-b, and on a somewhat larger

network based on the so-called “Small Network Example” of Liu and van Ryzin (2008).

The first network HS-a is depicted in Figure 2 and represents a network with one hub and two

non-hub nodes. There are four flight legs, and we assume that the segments are such that they

consider all products with the same origin-destination (O-D) combination. In this case, we have

six segments which correspond to the six possible O-D combinations. For each itinerary there are
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two products, a high fare class and a low fare class. Preference values were generated from the

Poisson distribution with mean 80 for high fares, with mean 200 for low fares, and mean 10 for

the no-purchase preference and are given in Table 2, which also provides an overview of products,

divided into the disjoint consideration sets Cl for each segment l. Fares are likewise indicated; they

were drawn from the Poisson distribution with mean for high and low fares on local flight 30 and

10, respectively, and for high and low fares on multi-leg itineraries 300 and 100, respectively. We

use three arrival rates λ =
∑

l
λl to vary the load factor of the considered network instances to

having a low, medium and high load factor, given in Table 4. The empirical load factor is obtainable

by summing consumed capacity over the booking horizon for each sample path, averaging these

numbers over all samples and dividing it by the total network capacity. Clearly, the load factor

depends on the simulations, in particular with respect to the policies that were used. Since we

intend to compare different policies under the same circumstances, we characterize the latter with

the so-called capacity tightness instead of the empirical load factor. Capacity tightness is defined

here as the total expected resource consumption of offering a specific set S∗, divided by the network

capacity. In formulae,

Capacity Tightness ρ=
λ

∑τ

t=1

∑

j∈S∗

∑m

i=1 aijPj(S
∗)

∑m

i=1 ci

,

where S∗ is the revenue maximizing set given no capacity constraints,

S∗ ∈ argmax
S⊆N

∑

j∈S

Pj(S)fj.

The second network HS-b is depicted in Figure 3, and segments are described in Table 3 and

Table 5. It consists of two parallel flights from location A to H, and further two parallel flights

from H to B. On each itinerary we again have two fare classes high and low, and we assumed

that segments correspond to O-D combinations. The fares and preference values are again taken

from the Poisson distribution with mean as in the network HS-a. For both networks capacities are

scaled up starting from ĉ := [2,4,4,2]. We confine ourselves to very small network capacities since

solution of the full-blown approach TISAC becomes quickly computationally expensive, yet it is

of interest because it provides an excellent benchmark that can be used for testing other policies

such as TISA2 and indicates the range of possible improvement due to inventory dependence. For

practical implementations however, the aggregated approach must be used.

The final test network is displayed in Figure 4 and consists of 7 flight legs and 22 products.

We took the product and customer segment definitions from Liu and van Ryzin (2008) and state

them in Table 6 and Table 7. The time horizon comprises 200 periods and the capacity vector
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Table 2 Products, Segments and Preference Values for HS-a

C1 C2 C3 C4 C5 C6

Prod. j 1 2 3 4 5 6 7 8 9 10 11 12

Segment A → H A → H → B H → B B → H B → H → A H → A

Fare 30 12 294 97 39 10 26 10 289 121 25 10

Legs a a a,b a,b b b c c c,d c,d d d

Pref. vl 72 198 76 203 89 200 74 228 87 209 87 214

Product definitions for network HS-a. “Legs” indicates the resources which the

respective product utilizes. No-purchase preference vl0 = [6,14,7,6,9,7].

Table 3 Products, Segments and Preference Values for HS-b

C1 C2 C3

Prod. j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Segment A → H A → H → B H → B

Fare 28 16 31 11 325 91 279 117 308 91 316 118 27 10 26 5

Legs a a b b a,c a,c a,d a,d b,c b,c b,d b,d c c d d

Pref. vl 70 205 99 216 81 214 80 218 94 213 74 197 84 217 85 200

“Legs” indicates the resources which the respective product utilizes. No-purchase preference

vl0 = [3,6,14].

Table 4 HS-a: Arrival rates.

Seg. l Low λ Med. λ High λ

1 0.0997 0.1189 0.1534

2 0.0605 0.0722 0.0932

3 0.0962 0.1147 0.1479

4 0.1033 0.1232 0.1589

5 0.0890 0.1062 0.1370

6 0.0712 0.0849 0.1096

Σ 0.52 0.62 0.8

HS-a: Arrival rates λl for each seg-

ment l, for the three considered cases

of λ∈ {0.52,0.62,0.8}.

Table 5 HS-b: Arrival rates.

Seg. l Low λ Med. λ High λ

1 0.1327 0.1598 0.2051

2 0.1886 0.2271 0.2914

3 0.1187 0.1430 0.1835

Σ 0.44 0.53 0.68

HS-b: Arrival rates λl for each seg-

ment l, for the three considered cases

of λ∈ {0.44,0.53,0.68}.

is c= [20,30,30,30,30,15,15]. We consider various scenarios by scaling this capacity vector with

a parameter α ∈ {0.6,0.8,1,1.2,1.4}, and setting the no-purchase preference to 1,5 or 10 for the

business segments, and 5, 10 or 20 for the leisure segments. For this so-called Small Network

Example, we aggregate the inventory of each flight leg i in Ki ranges of uniform length, where

K := [4,2,2,2,2,1,1]. We chose this aggregation because the dual values of the capacity constraints

of CDLP indicated that leg 1 is typically the most valuable resource, and legs 6 and 7 are the least
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Figure 4 Small Network example.

A H

B

C

Leg 2 (morning)

Leg 1 (morning)

Leg 3 (afternoon)

Leg 4 (morning)

Leg 5 (afternoon)

Leg 6 (morning)

Leg 7 (afternoon)

Table 6 Small Network example

Product Legs Class Fare Product Legs Class Fare

1 1 H 1000 12 1 L 500

2 2 H 400 13 2 L 200

3 3 H 400 14 3 L 200

4 4 H 300 15 4 L 150

5 5 H 300 16 5 L 150

6 6 H 500 17 6 L 250

7 7 H 500 18 7 L 250

8 2,4 H 600 19 2,4 L 300

9 3,5 H 600 20 3,5 L 300

10 2,6 H 700 21 2,6 L 350

11 3,7 H 700 22 3,7 L 350

Product definitions.

valuable ones for the considered scenarios. We refer to the LP resulting from using this aggregation

in (P) and to the corresponding direct opportunity cost policy as TISAK; which one is meant

should be clear from the context.

Upper Bound Quality

Upper bounds are useful as benchmarks in simulation studies and also potentially in designing new

policies: For example, the approach of Siddappa et al. (2007) uses upper and lower bounds on the

value function to construct policies. As stated in Proposition 1, the optimal objective value to (P)

constitutes an upper bound on the optimal expected revenue and, in particular, the bound is at

least as good as the one provided by the affine approximation approach. The natural question arises

whether the new bound might turn out to be identical to the latter, or, if there is improvement,
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Table 7 Small Network example

Segment O-D Consideration set Pref. vector λl Description

1 A→B {1,8,9} (10,5,5) 0.08 Business

2 A→B {12,19,20} (10,10,5) 0.2 Leisure

3 A→H {2,3} (10,10) 0.05 Business

4 A→H {13,14} (10,10) 0.2 Leisure

5 H→B {4,5} (10,10) 0.1 Business

6 H→B {15,16} (10,5) 0.15 Leisure

7 H→C {6,7} (10,5) 0.02 Business

8 H→C {17,18} (10,10) 0.05 Leisure

9 A→C {10,11} (10,5) 0.02 Business

10 A→C {21,22} (10,10) 0.04 Leisure

Segment definitions.

how much more accuracy was gained. We address this issue by comparing the upper bounds of

the different solution approaches, all of which being applied to the problem instances as described

above. All approaches were implemented using column generation. As stopping criterion for the

column generation procedure we used the following “x% tolerance criterion”: Stop generating

columns if the sum over all time periods of the maximum reduced cost of each time period, say we

denote it by S, is within x% of objective value of the restricted master problem plus S. The CDLP

is solved to optimality, for TISAC we used the 1% and for all other approaches the 0.5% stopping

criterion.

We solve the problem HS-a and HS-b with CDLP, ADLP and AFF, and compare their corre-

sponding upper bounds with our two-ranges approach TISA2 and the individual seat-level approach

TISAC. Tables 15 and 16 highlight the percentage improvement of TISAC relative to the other

approaches over several problem instances. The highest gains in accuracy are observed for medium

load factors, which is intuitive since very low load factors imply simply offering the unconstrained

revenue maximizing set, and for very high load factors one would simply offer the highest fares.

For network HS-b, however, the improvement converges quickly to only 1% over any of the other

approaches. In all cases we can observe the following ordering of the arising bounds:

zCDLP ≥ zADLP ≥ zAFF ≥ zTISA2 ≥ zTISAC.

Small deviations from this ordering can occur due to stopping the column generation procedure

according to the above mentioned tolerance criterion. This demonstrates that the bounds obtainable

from the concave approach are indeed improvements. As we increase the time horizon and the leg

capacity, the improvements are reduced but still are at least 5% compared to AFF in network
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Figure 5 HS-a: Bound improvement.
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Figure 6 HS-a: Policy improvement.
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Figure 7 HS-b: Bound improvement .
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Figure 8 HS-b: Policy improvement.
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HS-a. This decreasing difference can be explained with the asymptotic behavior of all approaches,

that means, they all approach the optimal expected revenue as time and capacity are scaled up.

The Small Network Example gives some insight into the behavior on somewhat larger networks.

For this example, we solved CDLP to optimality while for AFF and TISAK we used the 1%

stopping criterion. The results reported in Table 8 show that AFF and TISAK provide almost

identical bounds. Keep in mind that these values do not always satisfy zAFF ≥ zTISAK as we would

expect because we did not solve to optimality. All bounds are identical if capacity is ample.

Policy Performance

We claim that our proposed approach yields better opportunity cost estimates through a better

approximation of the value function, and support this by numerical results that were the outcome
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Table 8 Upper bounds for Small Network Example.

α v0 zCDLP zAFF zTISAK %zAFF − zCDLP %zTISAK − zCDLP

0.6 (1,5) 36,187 35,796 35,775 -1.08 -1.14

0.6 (5,10) 33,158 32,654 32,728 -1.52 -1.30

0.6 (10,20) 29,960 29,524 29,531 -1.46 -1.43

0.8 (1,5) 43,202 42,832 42,862 -0.86 -0.79

0.8 (5,10) 38,900 38,494 38,551 -1.04 -0.90

0.8 (10,20) 34,678 34,347 34,403 -0.95 -0.79

1.0 (1,5) 48,822 48,497 48,496 -0.67 -0.67

1.0 (5,10) 43,767 43,407 43,417 -0.82 -0.80

1.0 (10,20) 35,103 35,100 35,101 -0.01 -0.01

1.2 (1,5) 53,564 53,249 53,238 -0.59 -0.61

1.2 (5,10) 44,690 44,686 44,637 -0.01 -0.12

1.2 (10,20) 35,103 35,103 35,102 -0.00 -0.00

1.4 (1,5) 55,257 55,068 55,084 -0.34 -0.31

1.4 (5,10) 44,690 44,687 44,640 -0.01 -0.11

1.4 (10,20) 35,103 35,102 35,102 -0.00 -0.00

CDLP was solved to optimality, AFF and TISAK were stopped with the 1% criterion.

of using the opportunity cost information obtained from the various LP approaches directly to

construct policies as described in Section 7.

We tested the following policies:

• CDLP: Policy with static opportunity cost estimate (3) based on the optimal dual values of

CDLP.

• DCDLP: Dynamic programming decomposition policy based on CDLP as explained in Sec-

tion 7.2.

• ADLP: Policy with opportunity cost estimate (4) based on the optimal dual values of ADLP.

• AFF: Policy with opportunity cost estimate (5) based on the optimal dual values of AFF.

• TISA2, TISAC and TISAK: Policies with opportunity cost estimates based on an inventory

split in 2, ci and ki parts for all i, respectively, as detailed in Section 7.

• DTISAK: Dynamic programming decomposition policy based on TISA with inventory split

into K = [4,2,2,2,2,1,1] range for the Small Network Example.

The booking process was simulated for each network instance by generating customer arrivals,

letting the respective policy decide on which set of products to offer, and simulating customer choice

decision based on the MNL choice model. We record for each run the achieved revenue, average it

over the entire sample and use the resulting value to measure and compare policy performance.
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In Figures 6 and 8 we summarized the outcome of our simulation study comparing TISAC

with the alternative approaches, the underlying data can be found in Tables 17 and 18. The

relative errors of the simulations are at most 0.8% with 99% confidence. We find that the static

marginal capacity value estimates do perform quite poorly as expected, and that ADLP and AFF

show improved results because they incorporate time-dependent estimates. All approaches are

outperformed by TISAC and even TISA2, the latter with the exception of one problem instance

in HS-b. In particular, TISA2 works already very well despite only using two marginal values per

resource per time step, which indicates that some aggregation of inventory levels to enhance the

computational performance will not necessarily severely deteriorate policy performance relative to

TISAC.

Table 9 Simulation results for Small Network Example.

α v0 DCDLP LF DTISAK LF TISAK LF AFF LF %DTISAK
− DCDLP

%TISAK
− DCDLP

%AFF −
DCDLP

0.6 (1,5) 34,045 0.95 33,160 0.94 34,073 0.94 31,720 0.78 -2.60 0.08 -6.83

0.6 (5,10) 30,969 0.92 30,494 0.92 30,667 0.90 30,558 0.93 -1.53 -0.97 -1.33

0.6 (10,20) 27,974 0.88 27,699 0.89 27,966 0.89 26,770 0.87 -0.98 -0.03 -4.30

0.8 (1,5) 41,143 0.93 40,477 0.94 39,086 0.86 37,514 0.88 -1.62 -5.00 -8.82

0.8 (5,10) 37,049 0.89 36,720 0.90 37,036 0.92 35,799 0.89 -0.89 -0.03 -3.37

0.8 (10,20) 32,671 0.82 32,634 0.82 32,473 0.80 32,574 0.81 -0.11 -0.61 -0.30

1.0 (1,5) 47,107 0.91 46,693 0.91 44,876 0.85 43,652 0.83 -0.88 -4.74 -7.33

1.0 (5,10) 41,854 0.85 41,735 0.85 41,897 0.86 41,129 0.84 -0.29 0.10 -1.73

1.0 (10,20) 34,589 0.71 34,589 0.71 34,645 0.72 34,645 0.72 0.00 0.16 0.16

1.2 (1,5) 51,828 0.86 51,658 0.86 51,633 0.86 50,364 0.85 -0.33 -0.38 -2.82

1.2 (5,10) 44,091 0.74 44,091 0.74 44,058 0.74 44,058 0.74 0.00 -0.07 -0.07

1.2 (10,20) 34,969 0.61 34,969 0.61 34,982 0.61 34,982 0.61 0.00 0.04 0.04

1.4 (1,5) 54,308 0.76 54,308 0.76 54,362 0.77 54,360 0.77 -0.00 0.10 0.10

1.4 (5,10) 44,534 0.64 44,534 0.64 44,535 0.64 44,535 0.64 0.00 0.00 0.00

1.4 (10,20) 35,014 0.52 35,014 0.52 35,015 0.52 35,015 0.52 0.00 0.00 0.00

LF: empirical average load factor. %A − B: percentage difference between policy A and B.

We test whether the policies will still perform as strongly when applied to the Small Network

Example. CDLP with DP decomposition (DCDLP) sets the benchmark against which we compare

the average revenue results from the simulation runs.For all 15 test scenarios, we run 5000 simu-

lations with the policies DCDLP, DTISAK, TISAK and AFF, respectively. Table 9 displays the

results, and Table 10 the corresponding relative percentage errors with 95% confidence. TISAK

is in all scenarios better than AFF and reaches in most cases the benchmark DCDLP. In only 3
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Table 10 Relative percentage errors of simula-

tion results for Small Network Exam-

ple.

α v0 DCDLP DTISAK TISAK AFF

0.6 (1,5) 0.12 0.11 0.15 0.22

0.6 (5,10) 0.14 0.13 0.16 0.17

0.6 (10,20) 0.15 0.14 0.14 0.20

0.8 (1,5) 0.16 0.14 0.21 0.18

0.8 (5,10) 0.17 0.16 0.16 0.22

0.8 (10,20) 0.18 0.18 0.19 0.19

1.0 (1,5) 0.19 0.18 0.21 0.26

1.0 (5,10) 0.19 0.19 0.19 0.21

1.0 (10,20) 0.24 0.24 0.24 0.24

1.2 (1,5) 0.20 0.20 0.19 0.26

1.2 (5,10) 0.25 0.25 0.25 0.25

1.2 (10,20) 0.26 0.26 0.26 0.26

1.4 (1,5) 0.23 0.23 0.24 0.24

1.4 (5,10) 0.27 0.27 0.27 0.27

1.4 (10,20) 0.26 0.26 0.26 0.26

Relative percentage error with 95% confidence of

simulation results, sample size 5000.

Table 11 CPU time for Small Network Example.

α v0 AFF (h) TISAK (h) TISAK/AFF

0.6 (1,5) 0.20 14.06 69.3

0.6 (5,10) 0.16 11.78 71.5

0.6 (10,20) 0.15 10.57 71.0

0.8 (1,5) 0.13 9.73 75.2

0.8 (5,10) 0.11 9.21 80.2

0.8 (10,20) 0.09 6.99 74.2

1.0 (1,5) 0.15 8.11 55.4

1.0 (5,10) 0.12 5.94 48.8

1.0 (10,20) 0.06 3.40 55.2

1.2 (1,5) 0.13 6.76 51.7

1.2 (5,10) 0.08 3.51 42.7

1.2 (10,20) 0.07 3.19 46.2

1.4 (1,5) 0.11 8.09 74.4

1.4 (5,10) 0.07 4.43 67.5

1.4 (10,20) 0.06 4.46 75.0

On average, run time increases with a factor of

63.9.

scenarios is TISAK 1% or more under the benchmark. DTISAK offers some improvement in the

worst scenarios of TISAK, but delivers significantly deteriorated results in others. The reason for

this behavior is probably an amplification effect of the inexact input resulting from not having

solved TISAK to optimality. We can see from the empirical load factors that AFF tends to be too

restrictive in the scenarios of its worst performance. This is intuitive because it tends to overesti-

mate the opportunity cost. The improvement in revenue performance of TISAK appears impressive

given the relatively coarse inventory aggregation of 1-4 ranges.

Computational Performance

The linear program (P) has (τ + τ
∑

i
Ki) constraints. Computational workload for solving a lin-

ear program grows proportionally to the number of constraints to the power of three (Bradley

et al. (1977), p. 364), thus considering every inventory level separately on all resources –which

corresponds to Ki = ci for all i– will be expensive. As an example for the grow of computational

workload, we observed that solving TISA2 takes about 5 times as long as solving AFF, see Table

14. Let us investigate how the marginal value of capacity actually varies across the inventory: In our
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numerical experiments, the difference between marginal values of capacity is small if the remain-

ing time to departure is large relative to the capacity. To exemplify this observation, consider the

contour plot in Figure 9. For the first 50 time periods, the marginal capacity values are almost

constant over large inventory level ranges. Only in the last 30 time periods, the decline becomes

more pronounced as it can be seen from the contour lines moving together. This can be intuitively

explained by noting that these marginal values depend on the probability that we can sell all the

seats up to the corresponding inventory level, and if the number of remaining time periods is large

relative to the capacity, the probabilities should not differ very much. Therefore, first solving a large

problem with a high level of aggregation and later resolving with refined approximation should

be advantageous. Initially, an aggregation might be chosen with inventory ranges of equal length

and large enough such that the model is still tractable. Having obtained a solution, we can guide

the aggregation in the resolving process by examining the relative differences between resulting

marginal values Vt,i,kl
and Vt,i,kr of adjacent pairs of inventory ranges (kl, kr). If the difference

between these values is greater than some specified threshold ǫ, then we could halve both ranges

kl and kr so that in the next resolving process the change in the slope of the value function can

be better represented in the approximation. On the other hand, if |Vt,i,kl
− Vt,i,kr | < ǫ, we would

conclude that the value function is close to being linear in this area and we do not refine the

approximation. In fact, we might even want to merge such two ranges into one to save computa-

tional effort. Also, we can exploit the flexibility of our model to approximate different flights with

different levels of aggregation; those with low load factor will not need a fine approximation, and

can thus be aggregated to enhance computational performance. Such legs could be identified by

finding flights i that have πi = 0 in the optimal CDLP dual solution.

For the Small Network Example, CPU times for solving the respective LPs can be found in

Table 11. The run time increases dramatically on average by a factor of 64. This can be attributed

to the column generation process and imply that the approach indeed needs high aggregation to

make it feasible. In fact, aggregation of time periods appears to be an attractive way to keep the

computational burden acceptable. Note that the absolute run times, as always, carry little meaning

since they always depend the programming language, the hardware and the skill of the program-

mer. It can also be reduced by using heuristic for the column pricing as proposed in Meissner and

Strauss (2009). While the CDLP can be solved relatively quickly, the DP decomposition is like-

wise computationally intensive. In particular, its run time increases with the leg capacities, unlike

TISAK for a fixed number of ranges per leg.

http://www.meiss.com/
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9. Conclusion and Future Research

In the context of quantity-based network revenue management, we presented a linear programming

approach to approximate dynamic programming with nonlinear approximation of the value function

with the specific feature that it incorporates both customer choice behavior as well as estimates

of marginal capacity values that depend on time and resource inventory level. As a result of the

improved approximation, we obtain a better estimate of the opportunity cost, which is reflected

in provably tighter upper bounds for any inventory aggregation and improved policy performance

as observed in simulation studies. A policy based on the opportunity cost estimates obtained

directly from an approximate solution of our linear program using column generation outperforms

alternative approaches. The solution of the linear program can be expensive, hence we propose to

trade off accuracy with computational workload by aggregating inventory levels at the beginning

of the booking horizon and later re-solving with refined inventory level resolution.

More research is needed on the question of how to aggregate inventory without losing too much

accuracy. A promising way might be to re-solve the linear program several times over the booking

horizon with a process that guides the structure of inventory aggregations towards refinement

where the value function exhibits non-linearity and aggregation where it is close to being linear.

Such a process could be implemented by examining the difference in marginal values between every

pair of adjacent inventory ranges and refining the ranges if this difference is large, or merging them

into a single range if not. In addition, aggregation of time steps is also possible and can be used

to reduce computational effort by exploiting that typically the value function at the beginning of

the booking horizon is close to being linear.
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Figure 9 Contour plot of marginal value of capacity for leg d in network HS-b.
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Note. Departures at time period τ = 81, capacity of this resource is 8, capacity tightness ρ = 1.2.

Table 12 Simulation results for CDLP with dynamic pro-

gramming decomposition on HS-a.

τ c DP-CDLP RE TISAC RE TISAC

DP-CDLP

Low LF
(ρ = 1)

20 ĉ 674 0.7 738 0.6 1.09

40 2ĉ 1577 0.7 1627 0.8 1.03

80 4ĉ 3422 0.6 3450 0.6 1.01

Med LF
(ρ = 1.2)

20 ĉ 750 0.7 820 0.6 1.09

40 2ĉ 1763 0.6 1816 0.7 1.03

80 4ĉ 3859 0.5 3907 0.5 1.01

High LF
(ρ = 1.6)

20 ĉ 895 0.7 940 0.7 1.05

40 2ĉ 2004 0.5 2090 0.5 1.04

80 4ĉ 4285 0.4 4389 0.4 1.02

TISAC was implemented as direct opportunity cost estimate

policy. RE is the percentage relative error of the sample mean

with 99% confidence. The constant vector ĉ is defined as ĉ :=

[2,4,4,2]..
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Table 13 Simulation results for CDLP with dynamic pro-

gramming decomposition on HS-b.

τ c DP-CDLP RE TISAC RE TISAC

DP-CDLP

Low LF
(ρ = 1)

20 ĉ 990 0.6 1144 0.7 1.16

40 2ĉ 2240 0.6 2378 0.7 1.06

80 4ĉ 4771 0.4 4866 0.5 1.02

Med LF
(ρ = 1.2)

20 ĉ 1212 0.5 1327 0.6 1.09

40 2ĉ 2677 0.6 2783 0.7 1.04

80 4ĉ 5639 0.5 5648 0.5 1.00

High LF
(ρ = 1.6)

20 ĉ 1399 0.4 1588 0.5 1.14

40 2ĉ 3131 0.4 3321 0.5 1.06

80 4ĉ 6666 0.3 6878 0.4 1.03

TISAC was implemented as direct opportunity cost estimate

policy. RE is the percentage relative error of the sample mean

with 99% confidence. The constant vector ĉ is defined as ĉ :=

[2,4,4,2]..

Table 14 CPU run time in seconds

τ c AFF (s) TISA2 (s) TISA2

AFF

Low LF
(ρ = 1)

20 ĉ 4.3 27 6.3

40 2ĉ 8.7 41 4.7

80 4ĉ 15.6 73 4.7

Med LF
(ρ = 1.2)

20 ĉ 4.5 24 5.3

40 2ĉ 9 49 5.4

80 4ĉ 18.8 84 4.5

High LF
(ρ = 1.6)

20 ĉ 5.1 18 3.5

40 2ĉ 9.7 41 4.2

80 4ĉ 22.8 115 5.0

CPU run times to solve problem HS-a with AFF

and TISA for the approach with two marginal values

per resource per time step. The constant vector ĉ is

defined as ĉ := [2,4,4,2].



Meissner and Strauss: Network RM with Inventory-Sensitive Bid Prices and Customer Choice 35

Table 15 Upper Bounds for Network HS-a

τ c zCDLP zADLP zAFF zTISA2 zTISAC

Low LF
(ρ = 1)

20 ĉ 925 866 851 775 766

40 2ĉ 1850 1808 1803 1788 1661

80 4ĉ 3701 3658 3655 3653 3488

Med LF
(ρ = 1.2)

20 ĉ 1077 978 962 877 864

40 2ĉ 2154 2065 2050 2026 1878

80 4ĉ 4307 4234 4219 4214 3953

High LF
(ρ = 1.6)

20 ĉ 1200 1102 1086 1008 997

40 2ĉ 2400 2333 2321 2299 2153

80 4ĉ 4800 4743 4742 4738 4529

Upper bounds on optimal expected revenue from HS-a. The

constant vector ĉ is defined as ĉ := [2,4,4,2].

Table 16 Upper Bounds for Network HS-b

τ c zCDLP zADLP zAFF zTISA2 zTISAC

Low LF
(ρ = 1)

20 ĉ 1293 1273 1250 1243 1235

40 2ĉ 2587 2565 2548 2548 2523

80 4ĉ 5173 5147 5137 5140 5109

Med LF
(ρ = 1.2)

20 ĉ 1495 1472 1447 1440 1430

40 2ĉ 2990 2964 2943 2939 2917

80 4ĉ 5980 5950 5930 5930 5897

High LF
(ρ = 1.6)

20 ĉ 1817 1795 1746 1736 1715

40 2ĉ 3633 3609 3580 3573 3537

80 4ĉ 7266 7240 7220 7220 7170

Upper bounds on optimal expected revenue from HS-b. The

constant vector ĉ is defined as ĉ := [2,4,4,2].
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Table 17 Simulation results for direct opportunity cost estimate policies on network

instances HS-a.

τ c CDLP RE ADLP RE AFF RE TISA2 RE TISAC RE

Low LF
(ρ = 1)

20 ĉ 727 0.7 732 0.7 732 0.7 738 0.6 738 0.6

40 2ĉ 1594 0.8 1445 0.8 1591 0.8 1607 0.8 1627 0.8

80 4ĉ 3364 0.7 2772 0.6 3297 0.6 3398 0.6 3450 0.6

Med LF
(ρ = 1.2)

20 ĉ 743 0.6 816 0.6 815 0.6 820 0.6 820 0.6

40 2ĉ 1621 0.6 1622 0.7 1575 0.8 1814 0.7 1816 0.7

80 4ĉ 3414 0.5 3421 0.5 3693 0.6 3830 0.6 3907 0.5

High LF
(ρ = 1.6)

20 ĉ 721 0.6 886 0.8 882 0.8 917 0.8 940 0.7

40 2ĉ 1534 0.6 1893 0.6 1981 0.6 2001 0.6 2090 0.5

80 4ĉ 3185 0.4 3598 0.4 4213 0.5 4186 0.5 4389 0.4

RE is the percentage relative error of the sample mean with 99% confidence. The

constant vector ĉ is defined as ĉ := [2,4,4,2].

Table 18 Simulation results for direct opportunity cost estimate policies on network

instances HS-b.

τ c CDLP RE ADLP RE AFF RE TISA2 RE TISAC RE

Low LF
(ρ = 1)

20 ĉ 1053 0.7 1072 0.7 1146 0.8 1112 0.7 1144 0.7

40 2ĉ 2242 0.7 2280 0.7 2294 0.7 2346 0.7 2378 0.7

80 4ĉ 4693 0.5 4753 0.5 4760 0.5 4764 0.5 4866 0.5

Med LF
(ρ = 1.2)

20 ĉ 1148 0.6 1175 0.6 1222 0.6 1338 0.7 1327 0.6

40 2ĉ 2419 0.5 2742 0.8 2495 0.5 2783 0.8 2783 0.7

80 4ĉ 5003 0.4 5149 0.5 5033 0.4 5316 0.5 5648 0.5

High LF
(ρ = 1.6)

20 ĉ 1260 0.5 1585 0.5 1585 0.5 1586 0.5 1588 0.5

40 2ĉ 2531 0.5 2542 0.5 3313 0.5 3315 0.5 3321 0.5

80 4ĉ 5021 0.4 5361 0.3 5491 0.3 6832 0.4 6878 0.4

RE is the percentage relative error of the sample mean with 99% confidence. The

constant vector ĉ is defined as ĉ := [2,4,4,2].
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