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Abstract

Empirical pricing kernels for the UK equity market are derived as
the ratio between risk-neutral densities, inferred from FTSE 100 index
options, and historical real-world densities, estimated from time series
of the index. The kernels thus obtained are almost compatible with
a risk averse representative agent, unlike similar estimates for the US
market.

JEL classifications : G12; G13

Keywords : Pricing kernels; Risk-neutral densities; Index options; Risk aver-

sion

1



1 Introduction

The pricing kernel assumes a central role in asset pricing literature, as it

succinctly summarizes investors’ risk and time preferences. With a correctly

identified pricing kernel, asset pricing becomes a straightforward discounting

of future payoffs by the kernel.

In this article, we estimate empirical pricing kernels from the options market,

as option prices have been shown to contain incremental information in fore-

casting future volatilities and price distributions compared to the time series

of asset prices1. We express the empirical pricing kernels as a ratio between

risk-neutral densities (RND), inferred from FTSE 100 index options, and

historical densities obtained from time series of the index, averaged across

time to minimize the impact of measurement errors.

In particular, we assume that risk-neutral densities follow certain distribu-

tions. They can be either a mixture of two lognormal densities (MLN), a

generalized beta distribution of the second kind (GB2), or a flexible spline

function, all of which are easy to estimate and able to capture the stylized

facts of negative skewness and excess kurtosis that are associated with index

distributions.

Using a sample of 126 months data from July 1993 to December 2003, we

find that the average empirical pricing kernel for the UK equity market is

generally downward sloping and does not exhibit the puzzling hump shape

documented by Jackwerth (2000), Rosenberg and Engle (2002), and Brown

and Jackwerth (2002). This work is also related to Brennan et al (2006),

which adopts the traditional asset pricing approach by identifying state vari-

ables that fully describe the investment opportunities and specifying flexible

functional forms for the pricing kernels.

The rest of the paper is organized as follows. Section 2 introduces the risk-

1A vast literature has documented that option-implied volatility provides better fore-
casts of future volatilities than realized volatility. Poon and Granger (2003) and Taylor
(2005) provide recent survey evidence. In terms of density forecasts, Liu et al (2006)
demonstrates that distributions from option prices are better forecasts than those ob-
tained from asset price histories.
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neutral and historical densities and the estimation procedures. Section 3

discusses data. Section 4 presents empirical results and describes the empir-

ical pricing kernels for the UK. Finally, Section 5 concludes.

2 Risk-neutral and historical densities

2.1 Mixture of lognormal densities (MLN)

Following Ritchey (1990) and Melick and Thomas (1997), the risk-neutral

density of the asset price when options expiry can be defined as a mixture

of lognormal densities. The MLN densities are flexible and easy to estimate,

with the possibility of attaching an economic interpretation to the parameters

when the component densities are determined by specific states of the world

when the options expire. The MLN density function in this study is the

following weighted average of two lognormal densities gLN ,

gMLN(x|θ) = wgLN(x|F1, σ1, T ) + (1− w)gLN(x|F2, σ2, T ) (1)

with

gLN(x|F, σ, T ) =
1

xσ
√

2πT
exp

[
−1

2

(
log x− (log F − σ2T/2)

σ
√

T

)]
. (2)

The parameter vector is θ = (F1, F2, σ1, σ2, w), with 0 ≤ w ≤ 1 and F1, F2, σ1, σ2 >

0. The parameters F1, σ1, and w denote the mean, volatility, and weight of

the first lognormal density, while F2, σ2, and 1− w are the mean, volatility,

and weight of the second lognormal density.

The density is risk-neutral when its expectation equals the current futures

price F , i.e. when wF1 + (1− w)F2 = F . The theoretical Euruopean option

pricing formula is then simply the weighted average of two option prices given

by the Black (1976) formula, denoted by cB(.),
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c(X|θ, r, T ) = wcB(F1, T, X, r, σ1) + (1− w)cB(F2, T,X, r, σ2). (3)

2.2 Generalized beta distribution (GB2)

The generalized beta distribution of the second kind (GB2) was first proposed

by Bookstaber and McDonald (1987) and utilized by Anagnou-Basioudis

et al (2005). The GB2 density incorporates four positive parameters θ =

(a, b, p, q) that permits general combinations of the mean, variance, skewness,

and kurtosis of a positive random variables. The GB2 density function is

defined as,

gGB2(x|a, b, p, q) =
axap−1

bapB(p, q)[1 + (x/b)a]p+q
(4)

with B(j, k) = Γ(j)Γ(k)/Γ(j + k). The density is risk-neutral when

F =
bB(p + 1

a
, q − 1

a
)

B(p, q)
. (5)

The parameter b is seen to be a scale parameter, while the product of a and

q determines the maximum number of moments and hence the asymptotic

shape of the right tail.

The theoretical option pricing formula depends on the cumulative distribu-

tion (c.d.f.) function of the GB2 density, denoted GGB2, which is a function

of the c.d.f. of the beta distribution, denoted Gβ,

GGB2(x|a, b, p, q) = GGB2((x/b)a|1, 1, p, q) = Gβ(y(x, a, b)|p, q) (6)

with y(x, a, b) = (x/b)a/(1 + (x/b)a). If the density is risk-neutral, so that

(5) applies, the European call option prices are given by

c(X|θ) = e−rT
∫ ∞

X
(x−X)gGB2(x|a, b, p, q)dx (7)
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= Fe−rT
[
1−Gβ(y(X, a, b)|p +

1

a
, q − 1

a
)
]
−Xe−rT [1−Gβ(y(X, a, b)|p, q)] .

2.3 Flexible densities

To make sure that the parametric densities discussed above are not inferior

to more flexible density curves, we also infer risk-neutral densities defined

by spline functions, as estimated by Bliss and Panigirtzoglou (2004). We

apply their methodology to obtain implied volatilities, denoted by σ(∆|θ),
which are a function of option delta, ∆, and a parameter vector θ. Numerical

methods then give call prices c as functions of strikes X and hence define the

risk-neutral densities as g(X) = erT ∂2c/∂X2. For options on futures, ∆ is

defined as a function of the Black-Scholes at-the-money volatility σA

∆(X) = e−rT N(d1(X)) (8)

d1(X) =
log(F/X) + σ2

AT/2

σA

√
T

.

The spline function σ(∆|θ) is defined over 0 ≤ ∆ ≤ exp(−rT ). It is composed

of linear pieces and cubic polynomials, defined on intervals determined by

knot points ∆1 < ∆2 < · · · < ∆N . Each cubic is defined over an interval

from ∆i to ∆i+1, while the function is linear for ∆ ≤ ∆1 and ∆ ≥ ∆N .

The coefficients of the lines and cubics are constrained by the requirement

that σ(∆|θ) and its first two derivatives are continuous functions. The spline

function has N free parameters [Lange (1998, page 104)] and there is a unique

spline with the required properties that passes through a given set of N

points (∆i, σi). Taking the knot points as given, the parameter vector is the

corresponding set of implied volatilities θ = (σ1, · · · , σN).

2.4 Estimation of the RND parameters

The RND parameter vector θ is estimated once a month with 4-weeks to ma-

turity so that the densities are non-overlapping for each of the three density

5



functions. For the MLN and GB2 densities, θ is obtained by minimizing the

following average squared difference between observed market call prices and

theoretical option prices:

1

N

N∑

i=1

(cmarket(Xi)− c(Xi|θ))2 (9)

with

c(Xi|θ) = e−rT
∫ ∞

Xi

(x−Xi)g(x|θ)dx, 1 ≤ i ≤ N.

In these equations, N is the number of European option prices used for a

particular day, g(x|θ) is a parametric density function, and c(X|θ) is the

associated theoretical option pricing formula, given by either equation (3) or

equation (7).

The estimates of θ for the flexible densities are obtained by minimizing a

function that combines two criteria, namely the accuracy and the smoothness

of the fitted spline function σ(∆|θ). From N market prices, we derive implied

volatilities and hence co-ordinates (∆i, σmarket(Xi)). Then for a set of weights

wi, we select σ1, · · · , σn to minimize

η
m∑

i=1

wi(σmarket(Xi)− σi)
2 + (1− η)

∫ ∆M

∆1

σ′′(∆|σ1, · · · , σm)2d∆. (10)

There is a straightforward solution to this optimization problem [Lange

(1998, page 111)]. Implementation requires making a subjective choice for

the parameter η, that controls the trade-off between accuracy and smooth-

ness. Following Bliss and Panigirtzoglou (2002, 2004), appropriate weights

are proportional to option vega, so we use wi = exp(−d1(Xi)
2/2)/

√
(2π) with

d1(Xi) given by equation (8).

2.5 Historical densities

ARCH models for daily index returns are estimated and simulated to provide

historical real-world densities. The simulated ARCH models must accommo-
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date the stylized facts documented in the literature, including a time-varying

conditional mean, a persistent conditional volatility, and an asymmetric re-

sponse of volatility to positive and negative returns. We choose the GJR-

GARCH(1,1)-MA(1)-M specification, following Glosten, Jagannathan and

Runkle (1993) and Engle and Ng (1993). The conditional mean µt and the

conditional variance ht of the daily index return rt are as follows,

ht = ω + βht−1 + (α1 + α2Dt−1)(rt−1 − µt−1)
2, (11)

µt = ξ + λ(ht−1)
1/2 + Θ(rt−1 − µt−1),

Dt = 1 if rt ≤ µt,

Dt = 0 otherwise.

Ten years of daily index returns prior to each estimation date ti are used to

estimate the ARCH parameters θ = (ω, β, α1, α2, ξ, λ, Θ), by maximizing the

quasi-log-likelihood function which assumes the conditional distributions are

normal. These estimates are consistent even when the normality assumption

is false [Bollerslev and Wooldridge (1992)].

The parameters obtained from the returns information up to selected times

ti are used to simulate the ARCH equations for 4-week periods that end on

option expiry dates. A large number, M , of simulations of the final asset level

ST,i are obtained for each month i. The historical real-world density g̃i is then

the smooth function obtained by using the Gaussian kernel with bandwidth

H = 0.9ψ/ 5
√

M and with ψ the standard deviation of the simulated final

levels. We have set M equal to 100,000. Our formula for the bandwidth H

is recommended by Silverman (1986, page 48) and used by Rosenberg and

Engle (2002).

3 Data

The futures and options contracts are written on the FTSE 100 index and

they are traded at the London International Financial Futures and Options
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Exchange (LIFFE). Futures and options have the same expiry month and

share a common expiry time, 10:30 on the third Friday. European options

can then be valued by assuming that they are written on the futures contract,

and hence spot levels of the index are not needed.

Daily settlement values for futures and options prices with 4-week to maturity

are obtained from LIFFE, for 126 consecutive expiry months from July 1993

to December 2003 inclusive. The call and put implieds for the same contract

are almost identical, as should be expected from put-call parity. We average

the call and put implieds and use them to calculate European call prices for

each contract.

On average, 37 exercise prices are available for each month. The exercise

prices are always separated by 50 index points. Table 1 provides summary

information about the option prices.

There are twelve expiry dates per annum for the options but the futures

contracts are traded for only one expiration date each quarter. Synthetic

futures prices must be calculated for the remaining eight months. Fair futures

prices, F , are the future value of the current spot prices S minus the present

value of dividends expected during the life of the futures contract

F = erT (S − PV (dividends)). (12)

We have obtained actual dividend payments for the 100 component com-

panies of the index from DataStream, and computed the present value of

dividends by assuming that future expected dividends can be approximated

by realized dividend payments.

Risk-free interest rates are collected from DataStream. We prefer the London

Eurocurrency rate to the UK treasury bill rate, because the Eurocurrency

rate is a market rate accessible to AA corporate borrowers.

Figure 1 shows typical estimates of the risk-neutral densities, which exhibit

marked negative skewness that has already been extensively documented.

The MLN and GB2 densities are almost identical, while the spline density
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differs in the left tail. The historical real-world density is very different from

the risk-neutral ones, with much less skewness and kurtosis.

4 Empirical pricing kernels

Empirical pricing kernels are estimated by using RNDs obtained from the

options market and historical real-world densities from index returns. Three

empirical pricing kernels M(x) = e−rT g(x)/g̃(x) are constructed for each

option expiry date, with g(x) either the MLN, GB2 or spline RND and g̃(x)

the historical density from GARCH simulations. The geometric mean of

each set of kernels is computed, across expiry dates, to reduce the impact of

the noise created firstly by fitting the RNDs and secondly by using different

sources of information to find g and g̃. We plot the geometric means of the

three sets of ratios g(yF )/g̃(yF ) against the moneyness variable y = x/F

in Figure 2. All three graphed kernels are generally decreasing functions of

x/F , although they are almost flat between 0.98 and 1.05.

None of our empirical pricing kernels for the UK equity market resembles

those of Ait-Sahalia and Lo (2000), Jackwerth (2000), Brown and Jackwerth

(2002) and Rosenberg and Engle (2002) for the US market. These researchers

estimate very clear hump-shaped kernels, using S&P 500 data that ends in

1995, which challenges economic theory and indicates that the representative

agent has a risk-seeking utility function in some wealth region. The risk-

seeking range obtained by Jackwerth (2000) is 0.96 ≤ x/F ≤ 1.01 while

Rosenberg and Engle (2002) obtain 0.96 ≤ x/F ≤ 1.02. Brennan et al (2006)

also use FTSE 100 index options data to estimate the option pricing kernel,

approximated by a three-term Chebyshev polynomial whose state variables

are the real interest rate, the maximum Sharpe ratio, and volatility. The

pricing kernel is upward sloping in the region 1.03 ≤ x/F ≤ 1.05.
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5 Conclusion

Using a dataset from July 1993 to December 2003, we derive three series

of risk-neutral densities, namely the mixture of two lognormal densities, the

generalized beta distribution, and a flexible spline distribution from FTSE

100 index options data. We also fit GARCH models to the time series of

FTSE 100 index returns and simulate historical real-world densities. The

empirical pricing kernel obtained from the two sets of densities is broadly

downward sloping and therefore consistent with economic theories.
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Table 1. Summary statistics for the dataset of FTSE 100 index option prices

The average number of option prices is 37 per month for the 126 expiry months

from July 1993 to December 2003 inclusive. The moneyness of a call option is

defined by X/F − 1, with X the exercise and F the futures price.

Moneyness No. of options Percentage (%)

≤ −0.20 19 0.4

(-0.20, -0.10] 392 8.3

(-0.10, -0.03] 849 18.0

(-0.03, 0.03] 702 14.9

(0.03, 0.10] 731 15.5

(0.10, 0.20] 818 17.3

(0.20, 0.30] 572 12.1

(0.30, 0.40] 303 6.4

> 0.40 335 7.1

Totals 4721 100.0
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Figure 1. Three risk-neutral densities and the historical density on March

21, 1997
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Figure 2. Empirical pricing kernels, as geometric averages across all expiry

months

0.9 0.94 0.98 1.02 1.06 1.1
0

1

2

3

4

x/F

G
eo

m
et

ri
c 

m
ea

n

GB2/historical
MLN/historical
spline/historical

15


