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Abstract

Snakes and ladders is an ancient Indian game of chance that of-
fers amusement as well as a metaphor for life’s many ups and downs.
Games offer useful and fun ways of conveying ideas as well as solution
techniques and this game has considerable mathematical tractability.
This note shows how snakes and ladders can be used to represent

the ups and downs of share ownership and solve for fair values of a
multistage project that pays fixed dividends at uncertain completion
times and has random returns.

1 The game

Traditionally a six sided die is rolled and a counter is advanced along the
board, starting with square 1, toward the final goal of reaching 100. If a
snake is encountered, the player must retreat to an earlier square and recover
the same territory but if a ladder is reached, a short cut toward the goal is
offered and the counter advanced, skipping over territory. In a competitive
two player version, on reaching the final square first, the winner takes all (of
whatever prize is at stake) but here different rewards are proposed.
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2 Project completion

The 10 × 10 snakes and ladders board is taken and the 100 squares used
as timeline for a firm’s progress towards a stage completion. On reaching
the last square, a fixed reward (or payoff) is achieved and the game starts
again. This is not dissimilar to what companies do when managing projects
to completion, when a payoff is achieved and they move onto the next project,
often of similar nature.
Alternatively, the process can be thought to represent ownership of a stock

or share over time; slow or fast company progress being represented by the
snakes or ladders encountered before the arrival of the next known dividend.
Although real companies offer dividends of unknown quantity at fixed times,
we shall see that offering fixed dividends at random times still offers highly
plausible price and return series. Good news (a ladder) is to be interpreted as
the firm overcoming some difficulty faster than expected and conversely, bad
news (a snake) is an outcome or resolution of some uncertainty in a worse
manner than expected.
Two such boards from [1] and [2] have been examined to determine with

how long such a game would last.

3 Transition matrix P

In Markov chains, a transition matrix P is composed of elements pi,j that
each determine the probability of moving from state i to state j; for the
snakes and ladders game in question some of the elements are shown

P =

⎡⎢⎢⎢⎢⎢⎣
p1,1 p1,2

... p1,100

p2,1 p2,2
... p2,100

...
...

...
...

p100,1 p100,2
... p100,100

⎤⎥⎥⎥⎥⎥⎦ =
1

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 0 0
... 0 0 0

0 0 1 1 1 1 1 0 0
... 0 1 0

0 0 0 1 1 1 1 0 1
... 0 1 0

...
...
...
...
...
...
...
...
...
...
...
...
...

0 0 0 0 0 0 0 0 0
... 4 1 1

0 0 0 0 0 0 0 0 0
... 0 5 1

1 1 1 1 1 1 0 0 0
... 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(1)
The example transition matrix, P, shows the first and last three states

in detail, with attendant transition probabilities of 1
6
as well as one putative

ladder, from state 8 to 99. In the lower right quadrant, probabilities have
been included that enforce strict achievement at square 100, e.g. if any
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number higher than a one is rolled1 from square 99 (with probability 5
6
), the

counter stays where it is. This guarantees that each game circuit ends on
square 100 before recommencing. These latter squares are the only entries on
the leading diagonal. Thus the penultimate five squares represent a potential
plateau that precedes the valuation peak at 100 where this circuit’s payoff
and “dividend” are achieved.
Note that a player will never terminate a round on the head of a snake or

the foot of a ladder since this will involve a move to a new square, thus not
all states will be attainable once a move is completed (e.g. with 10 snakes
and 10 ladders, only 80 final states are accessible and 20 columns of P are
empty).
Finally, since the stock market game here is to be perpetual in nature,

once square 100 is achieved and the cash flow reward F100 = $10 realised,
the game starts again (from 100 which can be viewed as a square 0 start
point) with equal chance of ending on square 1-6 after the next roll (this is
on the last row of P). Thus the game revolves around a series of cashflows
F , whose periodicity is random depending on the speed of progression across
the board toward the recurrent goal.

4 Expected arrival times

Both [1] and [2] have analysed the probability of finishing one circuit as a
function of exactlyN throws of a die and expected times to game completion.
Using different snake and ladder configurations, for one player games they
come up with expected values for the die roll number of about 48 and 39,
respectively. Thus, unconditionally, the expected payoff per die throw is a
small fraction of the final $10.

5 Discounting, time value of money

Although here circuits are repeated and the game is of infinite length, if an
interest rate is applied for every time period, defined by one roll of the die,
dividend cashflows far in the future will not influence current value and the
game will have a unique value at each stage; that is the sum in today’s money
terms of values from increasingly long horizons will converge to a constant
that depends on the players location in the game alone.

1The two papers cited treat the end game differently, [1] allows for any die roll that
allows passing of square 100 while [2] restricts only those that achieve 100 exactly. Here
we follow the latter but adjustment to the former is not difficult.
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If the interest rate per die throw is, say 1% (R = 0.01), the value of monies
at the end of the next go are worth a small amount less due to discounting.
Alternatively, if $100 units of currency were borrowed at the beginning of a
player’s go, $1 unit of interest would accrue and the final value owed on the
account would be $101 at the end of the turn.
The objective is to work out the value of the game at each of the 100

game squares.2 These values V1, V2...V100 are placed in the vector V. Other
useful matrices in the solution process are the 100 × 100 identity matrix I,
an interest rate3 scaled version R = RI and their sum I+R. These will be
used in conjunction with the vector F which contains just one element F100,
the dividend reward on achieving square 100. These will be used to calculate
the time value of money of future cash receipts and the current value at each
game stage Vi.

V =

⎡⎢⎢⎢⎢⎢⎣
V1
V2
...
V99
V100

⎤⎥⎥⎥⎥⎥⎦ I+R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.01 0
... 0 0

0 1.01
... 0 0

...
...

...
...

...

0 0
... 1.01 0

0 0
... 0 1.01

⎤⎥⎥⎥⎥⎥⎥⎥⎦
F =

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0

F100

⎤⎥⎥⎥⎥⎥⎦
(2)

6 Valuation

If the game is to be fair4, how much should a player pay to enter, V100?
Is it the same at each stage Vi? If not by how much does it increase with
proximity to 100 and does it always increase from V1 to V100?
Were a player on square 100 to borrow an amount V100 in order to spec-

ulate on arriving on (the best of) squares 1-6, he would have to repay
(1 + R)V100 after having rolled the die and used one turn. This must be
compared with the expected benefit of the initial game round, a sum which

2Since it repeats, the value at each square does not depend on the number of rounds
completed or past dividends received.

3If the interest rate depended on the current state j, the entries on the diagonal of R
could be varied. However it would be harder to adjust interest rates or probabilities over
calendar time as opposed to state.

4By this we mean that the amount charged to enter the game at any stage Vi could, on
average net of periodic loan repayments F100, be financed at a rate per throw of R. The
balance on such a hypothetical account, would be expected to remain constant whatever
time horizon were considered.
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is given by the expectation across the six possible die throws

(1 +R)V100 =
1

6
(V1 + V2 + V3 + V4 + V5 + V6) and

(1 +R)V1 =
1

6
(V2 + V3 + V4 + V5 + V6 + V7) etc.

If the game is fairly valued, the expected benefit just matches the cost with
borrowing, i.e. the increased repayment amount (1 +R)Vi.
Without any snakes or ladders on the first six or seven squares this is

an average of a sequence (above) but once diversions are encountered, the
valuation of states becomes more convoluted. For example, the hypothetical
ladder from square 8 to 99 shown above yields the following expectation for
V2

(1 +R)V2 =
1

6
(V3 + V4 + V5 + V6 + V7 + V99) .

More generally for each of the 100 starting squares (indexed i) the expected
value after one die throw is given by

Expectation [Vj|Vi] =
X
j

pi,j × Vj.

In order for the game to have value at any stage, a cash reward must be
gained in at least one stage of the game.5 This comes on reaching square 100
so the valuation of any square that has a chance of reaching 100 has to be
modified to include the dividend flow F100, e.g.

(1 +R)V98 =
4

6
V98 +

1

6
V99 +

1

6
(V100 + F100) (3)

(1 +R)V99 =
5

6
V99 +

1

6
(V100 + F100) etc.

Since squares that can achieve the reward at 100 can also yield no progress,
these valuation formulae are self referential, having identical terms on both
sides (e.g. V99). More generally, all 100 state values depend on each other
through 100 simultaneous equations, which fortunately can be solved by the
demonstration and use of matrix inversion.6

5Cash flows other than the one F100, could easily be included in F to reflect additional
cash penalties or rewards on encountering snakes and/or ladders.

6A word of caution regarding risk is necessary here. Game players here are treated as
risk neutral in the sense that they care only for expected outcomes and not, for example,
their variances. Thus the probabilities are to be interpreted as risk neutral or as already
adjusted for risk preferences. Were this not the case and players require risk premia to be
present, probabilities could be adjusted state by state to reflect this (see [3]).
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7 Solution

Stacking all 100 such equations into a vector, the most general expression is
one where the time value of money for one die roll is exactly compensated
by expected gains in value PV and cashflow PF

(I+R)V = P (V + F) (4)

V = (I+R−P)−1PF.

Thus assuming the matrix to be inverted is of full rank, the unique vec-
tor of values at stages 1-100 is derived from the inverted, time—value—less
transition matrix,7 applied to the one roll ahead expected cashflow vector
PF.
In conjunction with a dividend reward of F100 = $10 and a cost of capital

R per roll8 of 1%, embedding the set of 20 snakes and ladders from [1]9 within
P, yields the following valuesV from equation 4 for the eighty states on which
a counter can come to rest (twenty are ruled out since they are at the foot
of a ladder or head of a tail).
The base value V100 of just over £16.32 at the outset (and a borrowing

cost of 1% per roll) is supported by a stream of £10 dividends coming at
expected time intervals of about 48 interest rate periods. This is because over
a complete cycle (expected to last 48 rolls) the compounded cost rate R48
generated by borrowing V100 to enter the game, while rolling up all interest
until the dividend is reached, will be compensated by the periodic payment
of the £10 dividend.
The P matrix here has a different and cyclical end structure to [1] which

will give it different expected times even if it has the same snake and ladder
features. However R48 is very close to the periodic 1% rate compounded by
the 47.98 in that article

R48 × V100 = $10 : R48 =
10

16.32
= 61.27%

R48 ≈ (1 +R)47.98 − 1 = 61.19%.
7This has an interpretation as a discount matrix.
8As we shall see, over the many rolls taken to complete a round this rate compounds

considerably!
9Note that this does not have the illustrative ladder from 8 to 99 used earlier.

Snakes Ladders∙
27 55 61 69 79 81 87 91 95 97
10 16 14 50 5 44 31 25 49 59

¸ ∙
6 8 13 20 33 37 41 57 66 77
23 30 47 39 70 75 62 83 89 96

¸
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Figure 1: Valuation Vi of the 80 attainable states on the 10× 10 snakes and
ladders board (i.e excluding snake heads and ladder foots). Note that V100
does not include the payoff of 10 gained on achieving the last square.
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This explains why the game values V are so low compared to F for a low
borrowing cost per periodR ([2] is a faster game and therefore more valuable).
Firstly, when judged in terms of value, game progress is neither monotonic

in time or location, as can be seen from Figure 1 (where inaccessible states
have been omitted). Due to the intricate interplay between snake and ladder
paths, some subsequent states are worth less than their predecessors. If
these could be avoided, a shorter expected and more valuable path to the
next dividend at 100 could be achieved.
Secondly, on successfully passing from square 99 to 100, the value falls;

this is not because of the adverse effect of a snake’s bad news on the project
or firm, but because when the dividend is realised it is separated from the
remaining value (of future dividends). This is equivalent to the stock chang-
ing from cum-dividend to ex-dividend status, an event which occurs regularly
in the stock market every time ownership of a share and its most imminent
dividend are legally separated. The return at such a time needs to take this
value transfer into account (add back on the $10 that was separated).
As a seasoned player of almost any age knows, the figure also shows that

the stakes in this game increase with proximity to the payoff. Potential
returns over the final quarter of the squares exceed those from earlier in the
game, but then again so do the pitfalls!

8 Expected returns

Using the previous value for V100 = $16.32 and also V99 = $24.83, the second
part of equation 3 can be confirmed as offering a 1% return if the dividend
payment of $10 is also included; there is a 5

6
chance of no gain and a 1

6
chance

of income of $10 and a capital loss (on ex-dividend) of V100−V99 = −$8.510,
a net gain of $1.489, or a probabilistic gain of $0.248. This just compensates
for the cost of capital R × V99 on the initial state. This can be see by
rearranging the second part of equation 3 so

RV99 =
1

6
(V100 − V99 + F100) .

Since V98 = V99 (they are both on the final valuation plateau) the first part
of equation 3 yields identical results. Although V96, V94 are different from
V99, V98 their return equations also yield the correct expected return of 1%
on their initial value if cash received is taken into account. All other value
states (except those like V97, V95 that are snake heads or ladder foots) also
yield a 1% return but without a dividend payment and commensurate drop
in capital value.
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Figure 2: A histogram of return frequency for all 480 possible moves.

If the perpetual game were well under way (far from its start time), due to
the end of round rules and plateau, square 99 also has the distinction of being
the most likely square on which a counter would be found. Its unconditional
probability is 5.77% compared to an average of 1.25% across the 80 accessible
states and 2.68% for square 16, the most likely to be occupied in the non
cyclical version in [1].

9 Returns from each of the die’s six outcomes

Breaking P down into component parts that represent each individual die
throw from 1-6, allows the 480 possible returns (6 options from each of the
80 states) to be evaluated. Figure 2 shows the results; the minimum return
is -23.55% (throwing a 1 from 96 and landing on the 97 snake head) and
maximum +26.37% (throwing a 2 from 75 and landing on the 77 ladder
foot), the standard deviation is 5.5% (the mean is 1.0% by construction but
the median is 0.7%).
Whilst we would expect that higher die throws would yield faster game

progress and higher returns, interestingly the average returns from all possi-
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Figure 3: Average return to each throw of the die across all states (these sum
to 1%). Note that 1 has a negative expected return, 2 and 3 similar gains
(but less than 1%) and 5 a return very close to the cost of capital. Only 4
and in particular 6 generate significant excess returns.

ble 80 start points10 to receiving each of 1, 2, 3, 4, 5 or 6 is not monotonic.
Figure 3 shows that, absent information on current location, 6 indeed is
highly preferred (it generates a return of 2.26%) while a 1 causes a slight loss
in value (-0.13%). However, as can be also seen from Figure 3, a 4 (1.60%) is
preferable to a 5 (1.05%) and a 2 just preferable to a 3 (0.64% v. 0.57%). A
seemingly innocent die loaded toward even numbers could give a substantial
advantage (up to 1.50% v. 0.50% per throw!).

10 Limitations and summary

Simulations of the game would generate plausible stock price series. The ups
and downs of a firm’s fortune would indeed be captured by the occurrence of
ladders and snakes and the cum-ex dividend behaviour on project completion
would also be faithfully represented.

10However, not weighted by their unconditional probability.
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However some self criticality is due. The returns shown in Figure 2 are
not independent, whilst repeated occurrence of snakes can delay achieving a
dividend; in the long run it is likely that a similar number of ladders will have
been encountered as snakes. Furthermore, if undue delay has occurred, on
reaching the goal, the game is reset, whilst for a real world firm it is possible
that partial or even permanent loss of value (bankruptcy) could result from
a severe negative shock. At the outset (100) the game offers little downside
and it would be more realistic to charge amounts of V25, V75 (but not V99) to
start a game in progress when the risk profile includes some downside.
Snakes and ladders in the form represented here cannot capture all effects

that are present in a real market and will present a form of weak reversion
in returns. In order to capture possibly permanent features like bankruptcy
or change in market shares, geometric decline (or growth) could be modelled
with future dividends being a multiple or fraction of the last outcome.
Finally the transition probabilities are considered constant over time,

whilst over the course of 2008 extreme market volatility across the globe led
many firm’s returns to be highly variable, most notably when some interna-
tional banks failed and fell into bankruptcy. Although beyond the scope of
the simple model here, this does alert the reader to key differences between
randomness in exogenous physical and endogenous social systems.
However, the game presented here is easy to explain and would be both

fun and instructive11 to play. For those able to embrace the solution tech-
niques, it affords insight into both the mathematics of Markovian valuation
as well as the manner in which expectations are applied in the stock market
to the arrival of unpredictable news and events.
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