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Abstract

Consider a risk-averse decision maker in the setting of a single-leg dynamic revenue
management problem with revenue controlled by limiting capacity for a fixed set of
prices. Instead of focussing on maximizing the expected revenue, the decision maker
has the main objective of minimizing the risk of failing to achieve a given target rev-
enue.

Interpreting the revenue management problem in the framework of finite Markov
decision processes, we augment the state space of the risk-neutral problem definition
and change the objective function to the probability of failing a certain specified target
revenue. This enables us to obtain a dynamic programming solution which generates
the policy minimizing the risk of not attaining this target revenue. We compare this so-
lution with recently proposed risk-sensitive policies in a numerical study and discuss
advantages and limitations.
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1 Introduction

Revenue management systems have become a standard tool in various industries beyond

the original airline industry. These newer industries range from cruise lines, rental cars,

and media advertising to medical services and event management, see e.g. Talluri and van

Ryzin (2005) and Chiang et al. (2007).

We consider a typical revenue management model: a firm operating in a monopolistic

setting offering multiple products. These products consume a fixed resource of a limited

capacity. The firm sells the products over a finite time horizon. At the end of this time, the

salvage value of the resource is assumed to be zero.

The firm can influence its revenue stream by allocating capacity to different classes of

demand. Its objective is to find a policy which optimizes an objective function. Normally,

this objective function is risk-neutral, and the policy is chosen to maximize expected rev-

enue. Such a risk-neutral objective can be motivated by the law of large numbers if the

revenue process repeats itself very often, e.g. a daily operating airline flight connection.

However, a risk-neutral policy might not be requested under all scenarios and a risk-

averse policy might be advantageous for the decision maker.

Lancaster (2003) remarks that a risk-neutral model is often not sufficient, even in the

airline industry, as a stable revenue might be preferable due to financial constraints.

In practice, decision makers present some level of risk aversion in revenue management,

as mentioned by Bitran and Caldentey (2003). Weatherford (2004) reports the same experi-

ence. He observed that airline analysts feel uncomfortable with recommendations of their

(risk-neutral) revenue management systems, in particular while waiting for the high-fare

passengers a few days before flight departure.

Levin et al. (2008) provide arguments to employ risk-averse policies in scenarios with

only a small number of reiterations. They consider an event promoter who has high fixed

costs which must be recovered in order to prevent a possible loss. Minimum targets can

not be ignored in such a case. They present further scenarios which require strategical and

financial circumstances which necessitate risk considerations.

Taking into account costs of price changes, Koenig and Meissner (2008) illustrate that

risk considerations can make a difference when choosing a revenue management strategy.

http://www.meiss.com/
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In recent papers by Barz and Waldmann (2007), Huang and Chang (2009) and Koenig and

Meissner (2009), risk-neutral and risk-sensitive policies are analyzed. The results show that

an appropriate risk-averse policy can be selected if the decision maker knows the parame-

ters representing his level of risk aversion. Such parameters have to be determined, which

is something that is not straightforward in either of the published approaches, whether

the underlying concept is a exponential utility function or a discount factor relaxing an

optimality condition. Usually, the parameters have to be estimated by running numerical

experiments and evaluating risk measures, such as mean-variance or conditional-value-at-

risk, on the results.

Thus, we propose using the target percentile risk measure, discussed by Boda and Filar

(2006), as the object function. The target percentile risk measure computes the probability

of the return failing to achieve a previous given fixed target. There are several advantages

of using this measure.

First, one important structural property is its time consistency. It says that optimality

of decisions should only consider the future. Time consistency is a desirable property for

multi-period risk measures as it allows its use in dynamic programming, as shown by the

works of Boda and Filar (2006), Artzner et al. (2007), Shapiro (2009). Second, it does not

assume a special kind of revenue distribution, as it measures the percentile of the given

target. Third, it is easily interpreted by practitioners and does not require a risk sensitivity

parameter which might be difficult to assess. Fourth, numerical computation schemes are

available as described by Wu and Lin (1999). Fifth, Boda and Filar (2006) show that multi-

stage versions for the well-established risk measures value-at-risk and conditional-value-at-

risk can be developed using the target percentile.

The structure of the paper is as follows. We look at related literature in Section 2. In

Section 3, we describe our model as a Markov decision process and its extension to apply

the target percentile risk measure. This section also contains some implementation details.

Section 4 shows numerical results of our approach and provides a comparison with results

of other approaches. Finally, we conclude the paper in Section 5.

http://www.meiss.com/
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2 Related Work

Related work can be divided into three classes" risk and its measurement, in particular

multi-period risk measures; Markov decision processes (MDPs) and dynamic programming

considering risk in general; revenue management and risk. As literature about risk and its

measures is vast, we will only point out some recent publications which we classify to be of

interest in context of this paper. We then proceed to discuss links to MDP literature, which

provides the basis of our approach.

Considering risk and quantifying it inevitably leads to expected utility theory as devel-

oped by von Neumann and Morgenstern (1947) and the mean-variance measure introduced

by Markowitz (1952). However, both approaches have drawbacks, e.g. utility theory re-

quires knowledge about one’s utility function, and mean-variance theory is only useful with

bell-shaped probability distributions and cannot properly used with every probability dis-

tribution. Thus, other risk measures were investigated and have become more attractive,

such as value-at-risk (V@R) and conditional-value-at-risk (CV@R), see Artzner et al. (1999)

or Rockafellar and Uryasev (2000). Both measures compute a value for the downside risk

with respect to a given confidence value and can be interpreted as kinds of probabilistic

constraints. The latter measure has mathematical properties defining its coherence which

provide advantages when compared to the former. However, the disadvantage of these

measures is they are only suitable for a single-stage decision. They are missing the time-

consistency property and, thus, are not suitable for multi-period decision making. This has

been recognized, and several authors, such as Boda and Filar (2006), Artzner et al. (2007),

and Shapiro (2009), investigate time-consistent risk measures. Such measures are feasible

as objective functions for dynamic programming. Hence, they are appropriate for use in

revenue management models employing the Bellman equation.

As many problems can be modeled as MDPs (cf. White, 1993; Puterman, 2005), many

authors have investigated risk issues in this context. A good overview about risk in MDPs is

provided by White (1988). Thus, we refer to this publication for a more complete overview

and point out only briefly the general concepts here. One popular stream of implementing

risk in MDPs, which goes back to Howard and Matheson (1972), is using utility functions for

computing risk-sensitive policies. Another stream focuses on the variance and probabilistic
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constraints as risk measures, beginning with the early works of White (1974), Sobel (1982),

and ongoing with recent works such as of Sladky and Sitar (2008) and Defourny et al. (2008).

We are interested in the target percentile risk measure which is analyzed by Bouakiz and

Kebir (1995), Wu and Lin (1999). Their works builds the basis for the time-consistent dy-

namic risk measures proposed by Boda and Filar (2006). The main idea is the extension of

the state space in order to use one, or possibly more, variables to keep track of the history.

Most revenue management models use a risk-neutral objective function. We refer to the

work of Talluri and van Ryzin (2005) for an overview of these kinds of models. The risk-

neutral model of dynamic capacity control, which we consider here, was introduced by Lee

and Hersh (1993). The corresponding Markov decision process is described by Lautenbacher

and Stidham (1999).

The approaches for incorporating risk in revenue management models are analogous to

the general decision making under risk: expected utility theory, mean-variance considera-

tions, probabilistic constraints such as V@R.

Expected utility theory as an element for reflecting risk in revenue management is rec-

ommended by Weatherford (2004). He states that the assumption of risk neutrality is not

given for many practical scenarios and proposes expected utility theory as a risk-averse

solution. Instead the well-adopted (risk-neutral) expected marginal seat revenue model

(EMSR), standard algorithms introduced by Beloba (1989), and the expected marginal seat

utility (EMSU) heuristic can reflect risk-sensitivity for decision making.

Recent works of Barz and Waldmann (2007) and Feng and Xiao (2008) are employing

expected utility theory, too. Both papers support the application of an exponential utility

function to account for risk aversion. Barz and Waldmann (2007) use the Markov decision

process formulation of static and dynamic capacity control models, whereas Feng and Xiao

(2008) provides closed form solutions from a more general point of view.

Finally, Lim and Shanthikumar (2007) apply the equivalence of robust and risk-sensitive

control with an exponential utility function to dynamic pricing.

As the first revenue management model with risk considerations, the model of Feng and

Xiao (1999) uses variance as risk measure, in particular, the variance of sales due to price

changes. In order to integrate risk into their objective function, they combine expected
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revenue with a weighted penalty function for the sales variance. The risk sensitivity of the

decision maker can be adjusted by the weighting.

With a revenue management application in traffic and networks, Mitra and Wang (2005)

compare mean-variance, mean-standard-deviation and mean-CV@R for building an objec-

tive function. Their final choice is a mean-standard-deviation formulation. They demon-

strate the influence of risk-sensitivity by the efficient frontier for truncated Gaussian de-

mand distribution.

In an application for hotel revenue management, Lai and Ng (2005) formulate a robust

optimization model for mean versus average deviation.

Recently, Huang and Chang (2009) presented a risk-sensitive modification of the opti-

mality condition for the dynamic capacity control model and investigated their method by

measuring mean versus standard deviation in simulation runs. They offer a ranking of their

risk-sensitive policies using as the Sharpe ratio revenue per unit of risk divided by standard

deviation.

Illustrating the vulnerability of risk-neutral revenue management due to demand fore-

cast inaccuracy, Lancaster (2003) recommends a relative revenue per available seat mile at

risk metric, which integrates risk measurement with the V@R metric. This metric is the

expected maximum of underperformance over a time horizon at a choice confidence level.

Risk sensitivity is incorporated by Levin et al. (2008) into a dynamic pricing model of

perishable products. Their objective function consists of maximum expected revenue con-

strained by a desired minimum level of revenue with minimum acceptable probability. This

constraint is similar to a V@R formulation. Principally, their model extends a dynamic

pricing risk-neutral MDP with a further state for already gained revenue.

Using both risk measures standard deviation and CV@R, Koenig and Meissner (2008)

compare the suitability of two different pricing strategies considering the cost of price

changes. In a further paper, Koenig and Meissner (2009) evaluate a range of risk-sensitive

policies for the dynamic capacity control model.

http://www.meiss.com/
http://www.meiss.com/
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3 Description of Model

In the following, we describe the dynamic capacity control problem as a Markov decision

process in a similar way as previously done by Lautenbacher and Stidham (1999) and Barz

and Waldmann (2007). This model is then expanded in the state space in order to become

a model which allows the application of a risk-minimizing policy. We follow the approach

of Wu and Lin (1999) here. Our objective function is the target percentile dynamic risk

measure. Finally, we point out some aspects for implementation of this approach.

3.1 Markov Decision Process for Dynamic Capacity Control Model

We consider the capacity control model stated by Lee and Hersh (1993), which is often

referred to as dynamic capacity control. Although originally developed for airline revenue

management, it can be transferred to other industries. We describe the model in terms of

its original airline revenue management context in order to be more intuitive.

We assume that the booking requests follow a Poisson arrival process. Thus, the booking

period for a single-leg flight is separated into N decision periods, in such a way that the

probability of more than one request can be ignored. The decision periods are denoted by

n in{0, . . . , N}. Further, there are k booking classes with fares Fi, F1 > F2 > . . . > Fk and

F = {F1, . . . , Fk}. The probability of a request for fare class i in decision period n is given

by prn,i. Further, we set the probabilities for n = 0 to zero for all fare classes: pr0,i = 0; this

step just supports our model setting as the last decision will be made at time n = 0. The

probability of no request at all is prn,0 = 1−
∑k
i=1 p

r
n,i. The initial capacity of seats is given

by C . The remaining seats are given by c ≤ C in a time period.

We have a finite-state, discrete-time, Markov decision process Γ = (S,A,R, P) with count-

able state space S and action space A. Further, R denotes the reward set and P , the set of

transition probabilities. Time runs in discrete steps from n ∈ {0,1, . . . , N} and represents

the remaining time before flight departure.

The state space S contains all possible configurations of remaining capacity c and re-

quest for a fare class i. Thus S = {0,1, . . . , C} × {0,1, . . . , k} and a state (c, i) ∈ S says that

we have c seats left and a request for fare class i. We set the fare class 0 with fare F0 = 0,

as is often common.
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Our action space A(c, i) corresponds to the "reject" and "accept" decisions for a given

state. We have A(c, i) = {0,1}∀(c, i) ∈ S|i > 0 and A(c,0) = {0} to only allow the accepting

and rejecting of seats at the valid fare prices and not for the artificial class i = 0. For each

s ∈ S, the action space A(s) is finite.

Let R be the set of rewards (fares) when accepting one booking. Rewards are denoted by

rn(s, a) ∈ R with s ∈ S,a ∈ A and rn((c, i), a) = aFi for n, c > 0 and zero otherwise.

The transition probabilities p ∈ P are defined for states (c, i), (c − a, j) ∈ S with a ∈ A

by pn((c − a, j)|(c, i), a) = p
r
n,j for n = N,N − 1, . . . ,0, and 0 otherwise.

A decision maker decides on a sequence of rules an = dn(cn, in), which determine a

policy π = {dn, dn−1, . . . , d1}. Thus, one of the possible actions is chosen by accepting or

rejecting a booking request for each state (cn, in).

Now let ρπN (c, i) =
∑N
n=0 rn denote the random variable of the gained revenue for a

particular policy π beginning with capacity c and request i at N remaining time steps. Its

expected revenue is given by

υπN(c, i) = Eπ
[
ρπN (c, i)

]
= Eπ



N∑

n=1

rn((cn, in), dn(cn, in))+ r0(c0, i0)


 .

The maximal expected revenue and an associated policy can be computed by the Bellman

equation for this problem. However, we are interested in a policy which minimizes the time-

consistent dynamic risk measure of not achieving a target revenue x in the accumulated

return.

3.2 Expanded Markov Decision Process for Minimizing Risk of Failing Target

We are interested in minimizing the risk of not attaining a specified target revenue x for

the dynamic capacity control model. Thus, we want to find a policy π which minimizes the

objective function representing the probability of not achieving a previous specified target

value x. In order to derive this objective function, we follow the approaches mentioned by

White (1988), Wu and Lin (1999) and Boda and Filar (2006) and expand the Markov decision

process Γ by a larger state space. The extended Markov decision process Γ̃ is similar to Γ . It

consists of Γ̃ = (S̃, Ã, R̃, P̃) = (S̃,A,R, P), as described below.
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The state space S is replaced by the new state space S̃ = S × R with elements ((c, i), x).

It consists of states of the configurations of remaining capacity c and a request for fare

class i, and additionally, a revenue target x. All state variables are updated over time, e.g.

the revenue target x decreases by the realized fare price in accordance with decrementing

c by selling a seat.

The action space Ã is generated from action state A by Ã((c, i), x) = A(c, i),∀((c, i), x)

and, thus, Ã = ∪(c,i),x)∈S̃Ã((c, i), x) = ∪(c,i)∈SA(i) = A.

In a similar way, the reward set R̃ is build from R. For s̃ ∈ S̃, a ∈ A, the reward r̃n(s̃, a) ∈

R̃ is r̃n((c, i), x,a) = aFi for c, i > 0 and zero otherwise. Thus, R̃ = R.

As well, P̃ = P , as the transition probabilities P̃ are determined by P . We have p̃ ∈ P̃

and, with states ((c, i), x), ((c − a, j), x − aFi) ∈ S̃ and a ∈ A, the transition probability is

given by p̃n((c − a, j), x − aFi)|((c, i), x), a) = p
r
n,j for n = N,N − 1, . . . ,0 and else 0.

We are interested in the probability that our obtained total revenue does not attain a

target x. Let the set of deterministic Markovian policies be Π̃ and let the random variable

for the cumulative gained reward, applying policy π̃ ∈ Π̃ beginning with capacity c, request

i, remaining time steps N , and target x, be ρ̃πN ((c, i), x) =
∑N
n=0 r̃n. For the policy π̃ , the

target percentile risk measure is defined as

V π̃N ((c, i), x) := P
(
ρ̃πN ((c, i), x) ≤ x

)
, (1)

where P denotes a probability. The time consistency property of the target percentile risk

measure can be shown as demonstrated by Boda and Filar (2006).1

Thus, we are looking now for an optimal policy π̃∗ for each objective function V π̃N ((c, i), x)

that minimizes the risk of failing target x:

π̃∗ = arg min
π̃∈Π̃

{
V π̃N ((c, i), x)|((c, i), x) ∈ S̃, n ≥ 1

}
. (2)

The associated target percentile (minimum risk level for x) is denoted V π̃
∗

N .

Following Wu and Lin (1999) and Boda and Filar (2006), we can derive the following

dynamic programming equations for computation of the minimum target percentile V π̃
∗

N

1We have non-stationary transition probabilities in our model, as opposed to the assumption of Boda and
Filar (2006). Nevertheless, their approach can be used. Our non-stationary case could be transformed to a
stationary one by a state augmentation with n which would resolve the dependence of the probabilities on n.
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for x ∈ R,∀(c, i) ∈ S:

V π̃
∗

0 ((c, i), x) =





0 x > 0

1 otherwise,

V π̃
∗

n ((c, i), x) =min
a∈A




∑

j∈S

prn−1,jV
π̃∗

n−1((c − a, j), x − aFi)



 , n ∈ [1 . . . N]. (3)

Note that the target percentile for the whole process is given in V π̃
∗

N+1(c, i, x) as the process

must be entered correctly; in V π̃
∗

N (c, i, x) we already know the requested class i at time N .

The optimal policy π̃∗ can be computed from the minimum target percentile V π̃
∗

N by

Equation 2. It should be pointed out that the optimal policy describes the best way to only

obtain the target percentile. This means that if we have in some state achieved the target,

the following states are arbitrarily chosen by the objective function. In practice, the policy

for the ongoing states should be optimized under another criterion, such as the expected

revenue. Furthermore, if the target can never be obtained in the given setting, all policies

are equally improper and no optimal target percentile policy exists.

Example

In order to illustrate the method, we can give a very simple example. Consider only two

classes with fares F1 = 200;F2 = 100, two remaining time periods N = 2, only one seat left

C = 1, and the probabilities for arrivals p1,1 = 0.10, p1,2 = 0.15, p2,1 = p2,2 = 0.20. Thus,

for example, a request of fare 2 in period 1 before departure is 15 percent. We have only a

few scenarios in this setting: if a request for a distinct fare class comes in period 2 before

departure, we can accept it or reject this fare class and then wait for possible arrivals in the

last period and, if they appear, accept. It is easy to see, that the policy which always accepts

(expected revenue of 81) is better off when compared with others. However, consider that

now we want the best policy for a target value of 200. The expected revenue maximizing

policy fails that target with probability of 0.74. A better choice for this target would be

only acceptance of the highest fare class, a policy which fails only with a likelihood of 0.72.

The computation using the proposed method is shown in Figure 1. Note that the transition
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probabilities of the last period n = 0 are zero for all classes except for the artificial class 0,

where they are one.

V0(c, i, x) =1, x > 0,

V0(c, i, x) =0, x ≤ 0

V1(1,0,200) =1 · V1(1,0,200)+ 0 · V1(1,1,200)+ 0 · V1(1,2,200)

=1

V1(1,1,200) =min{1 · V0(1,0,200) +0 · V0(1,1,200) +0 · V0(1,2,200),

1 · V0(0,0,0) +0 · V0(0,1,0) +0 · V0(0,2,0)}

=0

V1(1,2,200) =min{1 · V0(1,0,200) +0 · V0(1,1,200) +0 · V0(1,2,200),

1 · V0(0,0,100) +0 · V0(0,1,100) +0 · V0(0,2,100)}

=1

V2(1,0,200) =p1,0V1(1,0,200)+ p1,1V1(1,1,200)+ p1,2V1(1,2,200)

=0.90

V2(1,1,200) =min{p1,0V1(1,0,200) +p1,1V1(1,1,200) +p1,2V1(1,2,200),

p1,0V1(0,0,0) +p1,1V1(0,1,0) +p1,2V1(0,2,0)}

=0

V2(1,1,200) =min{p1,0V1(1,0,200) +p1,1V1(1,1,200) +p1,2V1(1,2,200),

p1,0V1(0,0,100) +p1,1V1(0,1,100) +p1,2V1(0,2,100)}

=0.90

V3(1,0,200) =p2,0V2(1,0,200)+ p2,1V2(1,1,200)+ p2,2V2(1,2,200)

=0.72

Figure 1: Exemplary computation of F π̃
∗

N (c, i, x), superscript omitted.

Implementation Details

The dynamic programming formulation given in Equation 3 is inefficient for implementa-

tion. We can point out two remarks in order to obtain a better implementable approach.

First, we can apply an often used transformation of the dynamic programming formula-

tion, allowing us to scale down the state space. Thus, introducing the operator Tn(c, x) :=
∑ik
i=0p

r
n,iVn(c, i, x) helps by reducing the state space by variables representing the fare

class of an arrival. Defining Wn(c, x) := Tn(c, x)Vn(c, i, x), we transform Equation 3, as

follows, for x ∈ R, c ∈ {0, . . . , C}:
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W π̃∗

0 (c, x) =





0 x > 0

1 otherwise,

W π̃∗

n (c, x) = Tn(c, x)V
π̃∗

n (c, i, x)

=

ik∑

i=0

prn,imin
a∈A

{
W π̃∗

n (c − a,x − aFi)
}
. (4)

Second, the computation of all possible cumulative rewards given by the variable x is

very impractical and should be done on a suitable grid for larger problems, as described in

the works of Wu and Lin (1999) and Boda et al. (2004). We refer to the latter publication for

a deeper analysis of this approximative dynamic programming solution. Instead of taking

into account every value which x can take while solving the problem, we can use an interval

between 0 and the initial x. E.g., if we have m+ 1 values for this interval, the interval could

be [y0, y1, y2, . . . , ym] = [0,
x
m ,

2x
m , . . . x]. The computation of W π̃∗

n proceeds now only on

these samples, and we obtain a grid of values {(y0,W
π̃∗
n (c,y0), . . . , (ym,W

π̃∗
n (c,ym)} for

c ∈ {0, . . . , C}. The program fills the values on the grid and rounds occurring values to the

upper value: W π̃∗
n (c,y) = W π̃∗

n (c,yj+1)∀y ∈ (yj , yj+1].

4 Numerical Simulation and Results

In their introductory paper about dynamic capacity control, Lee and Hersh (1993) used

an example which also served for illustration in the recent papers of Barz and Waldmann

(2007), Huang and Chang (2009) and Koenig and Meissner (2009). Thus, we can also demon-

strate the proposed target percentile policy in the same exemplary setup.

Simulation Setup

There are N = 30 number of time periods before departure, and the initial number of seats

is C = 10. The four fare classes are F1 = 200, F2 = 150, F3 = 120, F4 = 80. The probabilities

for a request of a certain fare class in a certain time period are shown in Table 1.

In order to see how the target percentile policy works, we conducted an experiment with

a 10,000 sample run. Random arrivals were simulated in a Monte Carlo manner using the

http://www.meiss.com/
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i Fi 1 ≤ n ≤ 4 5 ≤ n ≤ 11 12 ≤ n ≤ 18 19 ≤ n ≤ 25 26 ≤ n ≤ 30
1 200 0.15 0.14 0.10 0.06 0.08
2 150 0.15 0.14 0.10 0.06 0.08
3 120 0 0.16 0.10 0.14 0.14
4 80 0 0.16 0.10 0.14 0.14

Table 1: Fares and request probabilities for fare class i and time period n.

values of Table 1. When compared with other proposed policies, the random values in the

setting were, of course, always the same.

A single simulation run is initialized with values for remaining seats, time periods before

departure, and a policy. The policy contains for each state the acceptable fare classes. The

state is described by remaining time periods, remaining seats, and remaining target value.

Then, the simulation continues with loop over the time periods until the departure time

zero is reached. Inside the loop, a random generator simulates requests for fare classes

which are accepted if the current policy allows acceptance of the class or else rejected.

An update of the state is follows: time periods are always decremented by one, seats are

decremented only if fare is accepted, and target value is decremented by the gained fare

price. Our policies have one more dimension than the policies of the above mentioned

references. Hence, we can abandon the target percentile dimension when simulating the

policies used for comparison.

Policy Illustration

Figure 2 visualizes the policy π̃∗ for the described example. We see slices through a three-

dimensional matrix codifying protection levels in color. Basically, this three-dimensional

matrix displays the protection levels — the maximum allowed fare class — for each state

(c, x) in time n with initial target of 1200. In order to use the policy, we starts in the state

(30,1200) at 30 time periods to go. This is the top corner on the right hand side of the

presented box. The state at this position in the matrix has a protection level which lets one

decide how to act at this point in time before departure. Only fare classes with higher prices

than the associated protection level are accepted. As time marches on, one moves always

one step further in direction of the time dimension to departure time zero; this is parallel

to the south-west direction in the figure. The policy decides now which way to move in both
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other dimensions. An acceptance of a request causes a move downwards the dimension

of the capacity, orthogonal downwards in the matrix. Finally, the price of an accepted fare

means where to move in the target direction, the parallel the north-west direction in the

figure. Thus, considering the figure, the simulation will generate random trajectories from

the top corner on the right hand side to the bottom corner on the left hand side. Of course,

the end of each trajectory will often be different due to the random realizations but it has

to end with coordinate n = 0.
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Figure 2: Target percentile policy : Protection levels of policy π̃∗ are shown for each state
(c, x) with remaining capacity 0 ≤ c ≤ 10, revenue target 0 ≤ x ≤ 1200 in time n,1 ≤ n ≤
30. The protection levels for the four fare classes are visualized by color: class 1 (blue),
class 2 (green), class 3 (orange), and class 4 (red). Only fare classes of lower price than
indicated by the color are accepted in a state. Note, states which offer no optimal solution
because the revenue is not obtainable, given the remaining capacity and time, are displayed
in transparency.
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Evaluation

As the proposed policy optimizes the target percentile, we start our evaluation with differ-

ent (obtainable) target revenues, comparing the theoretical and the simulation results. As

mentioned in Section 3.2, there are scenarios when target revenue is achieved but time is

remaining and one or more seats are left. We present the average of remaining time and

seats for such cases as well. Further, the averaged revenue is computed by switching to the

risk-neutral policy when the target has been achieved. Table 2 shows the results for five dif-

ferent targets. The average of failed cases in the simulation is very close to the theoretical

target percentile, validating that the policy does as expected.

Target value 1600 1500 1400 1300 1200
V π̃

∗

n 0.734 0.528 0.336 0.183 0.088

Simulation of target value policies

Failed target (%) 0.745 0.537 0.347 0.184 0.087
Revenue 1231.7 1319.7 1347.4 1342.6 1325.3
Std. deviation 329.6 273.8 217.7 165.1 152.0
Remaining time 0.15 1.54 3.18 5.30 7.35
Remaining seats 0.01 0.03 0.10 0.22 0.49

Simulation of risk-neutral policy

Failed target (%) 0.840 0.632 0.430 0.260 0.146
Revenue ← 1405.6 →
Std. deviation ← 195.5 →

Table 2: Results of policy simulation for different target values. The probabilities and
averages for failing to achieve a target are given (lower means better) and also, averages
of remaining time and seats if target could be achieved. An expected revenue optimizing
risk-neutral policies yields theoretically 1407.2. For comparison, the results of simulating
the risk-neutral policy are given.

The expected revenue for the analyzed problem are 1407.2. Looking at the results of

Table 2, we see that a policy which aims towards a lower target revenue than the expected

value accepts an upcoming request early in time. Decisions are made soon and not post-

poned to later periods. This effect is well observable by the decreasing remaining time and

seats, while increasing the target. Of course, policies with lower targets have a greater prob-

ability for reaching the target. It can be more easily obtained by accepting requests early,

thus leaving more time for balancing against having no profitable requests in the next time

periods.



Risk Minimizing Strategies for Revenue Management Problems with Target Values 15

The average revenues of the target policies are in each case lower than that of the risk-

neutral policy. The standard deviation of these revenues grows with an increasing target,

although when compared with the risk-neutral case, their policies less often fail the targets.

This can be explained by comparing the distribution histograms of the revenues of the

policies.
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Figure 3: Histogram of the distributions of gained revenue in the simulation using policies
with revenue targets 1200 (left blue bars), 1400 (right red bars) and the risk-neutral policy
(middle green bars).

Figure 3 shows the distribution histograms of 1000 simulation runs of three policies:

one with low target 1200, one with high target 1400, and a risk-neutral one maximizing

expected revenue.

The distribution associated with the low target has its peak above its target value 1200

and a positive skew. It has only small frequencies for values lower than 1200 but also for

values higher than 1500, as its standard deviation from Table 2 also emphasizes. It has two

peaks, the first at 1000 and the second at 1300.

The risk-neutral solution shows a negative skewed distribution with a peak at 1500

with a long tail to very low values, though some high revenues at 1800. Compared with the
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policy with target 1200, its revenues are more often below 1200; however, given the revenue

is greater 1200, it will be better off. Its risk of falling below 1200 remains higher than the

risk of the low target policy.

The distribution of the policy with high target 1400 has a negative skew, too. As with

the 1200 target policy, it has two peaks. The distribution of revenues from 600 to 1200

increases, then drops at 1300, before it peaks at 1400 and decreases until 1700. Compared

with the risk-neutral counterpart, this policy shifts frequency from 1300 to 1400 revenue.

The target is achieved mainly at the expense of 1300 revenue and greater than 1500 revenue.

Further, it shows also higher frequencies for low revenue than both other policies. Hence,

if it fails the target, there is a greater risk of obtaining only low revenue.

The histogram demonstrates that the policy with low target aims at a lower average

revenue and smaller variance, but the policy with a higher target, near to the expected

revenue of the risk-neutral solution, does not.

The results show that an analysis of the loss tail is important as it gives information

about the probability of worst case disasters. In order to evaluate the performance of target

revenue policies in more detail, we compare them with the risk-sensitive policies derived

from expected utility theory, as in Barz and Waldmann (2007). We select the latter policies

for comparison as they result from optimizing the dynamic capacity control model using

an exponential utility2 and no heuristics. Referring to the recent works of Huang and Chang

(2009) and Koenig and Meissner (2009), we view the mean, standard deviation, and CV@R

of the policies. The CV@R is a measure for the expected revenue given the revenue is below

a certain quantile specified by a confidence level α; it is the expected value in the 1 − α

percent of worst cases.

Table 3 compares both types of risk-sensitive policies. Beyond the mean, standard de-

viation, and CV@R with confidence level 95%, the probability of failing the 1000 revenue

target is given. We see that the target policy for 1000 has the least risk failing it. However,

it is also observable that the target policies only limit the risk of failing the certain target

and do not provide more preferable results in terms of the other measures. The expected

utility based policies have higher average revenue. They also have a higher CV@R than the

policies with target ≥ 1200. The standard deviation increases with higher target and higher

2Instead of searching the policy π for maxpi Eπ
[
ρπN (c, i)

]
, the expected utility approach with exponential

utility uses maxpi Eπ
[
exp

(
−γρπN (c, i)

)]
, where γ represents a factor for the level risk aversion.

http://www.meiss.com/
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level of risk sensitivity for both types of policies. Discussed already by Figure 3, the CV@R

results also show that the target policies do not limit the risk of obtaining only a few rev-

enues in the worst cases. Further, it is interesting that the policies aimed at targets different

from 1000 do not work as well for the 1000 target.

Policy mean std. dev. CV@R P(ρ < 1000)

Target 800 1359.0 167.5 978.8 0.027
Target 900 1348.5 168.1 976.8 0.029
Target 1000 1335.4 168.1 975.8 0.019
Target 1100 1326.1 162.3 973.0 0.028
Target 1200 1325.3 152.0 940.2 0.028
Target 1300 1342.6 165.1 873.4 0.056
Target 1400 1347.4 217.7 777.2 0.082
Utility γ = 0.010 1361.1 152.6 992.0 0.023
Utility γ = 0.005 1386.6 166.9 978.6 0.025
Utility γ = 0.001 1405.3 191.4 943.0 0.033

Table 3: Comparison between two risk-sensitive policies: target percentile optimizing and
exponential utility function optimizing policies (the risk aversion increases in conjunction
with γ). CV@R is for alpha = 95%.

This effect becomes more observable by the distribution histogram of the 1000 revenue

target policy and the expected utility policy with high risk aversion γ = 0.005, as shown

in Figure 4. The target policy has a lower average revenue, a slightly lower 95% CV@R, and

a higher standard deviation than the exponential utility policy, but it achieves at least a

revenue of 1000 in more cases. The frequencies for the low revenue 700 are little higher

for the target policy than for the exponential utility policy and clarify the lower CV@R. The

target policy has higher frequencies for revenues between 1000 and 1300 and lower ones

between 1400 and 1800 than its counterpart. This explains the lower mean revenue.

Figures 3 and 4 show that the target policies dent the distribution slightly below the

target. Thereby, the distribution lower and greater the target is influenced. Frequencies

below this dent may increase as frequencies for the target do. In particular, distribution

lower then the target need not be modified in a favorable manner regarding the lowest

revenues, that is to say the worst cases.



Risk Minimizing Strategies for Revenue Management Problems with Target Values 18

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
0

50

100

150

200

250

300

Figure 4: Histogram of the distributions of gained revenue in the simulation. The left blue
bars show revenue frequencies gained by target policy with target 1000, the right red bars
show frequencies by an expected utility optimizing policy using exponential utility function
with γ = 0.05.

5 Conclusions

A risk-averse policy minimizing the failure of a previously defined, certain revenue target

has been proposed for a revenue management problem, namely the dynamic capacity con-

trol setting. This policy is derived by extending the state space of the Markov decision

process formulation of the problem. We have discussed aspects for implementing the pol-

icy numerically.

In numerical experiments, we have analyzed the proposed policy and evaluated against

risk-neutral and another risk-sensitive policies. We have compared the mean, standard

deviation, and conditional-value-of-risk of those policies. The optimal policy for a given

target revenue focuses on minimizing the likelihood of the failing of this certain target but

does not compensate for other risk measures.
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The analysis of the revenue distributions of the target revenue aimed policies in nu-

merical experiments disclose how important correct understanding of such policy is when

applied. The decision maker must be aware of its limitations, in particular, that it is the

policy with lowest probability of failing the target, but the probability of worst outcomes

are not eliminated. However, using a low target revenue supports limiting such risk.

The presented approach can be further developed in order to achieve a policy which

optimizes conditional-value-at-risk as proposed by Boda and Filar (2006). Furthermore,

it also offers the basis for the development of investigating policies balancing out mean

revenue versus target achievement.
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