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Multiple classifier architectures and their application to credit risk assessment 

Steven Finlay 

Department of Management Science, Lancaster University 

 

Abstract. 

 

Multiple classifier systems combine several individual classifiers to deliver a final 

classification decision. An increasingly controversial question is whether such systems can 

outperform the single best classifier and if so, what form of multiple classifier system 

yields the greatest benefit.  

 

In this paper the performance of several multiple classifier systems are evaluated in terms 

of their ability to correctly classify consumers as good or bad credit risks.  Empirical 

results suggest that many, but not all, multiple classifier systems deliver significantly 

better performance than the single best classifier. Overall, bagging and boosting 

outperform other multi-classifier systems, and a new boosting algorithm, Error Trimmed 

Boosting, outperforms bagging and AdaBoost by a significant margin. 

 

Keywords: OR in Banking, Data Mining, Classifier Combination, Classifier ensembles, 

Credit scoring. 
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Introduction 

Since the early 1990s the majority of consumer lending decisions in the US have been 

made using automated credit scoring systems (Rosenberg and Gleit, 1994). A similar 

situation exists in the UK and many other countries. Credit scoring systems are not perfect 

and every year a significant proportion of consumer debt is not repaid because of the 

failure of such systems to identify individuals who subsequently default on their loans. The 

value of outstanding consumer credit (excluding residential mortgage lending) in the US 

and UK at the end of 2007 was $2.5 trillion and £164 billion respectively (Bank of 

England, 2008b; The Federal Reserve Board, 2008b). For the same period, annualized 

write-off rates for credit cards were 4.2 percent and 7.3 percent in the US and UK 

respectively. For personal loans and other forms of unsecured credit write-off rates were 

3.7 percent and 1.9 percent (Bank of England, 2008a; The Federal Reserve Board, 2008a). 

The losses resulting from defaulting customers is therefore very significant indeed. 

Consequently, there is considerable interest in improving the ability of credit scoring 

systems to discriminate between customers on the basis of their future repayment 

behaviour. Even very small improvements in classification performance can yield 

considerable financial benefit (Hand and Henley, 1997). 

 

Credit scoring is traditionally viewed from a binary classification perspective. 

Classification or regression methods are used to create a classifier that generates a 

numerical output (a score) representing the likelihood of an individual being a ‘good’ or 

‘bad’ credit risk over a given forecast horizon. Good credit risks are those that repay their 

debt to the terms of the agreement. Bad credit risks are those that default or display 

otherwise undesirable behaviour (note that ‘good’ and ‘bad’ are standard terms used within 

the credit scoring community to describe a two class binary classification problem of this 

type and these terms are used from now on). Some methods applied in credit scoring 

produce probabilistic estimates of class membership, but some do not, and what is of 

primary importance is the relative ranking of model scores (Thomas et al., 2001a). 

Lending decisions are made on the basis of the properties of the ranked score distribution, 

with a cut-off being defined that meets the business objectives of the user. As long as an 

observation is correctly classified, then the margin by which an observation passes or fails 

the cut-off is largely irrelevant (Hand, 2005). In some cases the cut-off may be based on a 

likelihood measure, such as the point in the score distribution where the good:bad odds 

ratio exceed 10:1. In other cases the cut-off is chosen to yield a fixed proportion of 
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accepted applications. For example, a provider of retail credit may agree to provide credit 

to customers of a furniture retailer where there is a contractual obligation to accept at least 

90% of all credit applications. In practice, measures of group separation, such as the GINI 

coefficient and the KS statistic, are also popular, but such measures are only of interest in 

two situations. First, when the cut-off decision(s) are unknown at the time when the model 

is developed – a situation facing the developers of generic scoring models that are used by 

many different lenders. Second, where multiple cut-offs are required so that different terms 

can be applied to individuals on the basis of their risk – a practice referred to as “Pricing 

for risk.”  

 

Credit scoring was one of the first and most successful applications of data mining. What 

differentiates credit scoring from other data mining applications are the objectives of the 

financial institutions that employ it, the nature of the data sets employed and the business, 

social, ethical and legal issues that constrain its use within decision making processes. The 

most popular methodology applied to credit scoring is logistic regression (Crook et al., 

2007). Other methods such linear regression/discriminant analysis (Durand, 1941; Myers 

and Forgy, 1963) and decision trees (Boyle et al., 1992) are also popular. This is 

principally because they are easy to develop, yield acceptable levels of performance and 

the structures of the resulting classifiers are easily explicable in support of legislative and 

operational requirements. In recent years, there has been increasing use of neural networks 

(Desai et al., 1996; West, 2000) but these tend to be restricted to fraud detection and other 

back-end credit scoring processes where a lower level of explicability is required (Hand, 

2001). Within the academic community there has been a growing body of literature into 

the application of many other methodologies. Some are statistical approaches such as 

survival analysis (Narain, 1992; Stepanova and Thomas, 2001), graphical models (Sewart, 

1997), K-Nearest Neighbour (Henley and Hand, 1996), Markov chains (Thomas et al., 

2001b) and quantile regression (Whittaker et al., 2005). Others are from the machine 

learning/data mining domain. Examples include genetic algorithms (Desai et al., 1997; 

Finlay, 2005) and support vector machines (Baesens et al., 2003; Huysmans et al., 2005).  

Empirical evidence from a number of studies has shown little support for any one 

classification or regression methodology consistently outperforming any other in terms of 

misclassification rates/cost or measures of group separation (Baesens et al., 2003; Boyle et 

al., 1992; Desai et al., 1996; Henley, 1995; West, 2000). Looking at the cumulative 

findings from across these studies there is some evidence that non-linear approaches such 
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as neural networks and support vector machines do, on average, outperform other methods 

(Crook et al., 2007), but only by a very small margin, and there is no consensus as to 

which methodology a model developer should adopt for a given problem. Given this 

uncertainly, it is not unusual for a practitioner to construct several different classifiers, 

using different techniques, and then choose the one that yields the best results for their 

specific problem.  

 

It does not necessarily follow that the best single classifier dominates all others over all 

regions of the problem domain, and error rates can often be reduced by combining the 

output of several classifiers (Kittler, 1998). As noted by Zhu et al. (2001), the general 

research into classifier combination (also referred to as classifier fusion or classifier 

ensembles) is rich, with a considerable number of papers published in the decade prior to 

their paper. However, within the credit scoring community the number of papers relating 

to classifier combination is sparse and few report empirical findings on data sets that can 

be said to be representative of those found in industry. Instead, most are based on “Toy” 

data sets, that are only a fraction of the size and/or dimensionality of the data sets 

employed by major financial institutions in first world credit markets, such as those in the 

US and UK (Finlay, 2006). In addition, previous studies have had a narrow focus. 

Standard practice has been to compare a single benchmark classifier with a narrow set of 

multiple classifier systems, often employing just one method of classifier construction. 

There has been little effort to compare and contrast the wide range of multiple classifier 

systems available in conjunction with the different mechanisms by which classifiers can be 

constructed.  

 

The remainder of the paper is in two parts. In the first part I describe the types of multiple 

classifier architectures that can be employed, followed by a review of the literature relating 

to their application to credit scoring problems. In the second part of the paper a variety of 

multiple classifier systems are evaluated in terms of their ability to correctly classify good 

and bad credit risks. For this purpose two comprehensive real world data sets are employed 

that have been supplied by industry sources. It would be impossible to cover all possible 

variants of multiple classifier systems in a single paper. Therefore, the emphasis has been 

to report on a representative sample of well known examples, for which empirical 

evidence exists that they can yield improved performance over a single classifier. In 
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addition, a new multi-classifier algorithm – Error Trimmed Boosting (or ET Boost for 

short) is presented and its performance compared to the other systems under discussion. 

 

Multiple Classifier System Architectures   

Multiple classifier system can be classified into one of three architectural types. The first, 

and probably the most popular, are static parallel (SP) systems where two or more 

classifiers are developed independently in parallel (Zhu et al., 2001). The outputs from 

each Ct (t=1...T) classifier are then combined to deliver a final classification decision w = 

)...( 1 TtCC =φ , where w is selected from the set of possible class labels. A large number of 

combination functions are available. These  include simple majority vote, weighted 

majority vote, the product or sum of model outputs, the min rule, the max rule and 

Bayesian methods. However, in practice most combination strategies are reported to yield 

very similar levels of performance (Kittler, 1998). Consequently, simple majority vote or 

weighted majority vote are often favoured due to their simplicity of application and their 

applicability to situations  where the raw outputs from each classifier may not all be 

interpretable in the same way. Another option is for the outputs from each classifier to be 

used as inputs to a second stage classifier that delivers the final classification decision 

(Kuncheva et al., 2001).  

 

Some SP approaches use identical representations of the data, but apply different methods 

of construction to produce each classifier such as neural networks, linear regression and 

CART. Classifier outputs are then combined to produce the final classification decision. 

Other SP approaches utilize a single method for classifier construction, but use different 

representations of the data to produce each classifier. Two such examples are cross 

validation and bagging. With cross-validation data is segmented into k folds. k models are 

then constructed with a different fold excluded for each model. With bagging (bootstrap 

aggregating) (Breiman, 1996), classifiers are constructed from different sub-sets of the 

data randomly sampled with replacement. Breiman developed bagging further with 

random forests (Breiman, 2001), where further random elements are entered into the 

procedure, for example randomly selecting subsets of variables or randomly selecting the 

order in which good predictors are applied. 
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The second type of architectures are multi-stage (MS) ones. Classifiers are constructed 

iteratively. At each iteration the parameter estimation process is dependent upon the 

classification properties of the classifier(s) from previous stages. Some MS approaches 

generate models that are applied in parallel using the same type of combination rules used 

for SP methods. For example, most forms of boosting (Schapire, 1990) generate a set of 

weak classifiers that are combined to create a stronger one. This is achieved by employing 

a re-sampling/reweighting strategy at each stage, based on a probability distribution or 

heuristic rule, derived from the misclassification properties of the classifier(s) from the 

previous stage(s). As the boosting algorithm progresses increasing focus is placed on 

harder to classify/more borderline cases. The boosting algorithm terminates after a given 

number of iterations have occurred or some other stopping criteria is met. Classifier output 

from each stage is then combined to make the final classification decision. The most well 

known boosting algorithm is arguably AdaBoost (Freund and Schapire, 1997) and many 

variants have subsequently appeared such as Arc-x4 (Breiman, 1998), BrownBoost 

(Freund, 2001) and LogitBoost (Friedman et al., 2000). 

 

Other MS methods produce a separate classifier at each stage and then classify a 

proportion of observations at that stage. The next stage classifier is then developed and 

applied to the remaining, unclassified, population. A variation on this theme is to make the 

final classification decision for all observations using a single classifier from one stage 

with all other classifiers being discarded (Myers and Forgy, 1963). The classifier produced 

from such an approach may in theory be sub-optimal, but improved classification can 

result because “outliers” at the extreme ends of the class distribution are excluded, 

allowing the decision surface to be obtain a better fit to more marginal cases while still 

correctly classifying the excluded cases. This approach also has a practical advantage in 

that it results in a single classifier. This makes it more attractive in operational 

environments than MS methods such as boosting because it is much simpler to implement 

and monitor a single classifier than multiple classifiers with serial dependencies. 

 

The third type of multiple classifier architecture is Dynamic Classifier Selection (DCS). 

Different classifiers are developed or applied to different regions within the problem 

domain. While one classifier may be shown to outperform all others based on global 

measures of performance, it may not dominate all other classifiers entirely. Weaker 

competitors will sometimes outperform the overall best across some regions (Kittler, 
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1997). DCS problems are normally approached from a global (DCS-GA) or local accuracy 

(DCS-LA) perspective (Kuncheva, 2002). With a DCS-GA approach classifiers are 

constructed using all observations within the development sample. Classifier performance 

is then assessed over each region of interest and the best one chosen for each region. One 

limitation of the DCS-GA approach is that while different classifiers may be shown to 

perform better within certain regions than others, there is no guarantee that any given 

classifier is optimal within any given sub-region, and that better classification might result 

if a separate classifier is developed specifically for that region. With a DCS-LA approach, 

regions of interest are determined first, then separate classifiers developed for each region. 

An issue in this case is one of sample size. While it is relatively easy to construct a 

classifier and confirm that it is robust and not over-fitting, if the sample size upon which it 

has been developed is small then the locally constructed classifier may be inefficient and 

not perform as well as a classifier developed on a larger more general population. 

Consequently, there is a trade-off between the robustness of classifiers developed using 

large samples with the ability to identify features within sparsely populated areas of the 

problem domain, and the accuracy of local classifiers. This logically leads to the 

conclusion that for DCS-LA approaches one benchmark against which performance should 

be measured are the results obtained from applying a DCS-GA approach and vice versa. 

 

With DCS-GA and DCS-LA approaches an important issue is identifying the best regions 

to develop or apply classifiers to. In some situations regions are defined using purely 

mechanical means. For example, the method described by Kuncheva (2002) is to apply a 

clustering algorithm, such as K-Nearest Neighbour. An improvement over simple 

clustering was reported by Liu and Yuan (2001) who applied a two-stage approach 

containing both global and local components. First they constructed classifiers across the 

entire problem domain, then applied K-NN clustering to generate two sets of clusters 

containing observations that had been correctly or incorrectly classified by each classifier. 

Second stage classifiers were then constructed for each cluster and used to make the final 

classification decision. In many applied situations segmentation decisions are constrained 

by practical considerations that may limit the usefulness of purely mechanical methods 

such as clustering. Segmentation decisions will be overwhelmingly driven by expert 

knowledge, business considerations, legal or other environmental constraints. For example, 

Toygar and Acan (2004) successfully applied a DCS-LA approach to face recognition 

problems. They segmented faces into regions by simply dividing the images in their data 
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set into a set of equally sized horizontally strips so that specific features such as nose, eyes, 

mouth etc. fell into each strip. The rationale for choosing this segmentation was primarily 

expert opinion about the regions which are important in face recognition problems, and 

trial and error. The approaches exemplified by Toygar and Acan (2004) and Liu and Yuan 

(2001) represent two ends of a spectrum. At one end segmentation is entirely determined 

by mechanical segmentation rules, and at the other, segmentation decisions are made 

subjectively by experts within a field. Consumer credit is an area that falls somewhere in 

the middle of this spectrum. As noted by Thomas et al. (2002). Mechanical means of 

segmenting a problem domain may be employed, such as applying the splitting rules 

associated with the construction of decision trees. However, segmentation is often driven 

by political decisions, the availability of data, product segmentation (e.g. cards and loans) 

or other business rules.  

 

Applications of Multiple Classifier System for Consumer Credit Risk Assessment 

A common strategy applied in credit scoring is to develop sub-population models for 

different regions of the problem domain (Banasik et al., 1996). Sub-population modelling 

is an example of a DCS-LA architecture, and most classifier combination strategies 

reported in the credit scoring literature adopt a DCS-LA approach, even if they are not 

described as such. One reason why a DCS-LA strategy is attractive is that each model is 

developed and applied independently to a different region of the problem domain. 

Therefore, each credit application is only scored by a single model. From an 

implementation perspective this is attractive because it simplifies performance monitoring, 

facilitates the redevelopment of models on a piecemeal basis and generates scorecards that 

are more readily explicable to the general public in support of legislative requirements.  

This is regardless of the method used to generate the segments upon which the sub-

population models are constructed, and therefore offers a methodology whereby 

techniques that do not generate a simple (linear) parameter structure, such as clustering, 

neural networks or support vector machines, can be combined with methods that do. For 

example, the output from a complex (difficult to interpret) neural network model could be 

used to define segments upon which simple linear scoring models are then constructed. If 

probabilistic estimates of class membership are required, then as long as the final models 

generate probabilistic estimates, then it is irrelevant whether the segmentation strategy 

does so or not. Not all of these properties can be said to be universally true of static 

parallel or multi-stage classifier systems. 
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Empirical analysis of credit data would lend some, but not overwhelming, support for 

DCS-LA methodologies providing improved classification performance over a single 

global classifier. Chandler and Ewert (1976) compared a single model using gender as a 

dummy variable with two models developed for males and female credit applicants 

respectively. One of their findings was that the two separate models used in combination 

led to a lower rate of rejected female applicants than the single model. Banasik et al. 

(1996) explored this further, examining the performance of a single credit scoring model 

against models constructed on twelve different segmentations such as married/not married, 

retired/not retired and so on. They concluded that using sub-population models sometimes 

led to better solutions, but this was not always the case. Another strategy along these lines 

was investigated by Hand et al. (2005) who considered binary segmentation using an 

“optimal partition” strategy based on maximising the product of two likelihood functions 

calculated from observations in each of the two potential segments. They observed small 

but significant improvements in classification performance. In another study, a preliminary 

forecasting model was constructed to estimate usage on a revolving credit product. The 

population was then segmented into two parts on the basis of whether the estimated usage 

was high or low (Banasik et al., 2001). The conclusion was that the performance of the two 

sub-population models was superior to that of a single model constructed across the entire 

population, but that the improvement was marginal.  

 

The limited research undertaken into the application of other types of classifier 

combination to credit scoring problems has arguably yielded better results than DCS-LA 

approaches. Myers and Forgy (1963) adopted a multi-stage approach in which they utilised 

a two stage discriminant analysis model. The second stage model was constructed using 

the worst performing 86% of the original development sample. They reported that the 

resulting second stage model identified 70% more bad cases than the first stage model on 

its own for their chosen cut-off strategy. This idea has some parallels with boosting 

strategies that apply weight trimming rules to exclude observations that have insignificant 

weights because they are classified correctly with a high degree of confidence (Friedman 

et al., 2000).  

 

Yachen (2002) reported up to 3% improvement in GINI coefficient when applying a 

logistic model, followed by a neural network. Zhu et al. (2001) reported improvements of 
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between 0.5% and 1.3% when using a logistic function to combine two scores, each 

constructed using different sets of features but with the same target variable. Zhu et al. 

(2002) applied a SP approach to combine classifiers constructed using discriminant 

analysis, logistic regression and neural networks using a Bayesian combination rule. The 

results showed increasing performance as the number of classifiers increased, yielding 

similar, but not superior, performance to the single best classifier, which may have been a 

result of over fitting given the markedly better performance seen on the development data 

set compared to the validation set. West Dellana et al. (2005) compared ensembles of 

neural networks constructed using cross-validation, bagging and boosting (AdaBoost) 

against the single best network for three different data sets. They found that both bagging 

and cross validation yielded statistically significant reductions in classification error of 

2.5% and 1.9% respectively, averaged across the three data sets. However, boosting was 

reported to yield significantly worse error rates than a single classifier, which was 

attributed to outliers, noise and mislabelled learning examples. 

 

Although these studies have utilized different data sets and different methodologies, two 

interesting features stand out. The first is that the greatest uplift in performance is reported 

by Myers and Forgy (1963) with their simple 2-stage MS strategy, utilizing the second 

stage model to make the final classification decision. They effectively used the first stage 

model to identify “outliers” at the extreme end of the score distribution, allowing the 

classification model to be constructed on marginal cases around the desired cut-off – 

somewhat similar in principle to the idea underpinning support vector machines. The 

second is that there has been relatively little research effort to compare and contrast 

different multiple classifier systems in conjunction with different classification 

methodologies within the credit scoring arena (and to the best of my knowledge 

classification problems in general). Only in the study by West Dellana et al. (2005) was 

more than a single combination strategy given consideration, and in this case only one type 

of classifier (neural networks) was considered.   

 

Experimental Design 

Four base methods of classifier construction were considered: logistic regression (LR), 

linear discriminant analysis (LDA), classification and regression trees (CART) and 

artificial neural networks (NN). LR, LDA, CART and NN were chosen for a number of 

reasons. First, each utilizes a different form of parameter estimation/learning. Second, 
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between them they generates three different model forms; linear models, trees and 

networks. Third, all are practically applicable within operational consumer lending 

environments, with known examples of their application within the financial services 

industry. To begin, single classifiers were constructed using each method. These were used 

to provide benchmarks against which various multiple classifier systems were assessed. 

For CART models binary splitting rules were employed based on maximum entropy. The 

part of the data set allocated to model development was further segmented 80/20 train/test. 

The tree was grown using the 80 percent allocated for training. Pruning was then applied 

based on minimized sum of squared error, calculated using the 20 percent validation 

sample, as advocated by Quinlan (1992).  

 

For neural network models a MLP architecture was adopted with a single hidden layer, and 

as for CART, development data was segmented 80/20 train/test. For each data set the 

network structure and training criteria were determined a priori based on the results from a 

number of preliminary experiments (the resulting network structure was then used for all 

experiments involving that data set; that is, all networks trained using a given data set had 

the same number of units in the hidden layer, the same activation function, training 

algorithm and so on.) Preliminary experiments were performed using a randomly selected 

50 percent of observations split 80/20 train/test (50 percent was used to correspond with 

the size of the folds used in model development – as described below). N-1 models were 

created using 2,3,…,N hidden units, where N was equal to the number of inputs. The 

performance of each model was then evaluated on the test set. A 5-fold strategy was 

applied, with a different fold acting as the test set each time. An average of the number of 

hidden units in the best model for each of the five folds was taken, rounded up to the 

nearest whole number, and this was the number of hidden units used for all subsequent 

experiments. Given the size of the data sets employed and the number of independent 

variables it was considered unlikely that over-fitting would be an issue for any reasonable 

number of hidden units. Given the number of experiments performed, a relatively fast 

training algorithm was necessary to allow experiments to be completed in realistic time. 

For this reason network training utilized the quasi-Newton algorithm with a maximum of 

200 training epochs. 

 

Five types of static parallel multiple classifier system were explored. The first static 

parallel system combined the output of the baseline classifiers to produce a final 
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classification decision using a simple majority vote. All possible combinations of three 

classifiers (from four) were explored. These are designated SP1-NOCART, SP1-NOLR, 

SP1-NOLDA and SP1-NONN respectively, to indicate which classifier score was 

excluded. The second static parallel system, SP2, applied stepwise logistic regression to 

generate a weighted function of the four baseline classifier scores. SP3 used a neural 

network with a single hidden layer to produce a final score. The four baseline scores acted 

as inputs, and four units were included in the hidden layer. SP4-LR applied cross 

validation. Stratified random sampling was applied to allocate observations to one of 50 

equally sized folds. 50 classifiers were then constructed using 49 of the folds, with a 

different fold excluded from each model. A final classification decision was then made 

using simple majority vote. In the case of tied votes the final classification decision was 

chosen at random. SP4-LDA, SP4-CART and SP4-NN applied cross validation again, but 

this time for LDA, CART and NN respectively. SP5-LR applied bagging with logistic 

regression, using 50 independently drawn samples with replacement. The final 

classification decision was made using simple majority vote. SP5-LDA, SP5-CART and 

SP5-NN applied an identical bagging algorithm using LDA, CART and NN respectively.  

Three multi-stage classifier systems were investigated. The first multi-stage 

classifier system, MS1-LR, is the Discrete AdaBoost algorithm as described in Figure 1, 

applied to logistic regression.  

 

 1. Initialise t=0 

 2. Initialise a probability distribution D0(i)= 1/ n0 for all i ∈ (1… n0) 

 3. DO While t<T 

 4.  Construct classifier Ct from M0
 using weights Dt 

 5.  Calculate weighted error as: ( ) ( )∑
=
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 11. Assign final classification decision as C*= ( )( )∑
−

=
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0

T

t
tt xCα  

 

Figure 1. The Discrete AdaBoost Algorithm 

 

In Figure 1, The training set M0 is defined as containing n0 observations (x1, y1)...(xn0,yn0) 

with class labels y ∈ (-1,+1). At each iteration of AdaBoost a classifier is constructed using 

the weighted population (Step 4). A sum of errors measure (Et in Step 5) is then calculated 

and applied to adjust the weighting assigned to each observation (Step 8). The result is that 

the weight  assigned to correctly classified cases is diminished, while the weight for 

incorrectly classified cases is increased. Zt  in step 8 is a normalizing constant, chosen such 

that the sum of weights at each iteration are equal to one. The final classification decision 

is then made using a weighted majority vote (Step 11). The choice of T is problem 

specific, but values ranging from 25 to 100 are widely quoted in the literature. For the 

purpose of this study T was set to 50, following preliminary testing that indicated no 

performance improvements results from having more iterations than this. The second 

multi-stage classifier system, MS2-LR, is a new boosting algorithm designated Error 

Trimmed Boosting (or ET Boost for short). As described in Figure 2, ET Boost applies a 

trimming strategy that successively removes well classified cases from the training set.  

 

 1.  Initialize t=0 

 2.  DO while t<T 

 3.   Construct classifier Ct from Mt 

 4.  eti=ƒ(yi, Ct(xi)) , xi ∈ M0, i=1.. n0
 

5. sort elements of M0 in ascending order of eti 

6. nt+1= INT(nt*λ) 

7. Create set Mt+1 containing first nt+1 elements of M0 

8.  t=t+1 

9. END while 

 10. Assign final classification decision as ( )10 ...* −= TCCC φ  

 

Figure 2. Error Trimmed Boosting (ET Boost) algorithm 
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With ET Boost, at the tth iteration the error, eti, is calculated for all n0 observations using 

classifier Ct (Step 4). Then, INT(nt* λ), (0< λ<1) observations with the largest error are 

selected for construction of the t+1th classifier (Steps 5-7).  λ is a control parameter that 

determines the rate at which the size of the development sample decreases between 

subsequent iterations.  Note that a key feature of ET Boost is that at each iteration all 

observations are reconsidered for inclusion in classifier construction. There is no 

weighting of observations. Thus observations excluded from classifier construction in one 

iteration may be included in the next iteration if the relative error of an observation 

increases between subsequent iterations. ET Boost is a very simple, yet flexible, boosting 

algorithm because it can cater for many different error functions and many different 

combination functions (step 10). It can also be applied to any type of classifier/regression 

methodology, regardless of whether or not they generate likelihood estimates, and can 

therefore be applied to problems with multi-category or continuous outcomes. For the 

purpose of this study, the error function is chosen to be absolute error: |yi-Ct(xi)|. Simple 

majority vote is applied as the combination function to put ET Boost on equal footing with 

bagging and cross validation. Exploratory analysis showed ET Boost to yield good 

performance for a wide range of values of λ and T. These parameters were therefore 

chosen on a somewhat arbitrary basis to be 0.975 and 50 respectively.  

 

MS3-LR utilizes the individual classifiers developed for MS2-LR. In each case the 

classification decision is made using the single best classifier from the set of T available 

classifiers. MS3 can be considered a generalization of the 2-stage strategy utilized by 

Myers and Forgy (1963). MS1-LDA,…,MS3-LDA, MS1-CART,...,MS3-CART and MS1-

NN,…,MS3-NN were generated using LDA, CART and NN respectively 

 

Two local accuracy dynamic classification systems where explored. For the first, DCS-

LA1-L-LR, the ranked scores from the baseline logistic regression model were used to 

segment the population into L segments, with segment boundaries chosen to maximize the 

entropy across the L segments. LR was then applied to generate a separate model for each 

segment. The process was then repeated for LDA, CART and NN. For the purposes of this 

exercise values of L=2 and L=4 were considered. For DCS-LA2-K-LR a clustering 

algorithm was applied using nearest centroid sorting to create K clusters, with values of 

K= 2 and 4 considered. Logistic regression was then applied to each of the resulting 

clusters. The process was repeated with LDA, CART and NN. A single DCS-GA strategy 
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was considered, DCS-GA-K. For each of the K clusters defined for DCS-LA2-K, the 

performance of the four baseline classifiers was measured and the best one chosen for K=2 

and 4 to generate solutions DCS-GA-2 and DCS-GA-4 respectively. 

 

Evaluating Performance 

The performance of each classifier system was assessed on the misclassification rate for 

the cut-off score, S, where S was the score for which 100* Nb/(Ng+Nb) percent of the 

population scores S or below. Ng and Nb are the numbers of goods and bads respectively. 

Therefore, using this cut-off strategy, a perfect classifier would correctly assign all goods 

scores greater than S and all bads scores less than or equal to S. For dynamic classifier 

systems that consider several independent sub-regions, separate values of the cut-off score, 

S, were defined for each region. 

 

Performance metrics were calculated using kj-cross validation which is a variant on 

standard k-fold cross validation. The population is first segmented into k equally sized 

folds, F1,…Fk using stratified random sampling. A model is then constructed with fold Fi ,i 

∈ (1,…,k) assigned as the validation fold. The validation fold Fi is then segmented into j 

sub-folds for which performance metrics are calculated. The process is repeated, k times, 

generating a population of k*j performance measures. The performance of two classifier 

systems can then be compared using a paired t-test. kj-cross validation is computationally 

cheap compared to many other validation methods. It is suitable for situations where large 

data sets are available and experiments are concerned with the comparative performance of 

competing classification techniques, rather than obtaining the best performance across the 

entire data set upon which classifiers are being constructed. Another desirable of feature of 

kj-cross validation is that for the special case where k=2, each model is constructed and 

validated using independent data sets. This overcomes the problem of non-independence 

of the training data associated with standard k-fold validation (k>2) which can lead to 

inflated values of  test statistics when applying paired t-tests (Dietterich, 1998). For the 

purpose of this study k=2, j=25.  

 

Empirical Data 

Two real world data sets were available. Data set A was supplied by the Experian credit 

reference agency in the UK. It contained details of retail credit applications made to 

several mainstream lending institutions between April and June 2002. It can therefore be 
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taken as providing a representative picture of the UK population of retail credit 

applications. 12 month performance data was attached and this was used to generate a +1,-

1 target variable (Good=1, bad=-1). Those <= 1 month in arrears, and no history of 

seriously delinquency within the last 6 months (3+ months in arrears) were classified as 

good. Those currently 3+ more months in arrears, or 3+ months in arrears any time within 

the last 6 months were classified as bad.  All other cases where classified as 

“indeterminate” and excluded. This definition of good/bad is consistent with those applied 

by practitioners, based on bads being three or more cycles delinquent and goods as up-to-

date or no more than one cycle delinquent (Hand and Henley, 1997; Lewis, 1992; McNab 

and Wynn, 2003). The final data set contained 88,789 observations of which 75,528 cases 

were classified as good and 13,261 as bad. 39 independent variables were available. These 

included applicant provided information such as age, residential status and income, as well 

as a common credit reference data such as number, value and time since most recent 

delinquency, account performance history, number of recent credit searches, time on 

electoral roll and Experian’s MOSAIC postcode level classifier.  

 

Data set B was a large behavioural scoring data set provided by a supplier of revolving 

credit. Performance data was attached 12 months after the sample date. Goods were 

defined as <=1 month in arrears, bads as 3+ months in arrears. After removing exclusions, 

such as indeterminates, dormant accounts and those already classified as bad, the data set 

contained 120,508 goods and 18,098 bads. 54 independent variables were available, 

examples of which were current and historic statement balance, arrears status, payments 

and various ratio’s of these variables over 3,6 and 12 months.  

 

Data pre-processing was performed using the weights of evidence transformation. This is a 

standard pre-processing technique applied to credit scoring problems (Crook et al., 2007; 

Finlay, 2008; Hand and Henley, 1997; Siddiqi, 2005). Continuous variables such as 

income were binned into a number of discrete categories, and the weight of evidence in 

each bin calculated as ( )
( ) ⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
Bb
GgLN

i

i , where G and B are the number of goods and bads in 

the population, and gi and bi are the number of goods and bads within the ith bin. The 

weight of evidence was then substituted for the true attribute value. For categorical 

variables each category was allocated to a separate bin. In cases where a category  
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contained relatively few observations coarse classing, as described by Thomas et al. (2002) 

was applied and the category combined with another. Note that when applying methods 

that perturb the data, such as bagging and boosting, the weights of evidence must be 

recalculated each time the data is modified to take into account the changing proportion of 

goods and bads within each bin. After pre-processing, a preliminary variable selection 

exercise was undertaken. A stepwise logistic regression procedure was applied to the full 

population with a 5% significance level applied for model entry/exit. The data was 

segmented into 5 folds, with a model built using the first four folds. The process was 

repeated five times with a different fold excluded on each occasion. Any variable 

appearing in any of the 5 models was retained for the main modelling exercise. After pre-

processing and variable selection, 29 of original 39 variables were available for model 

construction for data set A. For data set B 37 variables were selected.  

 

Results and Findings 

Table 1 shows the percent of misclassified cases, and the improvement over the baseline 

for each classifier system.  
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Data set A Data set B 

Classifier system % 
Misclassified

% Absolute 
improvement 
over baseline

% Relative 
improvement 
over baseline

% 
Misclassified 

% Absolute 
improvement 
over baseline 

% Relative 
improvement 
over baseline

Baseline models   
LR 13.07% 0.00% N/A 14.96% -0.53% N/A
LDA 13.25% -1.43% N/A 15.24% -2.36% N/A
CART 14.41% -10.27% N/A 15.65% -5.14% N/A
NN 13.17% -0.81% N/A 14.89% 0.00% N/A

Static parallel   

SP1-NOLR  (simple majority vote ) 13.05% 0.12% N/A 14.77% 0.77% N/A
SP1-NOLDA (simple majority vote ) 12.94% 0.97% N/A 14.79% 0.62% N/A
SP1-NOCART (simple majority vote ) 12.67% 3.03% N/A 14.54% 2.32% N/A
SP1-NONN (simple majority vote ) 13.06% 0.08% N/A 14.93% -0.30% N/A
SP2 (Logistic regression combination) 12.49% 4.41% N/A 14.33% 3.76% N/A
SP3 (Neural network combination) 12.22% 6.45% N/A 14.27% 4.16% N/A
SP4-LR (cross validation) 13.07% 0.00% 0.00% 14.96% -0.48% 0.05%
SP4-LDA (cross validation) 13.25% -1.37% 0.06% 15.24% -2.35% 0.01%
SP4-CART (cross validation) 13.57% -3.84% 5.83% 14.87% 0.07% 4.96%
SP4-NN (cross validation) 13.09% -0.19% 0.61% 14.88% 0.03% 0.03%
SP5-LR (bagging) 13.05% 0.16% 0.16% 14.95% -0.43% 0.10%
SP5-LDA (bagging) 13.23% -1.21% 0.22% 15.25% -2.44% -0.08%
SP5-CART (bagging) 12.26% 6.17% 14.91% 13.93% 6.44% 11.02%
SP5-NN (bagging) 13.03% 0.30% 1.10% 14.82% 0.44% 0.44%

Multi-stage   

MS1-LR (adaboost) 13.04% 0.18% 0.18% 14.96% -0.50% 0.03%
MS1-LDA (adaboost) 13.07% 0.02% 1.43% 14.95% -0.46% 1.86%
MS1-CART (adaboost) 13.88% -6.21% 3.69% 15.31% -2.86% 2.17%
MS1-NN (adaboost) 13.02% 0.36% 1.16% 14.78% 0.71% 0.71%
MS2-LR (ET Boost) 12.34% 5.60% 5.60% 13.37% 10.16% 10.63%
MS2-LDA (ET Boost) 12.65% 3.18% 4.54% 13.79% 7.34% 9.48%
MS2-CART (ET Boost) 11.92% 8.75% 17.25% 13.06% 12.27% 16.56%
MS2-NN (ET Boost) 11.64% 10.91% 11.62% 12.92% 13.19% 13.19%
MS4-LR (ET Boost, best single model) 12.97% 0.74% 0.74% 14.89% -0.01% 0.51%
MS4-LDA (ET Boost, best single model) 13.07% 0.00% 1.41% 15.03% -0.99% 1.33%
MS4-CART (ET Boost, best single model) 14.36% -9.91% 0.33% 15.65% -5.14% 0.00%
MS4-NN (ET Boost, best single model) 13.05% 0.15% 0.96% 14.76% 0.86% 0.86%

Dynamic classifier selection   

DCS-LA1-2-LR (score based segments) 15.07% -15.32% -15.32% 15.93% -7.03% -6.47%
DCS-LA1-4-LR (score based segments) 16.16% -23.69% -23.69% 16.90% -13.55% -12.96%
DCS-LA1-2-LDA (score based segments) 14.82% -13.43% -11.83% 15.93% -7.03% -4.56%
DCS-LA1-4-LDA (score based segments) 15.64% -19.69% -18.00% 16.90% -13.55% -10.94%
DCS-LA1-2-CART (score based segments) 15.97% -22.20% -10.82% 18.06% -21.31% -15.38%
DCS-LA1-4-CART (score based segments) 16.33% -24.96% -13.32% 18.22% -22.41% -16.42%
DCS-LA1-2-NN (score based segments) 15.01% -14.84% -13.92% 16.06% -7.86% -7.86%
DCS-LA1-4-NN (score based segments) 16.02% -22.56% -21.58% 17.43% -17.09% -17.09%
DCS-LA2-2-LR (cluster based segments) 13.67% -4.60% -4.60% 15.28% -2.63% -2.09%
DCS-LA2-4-LR (cluster based segments)  14.05% -7.55% -7.55% 15.61% -4.84% -4.29%
DCS-LA2-2-LDA (cluster based segments) 13.80% -5.59% -4.10% 15.49% -4.07% -1.68%
DCS-LA2-4-LDA (cluster based segments) 14.08% -7.74% -6.22% 15.67% -5.28% -2.85%
DCS-LA2-2-CART (cluster based segments) 15.29% -17.03% -6.13% 16.71% -12.24% -6.75%
DCS-LA2-4-CART (cluster based segments) 15.92% -21.81% -10.46% 17.16% -15.30% -9.66%
DCS-LA2-2-NN (cluster based segments) 13.71% -4.95% -4.10% 15.33% -2.98% -2.98%
DCS-LA2-4-NN (cluster based segments) 14.18% -8.52% -7.64% 15.66% -5.18% -5.18%
DCS-GA-2 13.37% -2.34% N/A 15.65% -5.14% N/A
DCS-GA-4 14.02% -7.26% N/A 15.63% -5.01% N/A

Table 1. Performance of competing classifier systems 
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In Table 1 the performance of the single best baseline model is taken as the reference point 

in the “Absolute improvement” columns. Figures refer to incremental improvement. 

Therefore, if system X misclassifies 20% of cases and system Y misclassifies 19% of cases 

the improvement of Y over X is calculated as 5%. The “Relative improvement” columns 

are for classifier systems that utilize only a single form of classifier. The figures in this 

column refer to the improvement over the base line classifier of that type. For example, for 

SP4-NN (cross validation with neural networks) for data set A the improvement over the 

baseline neural network model is 0.61%. Shaded cells indicate that performance is superior 

to the baseline model at a 99% level of significance. 

 

Let us begin by examining the performance of the baseline classifiers. LR and NN are the 

best for data sets A and B respectively, and in each case the differences between LR and 

NN are statistically significant, but small in percentage terms. In both cases the 

performance of CART is considerably worse than other methods. This is despite a number 

of preliminary experiments that looked at different pruning/data pre-processing strategies. 

These preliminary experiments suggested that for credit scoring data sets, using 

discretorized (weights of evidence) data gave superior performance than using continuous 

variables in their raw form or dummy variables. This is a conclusion supported by Baesens 

et al. (2003) who also found that using discretorized data yield better results CART. 

Overall, the results for the baseline classifiers are not particularly surprising and are 

compatible with previous empirical studies of classifier performance for credit scoring data 

sets.  

 

All of the static parallel systems show some potential to significantly outperform the 

baseline. However, cross validation and Bagging are weakest, with only ensembles using 

CART showing any major improvement (SP4-CART and SP5-CART). Simple majority 

vote of the base line classifiers is also poor, showing at best modest improvements, with 

the exception of SP1-NOCART. The two best performing static parallel systems are SP3 

(neural network combination of the base line classifiers), and SP5-CART (Bagging with 

decision trees). For data set A SP3 is best, closely followed by SP5-CART, with 

improvements of 6.45% and 6.15% respectively. For data set B the situation is reversed. 

SP5-CART provides 6.44% improvement compared to 4.15% for SP3. The linear 

weighting function (SP2), derived using stepwise logistic regression, also performs well, 
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providing a respectable 4.41% and 3.76% improvement over the single best classifier for 

data sets A and B respectively.  

 

Multi-stage systems also provide statistically significant benefits over the baseline models. 

The clear winner in this category (and best across all categories and both data sets) is ET 

boost, which provides large and significant improvements over the baseline and other 

multiple classifier systems for all methods considered, with best performance when 

applied to neural networks. The performance of ET boost, compared with bagging and 

AdaBoost is shown in Figure 3.  
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LR data set B
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LDA data set A
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LDA data set B
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CART data set A
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CART data set B
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NN data set A
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NN data set B
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Figure 3. Performance of ET boost, AdaBoost and Bagging 
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ET boost outperforms other methods, but with data set A there is evidence of rapid 

deterioration in performance for NN and CART once a certain number of boosts is 

exceeded. However, for LR and LDA for both data sets, it would appear that performance 

has not peaked after 50 boosts. This suggests that the number of boosts and the decay rate 

for ET Boost should be chosen with care, performing several trial runs, to obtain optimal 

or near optimal performance.  

 

An important question is why does ET boost outperforms other methods by such 

significant margins, and in particularly what differentiates it from AdaBoost? One reason 

may be the level of “inertia” displayed by each system. Both algorithms display adaptive 

behaviour and look to perturb the data at each iteration of the boosting algorithm. 

However, as Friedman, Hastie et al. (2000) point out, with AdaBoost, once the weight 

associated with an observation becomes trivial it may as well be excluded from further 

iterations of the algorithm because the weight is unlikely to recover to a significant level. 

With ET boost this is not the case. Observations have weights of 0 or 1 dependant upon the 

magnitude of the error generated by the classifier at the previous iteration. An observation 

can therefore flip between inclusion and exclusion at each iteration. Another reason may 

be the performance of the individual classifiers comprising each boosting ensemble. Figure 

2 shows a comparison of the misclassification rate for the individual models that comprise 

the Adaboost and ET Boost ensembles. 
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LR data set A: Individual scores for AdaBoost and ET Boost
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LR data set B: Individual scores for AdaBoost and ET Boost
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LDA data set A: Individual scores for AdaBoost and ET Boost
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LDA data set B: Individual scores for AdaBoost and ET Boost
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CART data set A: Individual scores for AdaBoost and ET Boost
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CART data set B: Individual scores for AdaBoost and ET Boost
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NN data set A: Individual scores for AdaBoost and ET Boost
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NN data set B: Individual scores for AdaBoost and ET Boost

14%

16%

18%

20%

22%

24%

26%

0 5 10 15 20 25 30 35 40 45 50

Boost number

M
is

cl
as

si
fic

at
io

n 
ra

te

Individual AdaBoost scores Individual ET boost scores Baseline NN
 

Figure 4. Performance of individual boosting scores 
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As Figure 4 shows, ET boost classifiers consistently dominates AdaBoost for the first few 

boosts, with all ET Boost classifiers yielding performance that is close to (or even 

marginally better than) the baseline classifier, and it is probably this feature that gives ET 

boost its advantage.  

 

All of the dynamic classifier systems displayed significantly inferior performance 

compared to the baseline classifiers, and performance with four sub-regions was 

consistently worse than with two sub-regions. This result was somewhat surprising, but 

can be attributed to three factors. First, it suggests that the relationships within the data, 

following the weights of evidence transformations, are linear and there are no significant 

interactions. Evidence for this is the relatively close performance of the logistic regression 

and neural network baseline classifiers, and concurs with the majority of studies that have 

compared logistic regression and neural networks in credit scoring. Second, both of the 

local accuracy dynamic classifier systems (DCS-LA1 and DCS-LA2) resulted in at several 

regions where there were relatively few bads (<1000 cases) which is considered a small 

number in credit scoring terms. The sparsity of data in these regions meant that the fitted 

models may have been less efficient predictors than models constructed on the entire 

population. Over-fitting may also have been an issue in the smallest regions. Third, the 

decision rule defining the cut-off was applied to each region independently. This imposed 

a constraint not present for the single models; i.e. better classification might have resulted 

if the only constraint was that the sum of observations below the cut-off across all 

segments was equal to the total number of bads. It may be the case that alternative 

segmentation and/or cut-off rules would improve the performance of the dynamic classifier 

systems considered. However, this is beyond the scope of this paper and is recommended 

as a subject for further research. 

 

Conclusion and Discussion 

In this paper a large and comprehensive study of multi classifier systems applied to 

consumer risk assessment has been presented, using two large real world credit scoring 

data sets covering both application and behavioural scoring. Dynamic classifier systems, 

that look to segment the population in a number of sub-regions are consistently poor 

performers, with all experiments yielding results that are inferior to the single best 

classifier. However, the performance of most Static parallel and multi-stage combination 

strategies provide statistically significant improvements over the single best classifier. 
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Bagging with decision trees performs well, as do weighted majority voting systems that 

combine the outputs from models constructed using linear discriminant analysis, logistic 

regression, neural networks and CART. Adaboost does provide statistically significant 

improvements in performance over the single best classifier, but is a poor performer 

compared to other multi-stage and static parallel methods which concurs with previous 

comparisons of bagging and boosting applied to credit scoring (West et al., 2005). The 

most interesting result is the performance of ET Boost. ET Boost consistently 

outperformed all other multiple classifier systems, across both data sets, regardless of the 

type of classifier employed.  

 

With regard to future research, this paper has looked at the performance of multiple 

classifier systems in terms of misclassification rates for a single cut-off strategy. A natural 

extension would be to consider the impact of such systems on other measures of 

performance, and in particular measures of group separation such as GINI, KS and 

divergence that are also commonly used to assess classifier performance in the consumer 

credit industry, and which are not necessarily well correlated with cut-off based measures 

(Hand, 2005). ET Boost also deserves further investigation on a number of fronts. First in 

terms of the training parameters and combination rules that can be employed. Second, 

empirical studies of the application of ET Boost to data sets from other areas of data 

mining should be undertaken to assess its performance across a more general field. Third, 

comparisons should be made between ET boost and some other forms multiple-classifier 

systems not investigated in this paper. For example, Random Forests and Multiple 

adaptive regression splines (MARS). 
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