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Abstract: We investigate the bootstrapped size and power properties of five common

long memory tests - the modified R/S, KPSS, V/S, GPH and Robinson’s H tests.

Even in samples of size 100, the moving block bootstrap controls the empirical size of

the tests in the DGPs examined. The H test appears to be the most powerful.
Moreover, the bootstrapped tests suffer little loss of power against fractionally
integrated processes vis 4 vis asymptotic tests with samples of 250 or more
observations. This is true both for distributions with heavy tails and with stochastic
volatility (SV).
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1. Introduction

Long memory processes, especially fractionally integrated processes, describe
many financial time series as well as some macroeconomic series rather well. It is
important to distinguish long memory processes from more common I(0) and I(1)
processes as they imply different long run predictions and responses to shocks
(Baillie, 1996). A range of tests for long memory are available. Unfortunately, the
evidence is that tests based on asymptotic critical values are often badly sized.

In this paper we report the results of a series of Monte Carlo experiments used
to examine the size and power properties of five, commonly used, long memory tests
using asymptotic and bootstrapped critical values. The five tests are Lo's modified
rescaled range or R/S statistic (Lo, 1991), the KPSS statistic (Kwiatkowski et al.,

1992), the rescaled variance or V/S statistic (Giraitis et al., 2003), the GPH statistic

(Geweke and Porter-Hudak, 1983) and the H statistic in Robinson (1995) and
Robinson and Henry (1999). The set of tests considered is broader than in other
papers.

We use the moving block bootstrap (MBB) to mimic the dependence in the
data. All the test statistics are asymptotically pivotal. This means that, for dependent
stationary data satisfying reasonable regularity conditions, bootstrapped critical values
should provide a higher order of accuracy than asymptotic critical values. We found
this when we used the post-blackened MBB to examine the size and power of the
modified R/S statistic (Izzeldin and Murphy, 2000).

For the data generation processes we consider, we find that we can control the
size of all five tests using the moving block bootstrap even in small samples with as
few as 100 observations. We also find that bootstrapped tests suffer little loss of
power against fractionally integrated (FI) processes vis & vis asymptotic tests with

samples of 250 or more observations. This is true both for distributions with heavy
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tails (log-normal random errors) and with stochastic volatility (SV). We also show
that all of the tests lack power against a particular type of fractionally integrated
process, the sum of a FI and a SV process as opposed to a FI process with a SV error.
The outline of this paper is as follows. We discuss the five tests of long
memory in next section. We briefly review the relevant empirical literature on the size
and power of these tests, as well as bootstrapped long memory tests, in Section 3. We
discuss the moving block bootstrap in Section 4 and discuss the Monte Carlo
experiments and our findings in Sections 5 and 6. We present a financial application

in Section 7 and conclude in Section &.

2. Tests of Long Memory
We consider five tests of long memory — the modified rescaled range or R/S

statistic, the KPSS statistic, the rescaled variance or V/S statistic, the GPH statistic
and the H statistic. The modified R/S, KPSS and V/S statistics for a time series { x, }

may be expressed in term of the partial sum of the standardized series

~2

ST(t)=ZZl(xs—;)/(\/Ta'w), where }=%Zj1xt is the sample mean, o. is an

estimate of the long run variance of {x,} and T is the sample size. Then:

T7?R/S = max S(t)—ggigS(t) (1)
KPSS =%isr (1) (2)
V/S:%}T:(S,(z)—@)2 3)

t=1

When {x, } is stationary and under suitable regularity conditions:
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KPSS = j; W, () dr (5)

V/s= L:Wl(r)zdr—( j(:Wl(r)zdr)z ©6)

where = denotes convergence in distribution, W (r)=W (r)—rW (1) is a standard
first order Brownian bridge process and W(r) is a standard Brownian motion
process.

Giraitis et al. (2003), inter alia, derive the asymptotic distribution of the R/S,
KPSS and V/S statistics under short and long memory assumptions. All three tests are
consistent against fractionally integrated alternatives. In addition, all three tests are
asymptotically pivotal, so appropriate bootstrap critical values should outperform
asymptotic critical values in smaller samples.

Geweke and Porter-Hudak (1983) show how to consistently estimate the
fractional integration parameter d in an ARFIMA model using a semi-nonparametric,
frequency domain procedure and derived its asymptotic distribution. For frequencies

near zero, d can be estimated from the least squares regression:
In(/(w,))=c—d ln{(4sin2(wj I2)}+n;, j=L..n (7)
where /(w,) is the periodogram of the { x, } series at the n frequencies w, =27;/T .

Often the setting n = [ﬁ ] is chosen, where [ ] denotes the integer part. With a proper
choice of n, the asymptotic distribution of d does not depend on either the order of the

ARMA process or on the distribution of the error term in the ARFIMA process { x, }.

Asymptotically d is normally distributed with variance 7° /6.

Robinson (1995) derives a semi-parametric, frequency domain estimator of the
fractional integration parameter d which is closely related to the trimmed Whittle
estimator in Kunsch (1987). He refers to it as a Gaussian or local Whittle estimator.

The estimator is shown to be consistent and asymptotically normal under relatively
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weak conditions. Moreover, the asymptotic variance of this estimator is free of
unknown parameters. Robinson also shows that it dominates the Geweke and Porter-
Hudak (1983) estimator. Robinson and Henry (1999) show that, under weak
conditions, these results continue to hold under common forms of conditional
heteroscedasticity of both the long and short memory kind.

For the sort of long memory processes usually estimated using financial time

series data, the S’k test of Harris, McCabe and Leybourne (2006) appears to have

fairly similar size and power properties to the H test in Robinson (1995), so we have

not examined its performance here.

3. A Review of Previous Monte Carlo Studies

In this section we briefly review some of the more recent Monte Carlo results
in the literature on testing long memory. Lee and Schmidt (1996) show that the power
of the KPSS test against basic fractionally integrated (FI) alternatives in sample sizes
ranging from 50 to 500 is comparable to that of the modified R/S test. However, they
argue that rather larger sample sizes, such as T = 500 or T = 1000, are required to
distinguish reliably between a long memory process and a short memory process with
comparable short-term autocorrelation. Their results show that both tests are sensitive

to the choice of lag truncation i.e. the number of covariance terms used to calculate

~2
the long run variance ..

Hauser (1997) investigates the size and power properties of the GPH test, the
modified R/S test, a semi-parametric frequency domain test due to Robinson (1994)
and a test based on the trimmed Whittle likelihood (Kunsch, 1987), inter alia. He
examines 11D, AR(1), MA(1), FI, ARFIMA, GARCH and IGARCH data generation

processes (DGPs) but only consider one sample size, namely T = 1000. No single test



performs satisfactorily for all of the models considered. He suggests that the R/S
statistic is generally robust with the disadvantage of relatively small power. The
trimmed Whittle likelihood has high power in general and is robust except for large
short run effects.

Teverovsky et. al. (1999) also show that the value of Lo's (1991) modified R/S

statistic is sensitive to the choice of the truncation lag used to estimate 8i As the
truncation lag increases, the test statistic has a strong bias towards accepting the null
of no long run dependence, even when the DGP is a basic FI process.

Giraitis et. al. (2003) examined the size and power of the modified R/S, KPSS
and V/S statistics using sample sizes of 500 and 1000 using AR(1), FI and long and
short memory linear ARCH (Robinson, 1991) DGPs. They find that the V/S statistic
achieves a somewhat better balance of size and power than the R/S and KPSS test.
They also highlight the sensitivity of the test to the choice of the truncation lag when
estimating c;i .

Robinson and Henry (1999) report an extensive range of Monte Carlo results.
They consider 1ID, ARCH, FI, nearly integrated GARCH, EGARCH and long

memory linear ARCH models and three sample sizes (7 = 64, 128 and 256). Their

estimator H=d—1/2 appears to perform reasonably well except in the nearly
integrated GARCH case.

We now consider Monte Carlo studies using bootstrap methods. Hiemstra and
Jones (1997) use the original non-parametric bootstrap of Efron (1979), designed for
IID observations, to test for long memory in stock returns using the modified R/S
statistic. Anderson and Gredenhoff (1998) use the AR-sieve bootstrap in a Monte
Carlo experiment looking at the size and power of the modified R/S and GPH tests, as

well as a LM test due to Agiaklogou and Newbold (1993), in detecting fractional



integration using sample sizes of 750 and 1000 observations. They use four bootstrap
re-sampling procedures. Their basic sieve or residual based bootstrap involves re -
sampling (with replacement) the residuals from an estimated AR model, the maximal
order of which is selected using the Bayesian information criterion of Schwartz
(1978). They extend this procedure to incorporate ARCH(1) dependence in the
residuals. They find that the sieve bootstrap works well in controlling the size of the
tests.

Izzeldin and Murphy (2000) use the post-blackened moving block bootstrap to
examine the size and power of the modified R/S statistic. They consider 11D, AR(1),
MA(1), ARCH(1), GARCH(l1,1), MA(1) plus GARCH(1,1) and fractionally
integrated data generation processes with both normal and log-normal random errors.
The post-blackened MBB works well. Compared to the asymptotic critical values in
Lo (1991), the MBB controls the empirical size of the test well without reducing the
power against FI alternatives much.

De Peretti (2003) examines the size and power of the R/S, modified R/S, GPH
and two other test statistics using an AR model to pre-whiten the data and various
parametric and non-parametric bootstrap procedures. He does not use the MBB. He
presents his results using a variety of P value plots and size-power curves using AR(p)
and FI DGPs. He suggests that the proposed bootstrap procedure controls the
empirical size of the various tests reasonably well without any loss of power.

Finally, Grau-Carles (2005) follows Izzeldin and Murphy (2000) and uses the

post-blackened moving block bootstrap to examine the size and power of the R/S,

modified R/S, Robinson’s H and one other test of long memory. He looks at
relatively small samples (T = 100 and 300) and considers a range of DGPs - IID
uniform, normal and log-normal; AR(1) and MA(1); ARCH(1) and AR(1) plus

ARCH(1) as well as FI and ARFIMA(1,1,0). He finds that the size of the post
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blackening MBB is generally good although the tests are not very powerful. However,

this may because he used a small block length of 5 for the MBB. In our Monte Carlo

experiments, the modified R/S test statistic, and to some extent the H statistic, is a

good deal more powerful than in Grau-Carles (2005).

4. The Moving Block Bootstrap

The two most common bootstrap procedures for time series are the moving
block bootstrap (MBB) and the AR-sieve bootstrap for stationary linear time series
(Buhlmann, 2002). Both procedures are easy to implement, at least in principle.
However the MBB bootstrap is the more general procedure so we use it in our Monte
Carlo experiments. In the most common version of the MBB, introduced by Kunsch
(1989) and Liu and Singh (1992), the bootstrap sample is obtained by resampling
fixed size blocks of observations rather than the individual observations themselves.
The blocks may overlap. We experiment with the post blackening bootstrap suggested
by Davison and Hinkley (1997), which combines the MBB and AR-sieve methods,
and obtained no better results than the ones reported below.

Of course, there are some practical and other problems with the MBB
(Maddala and Kim, 1998, p. 329-330). For example, the pseudo-time series generated

by the moving block method is not stationary even if the original series {x,} is

stationary. The choice of block length may be problematic, so the cross-validation and
plug-in procedures in Hall, Horowitz and Jing (1995) and Labhirir, Furukawa and Lee
(2007), as well as the frequency domain bootstrapping procedures in Hidalgo (2003),
may be worth investigating. However, in practice, we did not find this to be the case.

In addition, there are few theoretical results on bootstrapping long memory data.



5. The Monte Carlo Experiments

We consider a range of data generation processes (DGPs) in our Monte Carlo
experiments. Here we present representative results for five DGPs:- (i) the IID case;
(i1) the first order autoregressive AR(1) case; (iii) the AR(1) with stochastic volatility
(SV) case; (iv) the fractionally integrated (FI) case and (v) the fractionally integrated
(FI) with stochastic volatility (SV) case. These five cases seem relevant when
considering financial data.

In the AR(1) case, we set p = 0.5 which is definitely on the high side for
financial data. However if the MBB bootstrap works well with p = 0.5, it will also
work well when the level of autocorrelation is lower. Conditional heteroscedasticity is
common in financial data, so we consider a range of GARCH and SV DGPs. The two

DGPs generated similar results so we only present the SV results here.

The DGP in (iii) is x, =(1-0.5L)"'u, where u, =exp(h /2)e, with
h, =0.95h,_,+n,. The 0.95 coefficient on #/_, means that the SV conditional
heteroscedasticity is slow to decay. The random errors ¢, and 7, are mean zero,
independent normal random variables with variances equal to 1/10. For the

fractionally integrated DGPs, we set the FI parameter d equal to 1/3, a reasonable

value given the range of results in many empirical papers. In the case of (i), (ii) and
(iv), we look at normal and log normal random errors. We also consider to variants of
cases (iii) and (v) involving the sum of an AR(1) or FI process and a SV process
Many of the Monte Carlo results summarized in the previous section are based
on either rather large or quite small sample sizes. We use four sample sizes - T = 100,

250, 500 and 1000 - which covers a reasonable range. In practice, sample sizes of 250



or more observations are the norm in most economic applications. Much larger
sample sizes are common in financial applications.

The Monte Carlo results are based on 1000 replications. A 100 observation
"burn in" period is used. The bootstrap results are based on 999 bootstrap replications
using the moving block bootstrap with a block length of 10. In general, the results are

not sensitive to the choice of block length, as long as it is not too short.
~2
The long-run variance o in the R/S, KPSS and V/S statistics is calculated
using [84 T /100] estimated covariance terms - the midpoint of the two settings
considered by Lee and Schmidt (1999). We use the standard Newey and West (1987)
. A2 . - . .
estimator of o.. When calculating the GPH and H test statistics, we use [ﬁ ]

frequency domain terms. All the calculations are carried out in Ox (Doornik, 1999).

6. The Monte Carlo Results

The Monte Carlo results in Table 1 for the IID case show that, in line with
other results in the literature, the MBB is reasonably successful in controlling the size
of all five tests, especially in small samples (T = 100 or 250). This is true for both the

normal and heavy-tailed, lognormal error cases. The empirical and nominal sizes of

the asymptotic tests can differ quite a lot, especially for the modified R/S and H test
in small samples. Similar results are obtained in Table 2 using the AR(1) DGP.
We report the results for the AR(1) model with a stochastic volatility random

error term in Table 3. The SV random error with A, =0.95A,_, +7, adds a slowly

decaying conditional heteroscedastic error, similar to a GARCH (1,1) error, to the
AR(1) model. The sizes of the asymptotic tests can be poor, whereas the nominal and

empirical sizes of the bootstrapped tests are reasonably close, even when T = 100. The
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results are in line with the ARCH and GARCH results in Izzeldin and Murphy (2000)
and Grau-Carles (2005).

We report the power of the tests against the fractional integrated FI(d)
alternative, with d = 1/3, in Table 4. The power of the tests is higher when the
random error is log-normal than when it is normal. Unsurprisingly, the asymptotic
tests are generally more powerful than the bootstrapped tests, since we are reporting

power as opposed to size adjusted power. However, for moderate samples sizes (T >
250), the difference in power is generally small, the exception being the H test when

T =250. When T > 250, the power ranking of the bootstrapped tests appears to be H ,

GPH, V/S followed jointly by the KPSS and the modified R/S tests. In smaller
samples, the power of all of the tests, apart from the asymptotic H test, is low and the

H test is not the most powerful one. Similar results are obtained for other values of d
in the range 0.1 to 0.4.

The power of the five tests against the FI alternative with a stochastic
volatility error term is set out in Table 5. The introduction of the SV error term only
results in a small reduction in power. The asymptotic tests are somewhat more

powerful when T = 250. The power ranking of the tests is much the same as in Table

4.The H test is the most powerful, followed by either the GPH or V/S test.

Finally we present some Monte Carlo results in Tables 6 for DGPs obtained
by summing an AR(1) or FI(d) process and a stochastic volatility process.
Unfortunately, in the FI-SV composite error case, none of the bootstrapped or
asymptotic tests has much power. In most cases, there is little difference in power
between the bootstrapped and asymptotic tests. The low power of the tests continues
to hold when, for example, A, =0.54,_, +17, is used to generate the SV component of

the DGP.
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7. Financial Application

We apply the R/S, KPSS, V/S, GPH and H long memory tests to daily
Standard and Poor’s (SP500) returns, absolute returns and squared returns. We use the
data in Tsay (2005). We select the seven year sample period from January 1993 to
December 1999, a total of 1768 trading days. We also use a smaller, two year sample
from January 1997 to December 1998, a total of 505 days.

The long memory test results are shown in Table 7. Statistically significant
outcomes are shown in bold. In line with the literature, using the larger sample, we
cannot reject the null hypothesis of short memory in daily returns and we generally
reject the null hypothesis of short memory in absolute and squared daily returns.
However, in the smaller sample, we cannot always reject the null hypothesis of short
memory in the squared daily returns. These results are consistent with our Monte
Carlo results regarding the power of the tests.

In this example, the asymptotic and bootstrapped tests produce similar results.
However, even in the case of actual returns, the bootstrapped and asymptotic critical
values (and any corresponding P values) can differ quite a lot so it is worthwhile

bootstrapping the test statistics.

8. Summary and Conclusion
We use Monte Carlo methods to examine the size and power properties of five

widely used long memory tests — the modified R/S statistic, the KPSS statistic, the

rescaled variance or V/S statistic, the GPH statistic and Robinson’s H statistic. The
set of tests considered is broader than in other papers. We use the moving block
bootstrap to mimic the dependence in the data. All the test statistics are asymptotically

pivotal.
12



For all of the data generation processes we consider, we find that we can
control the size of all five tests using the moving block bootstrap even in small
samples with as few as 100 observations. We also find that bootstrapped tests suffer
little loss of power against fractionally integrated (FI) processes vis 4 vis asymptotic
tests with samples of 250 or more observations. This is true both for distributions with
heavy tails (log-normal random errors) and with stochastic volatility (SV). We also
show that all of the tests lack power against a particular type of fractionally integrated

process, the sum of a FI and a SV process as opposed to a FI process with a SV error.
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Table 1: Size of Long Memory Tests for IID Models

Sample Test Critical Normal Random Error Demeaned Log-Normal Error
Size Statistic Values 20% | 15% | 10% | 5% | 24% | 1% | 20% | 15% | 10% | 5% | 2u% | 1%
RIS Bootstrapped 20.1 13.9 8.6 3.3 1.4 0.4 19.2 13.4 6.4 29 0.9 0.2
Asymptotic 7.1 2.8 0.4 0.1 0.0 0.0 43 1.5 0.2 0.0 0.0 0.0
KPSS Bootstrapped 21.2 15.8 10.4 5.0 33 1.2 22.1 16.3 10.4 5.1 2.6 1.1
Asymptotic 21.7 15.3 9.4 3.8 1.0 0.0 23.4 16.7 10.0 2.8 1.10 0.0
T =100 VIS Bootstrapped 20.5 14.7 8.5 3.4 1.4 0.5 20.3 14.2 8.7 4.9 2.0 0.7
Asymptotic 19.5 12.0 3.8 0.5 0.0 0.0 20.9 12.0 4.6 0.5 0.0 0.0
GPH Bootstrapped 16.3 10.6 5.9 3.2 1.4 0.4 18.0 12.1 7.0 29 1.0 0.4
Asymptotic 6.7 5.5 3.7 1.5 0.7 0.2 8.9 6.8 2.9 1.3 0.3 0.3
~ Bootstrapped 13.5 8.5 5.5 2.6 1.0 0.1 15.6 10.1 53 2.1 0.6 0.1
" Asymptotic 16.3 13.1 10.4 6.9 5.0 32 16.9 14.8 10.9 7.1 5.0 24
RS Bootstrapped 21.1 15.0 10.3 5.4 34 1.2 19.2 13.5 8.5 43 2.2 0.5
Asymptotic 12.8 8.5 5.0 1.4 0.4 0.0 9.4 59 2.6 0.2 0.1 0.0
KPSS Bootstrapped 20.5 14.8 10.2 3.8 1.7 0.8 21.5 15.8 10.3 53 23 0.9
Asymptotic 20.6 15.5 9.6 3.5 1.2 0.4 21.4 16.0 10.3 4.2 1.4 0.3
T =250 VIS Bootstrapped 19.5 13.9 9.5 5.3 2.6 1.0 19.9 14.7 9.4 4.7 2.8 1.5
Asymptotic 18.7 13.1 8.0 3.5 1.1 0.4 20.1 14.0 7.9 35 1.2 0.2
GPH Bootstrapped 19.9 14.6 10.5 5.1 24 1.1 18.8 13.7 9.2 4.8 2.2 0.9
Asymptotic 10.3 7.9 5.1 23 0.9 0.3 8.8 6.9 43 24 1.2 0.4
~ Bootstrapped 19.8 14.6 9.5 4.4 2.0 1.0 18.5 13.2 8.7 4.1 1.5 0.5
a Asymptotic 15.8 13.0 10.7 7.1 4.8 29 13.0 11.1 9.0 6.5 4.0 1.8

Notes: The DGP is x, = ¢, with &, ~ ni.d(0,1) or, before demeaning, In¢, ~ n.i.d(0,1) . The Monte Carlo results are based on 1000 replications
using a 100 observation “burn-in” period. The bootstrap results are based on 999 bootstrap replications using the moving block bootstrap with a

block length of 10. The long run variance in the R/S, KPSS and V/S statistics is calculated using [83/7/100] estimated covariance terms. [VT]
frequency domain terms are used to calculate the GPH and H test statistics.
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Table 1 (Continued): Size of Long Memory Tests for IID Models

Sample Test Nominal Normal Random Error Demeaned Log-Normal Error
Size Statistic Size 20% | 15% | 10% | 5% | 24% | 1% | 20% | 15% | 10% | 5% | 2u% | 1%
RIS Bootstrapped 21.4 15.7 10.2 5.6 2.6 1.3 20.2 14.6 9.8 4.4 2.1 0.9
Asymptotic 15.7 11.2 7.1 2.6 0.9 0.2 11.9 9.1 43 1.4 0.6 0.2
KPSS Bootstrapped 19.6 14.8 10.1 5.2 3.2 1.5 21.3 15.6 11.0 5.7 3.0 1.3
Asymptotic 19.7 14.8 10.2 5.0 2.8 1.1 21.9 15.8 10.5 5.1 2.8 0.7
T =500 VIS Bootstrapped 20.4 15.9 10.5 52 29 1.0 21.4 15.1 9.5 4.6 2.6 1.3
Asymptotic 20.2 16.0 9.3 4.9 1.9 0.5 20.2 14.6 9.5 35 1.9 0.6
GPH Bootstrapped 19.5 15.3 9.7 4.5 22 1.1 18.9 13.7 9.3 54 2.8 1.2
Asymptotic 9.5 6.8 3.9 2.0 0.8 0.3 8.2 7.0 4.9 24 0.9 0.6
~ Bootstrapped 21.2 16.4 10.9 4.7 1.8 0.7 18.5 13.9 9.1 4.8 2.8 1.0
a Asymptotic 15.3 11.9 9.0 5.0 2.7 1.0 11.9 9.6 7.2 52 2.8 1.7
RS Bootstrapped 18.7 13.5 9.3 42 2.1 0.9 18.4 13.3 9.0 4.0 1.9 0.6
Asymptotic 14.6 10.6 6.3 3.1 1.3 0.2 13.1 9.4 5.4 1.9 0.8 0.1
KPSS Bootstrapped 19.0 15.2 9.8 43 2.0 0.7 19.8 14.9 10.7 5.1 2.9 1.4
Asymptotic 19.1 15.0 9.5 4.0 1.8 0.7 19.4 14.8 10.6 5.1 2.4 1.0
T = 1000 VIS Bootstrapped 18.9 14.5 9.2 3.9 1.8 1.1 19.3 13.9 8.8 4.7 2.8 1.5
Asymptotic 18.2 14.2 9.0 4.0 1.5 0.7 18.8 13.8 8.6 43 2.7 0.8
GPH Bootstrapped 20.0 15.5 10.4 4.7 22 0.9 21.6 15.9 9.9 49 2.0 0.8
Asymptotic 10.2 7.1 42 1.6 0.7 0.2 8.9 6.3 43 14 0.9 0.4
~ Bootstrapped 18.7 13.9 8.6 4.7 1.8 0.9 20.7 16.2 11.1 4.7 1.7 0.5
" Asymptotic 11.5 8.9 6.5 3.5 1.9 0.9 13.3 10.7 7.7 34 1.8 0.8

Notes: See first part of Table.
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Table 2: Size of Long Memory Tests for AR(1) Model with p = 0.5

Sample Test Critical Normal Random Error Demeaned Log-Normal Error
Size Statistic Values 20% | 15% | 10% | 5% | 24% | 1% | 20% | 15% | 10% | 5% | 2u% | 1%
RIS Bootstrapped 17.5 12.6 8.3 32 1.1 0.5 17.6 11.8 5.7 2.7 0.6 0.2
Asymptotic 4.0 1.1 0.2 0.0 0.0 0.0 2.9 0.6 0.2 0.0 0.0 0.0
KPSS Bootstrapped 21.4 14.7 10.7 5.5 29 0.8 22.4 16.3 10.3 5.1 2.7 1.1
Asymptotic 26.4 19.6 12.6 5.0 2.0 0.0 27.7 21.2 13.1 4.5 1.6 0.2
T =100 VIS Bootstrapped 21.4 15.1 9.4 3.4 1.6 0.6 21.5 15.4 9.4 5.0 2.1 0.6
Asymptotic 25.5 17.2 7.2 1.0 0.0 0.0 26.4 17.4 7.7 1.1 0.1 0.0
GPH Bootstrapped 21.1 14.5 7.6 4.0 1.4 0.7 22.1 15.1 9.2 3.6 1.5 0.5
Asymptotic 17.6 12.3 7.3 4.1 1.9 1.1 18.6 13.7 9.9 4.6 1.6 0.5
~ Bootstrapped 18.5 12.0 6.9 3.3 0.7 0.4 19.6 13.5 7.3 2.9 0.8 0.0
" Asymptotic 34.5 30.4 25.2 17.8 13.5 8.3 31.5 27.2 23.7 17.8 133 8.6
RS Bootstrapped 20.7 15.4 10.3 5.6 33 1.4 19.0 13.4 8.7 4.7 2.0 0.7
Asymptotic 13.7 8.7 5.1 1.7 0.4 0.1 11.2 6.9 34 0.7 0.2 0.0
KPSS Bootstrapped 21.3 15.7 10.0 4.4 1.9 0.6 22.2 16.3 11.1 52 22 0.8
Asymptotic 24.5 19.2 12.0 5.4 1.9 0.6 26.1 19.9 13.4 6.1 2.5 0.8
T =250 VIS Bootstrapped 20.7 14.4 10.1 5.6 32 1.2 20.7 15.7 10.6 52 2.9 1.6
Asymptotic 26.4 17.5 11.4 5.5 2.5 0.6 25.4 19.5 12.2 53 2.5 0.6
GPH Bootstrapped 22.7 16.0 11.1 5.8 23 1.3 21.2 15.4 10.6 4.9 2.6 1.0
Asymptotic 15.3 11.8 8.1 3.9 1.9 0.7 12.5 9.8 7.1 34 2.1 0.9
~ Bootstrapped 23.5 16.4 10.6 53 2.5 1.1 20.8 14.7 9.7 4.0 1.6 0.6
a Asymptotic 25.0 21.5 17.4 12.1 8.3 54 21.4 17.3 14.3 9.8 7.7 4.9

Notes: See Table 1. The DGP is
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Table 2 (Continued): Size of Long Memory Tests for AR(1) Model with p = 0.5

Sample Test Critical Normal Random Error Demeaned Log-Normal Error
Size Statistic Values 20% | 15% | 10% | 5% | 24% | 1% | 20% | 15% | 10% | 5% [ 24% | 1%
S Bootstrapped | 21.1 162 113 62 2.6 12 | 213 152 99 50 25 0.8
Asymptotic 190 137 92 3.6 1.7 03 | 161 109 64 28 1.0 0.3
PSS Bootstrapped | 203 152 105 54 33 14 | 220 163 113 62 3.3 1.5
Asymptotic 244 186 122 68 3.8 18 | 247 203 142 75 4.1 1.5
=500 Vs Bootstrapped | 22.0 167 119 63 3.3 12 | 222 170 107 48 3.0 1.6
Asymptotic 260 206 144 7.1 3.7 1.1 | 264 204 134 63 3.2 1.1
Pi Bootstrapped | 20.9 160 103 52 23 09 | 199 153 106 62 3.1 1.3
Asymptotic 113 90 55 25 1.2 04 | 106 84 6.1 32 1.7 0.7
. Bootstrapped | 21.9 180 121 58 20 08 | 203 151 102 5.1 2.9 13
a Asymptotic 196 162 121 79 49 21 | 156 126 99 6.3 4.8 2.4
s Bootstrapped | 202 142 9.9 46 25 11 | 194 140 95 45 2.1 0.8
Asymptotic 203 139 96 44 21 06 | 182 125 88 3.8 13 0.5
PSS Bootstrapped | 19.5 153 104 5.1 1.9 08 | 200 154 111 60 3.1 1.3
Asymptotic 233 177 131 66 29 1.1 | 236 186 127 67 3.5 1.6
= 1000 vis Bootstrapped | 203 151 100 44 2.1 11 | 205 144 97 49 3.2 1.5
Asymptotic 258 185 133 57 3.0 1.1 | 243 195 125 67 3.5 2.0
. Bootstrapped | 20.9 161 110 58 2.7 13 | 215 164 106 54 26 0.7
Asymptotic 113 85 60 23 1.2 02 | 106 76 52 22 0.9 0.5
_ Bootstrapped | 19.6 142 9.7 4.9 23 1.0 | 218 167 119 53 2.0 0.7
" Asymptotic 135 110 78 44 26 13 | 158 127 99 50 22 1.0

Notes: See Table 1. The DGP is x, =0.5x, , + ¢, with ¢, ~n.i.d.(0,1) or, before demeaning, In¢g, ~ n.i.d.(0,1)
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Table 3: Size of Long Memory Tests for AR(1) Model with Stochastic Volatility
Error (p = 0.5 and y = 0.95)

Sample Test Critical Nominal Size of Test
Size Statistic Values 20% ‘ 15% ‘ 10% ‘ 59, | 21504 1%
R/S Bootstrapped 20.1 15.2 9.2 3.9 1.2 0.3
Asymptotic 7.0 3.0 0.8 0.0 0.0 0.0
Bootstrapped 22.4 17.3 11.2 6.4 3.4 1.9
KPSS
Asymptotic 24.3 17.9 11.3 4.5 2.4 0.8
Bootstrapped 22.8 17.3 11.5 5.0 2.1 0.7
T =250 V/S
Asymptotic 22.4 16.2 8.3 1.7 0.3 0.0
Bootstrapped 19.4 13.1 7.4 3.5 1.2 0.3
GPH
Asymptotic 12.6 9.4 6.5 2.7 1.5 0.7
—~ Bootstrapped 17.3 11.0 6.3 1.8 0.4 0.1
H
Asymptotic 21.0 18.7 15.9 11.8 83 5.8
RS Bootstrapped 20.1 16.2 9.8 42 1.9 0.4
Asymptotic 14.9 9.5 4.8 1.4 0.2 0.0
Bootstrapped 19.0 15.5 10.6 5.0 3.6 1.4
KPSS
Asymptotic 20.6 15.8 11.3 4.8 33 1.1
Bootstrapped 20.9 15.8 11.3 5.4 2.6 1.0
T =500 V/S pp
Asymptotic 21.5 16.4 11.1 4.2 1.7 0.6
GPH Bootstrapped 20.8 16.1 12.3 5.7 34 1.6
Asymptotic 12.0 7.8 52 29 1.4 0.4
- Bootstrapped 20.5 15.6 12.4 6.7 3.6 1.5
H
Asymptotic 14.2 12.5 10.1 6.6 4.5 3.0
RS Bootstrapped 20.7 15.5 10.4 53 2.5 1.1
Asymptotic 17.0 11.6 7.4 29 1.1 0.3
Bootstrapped 20.9 16.2 11.4 6.2 3.6 1.6
KPSS
Asymptotic 21.7 16.7 11.8 6.1 3.4 1.2
Bootstrapped 18.8 15.2 9.6 4.4 2.3 1.4
T=1000 V/S
Asymptotic 19.7 15.5 10.3 4.0 2.4 1.0
Bootstrapped 222 18.1 12.5 7.2 4.1 1.7
GPH
Asymptotic 11.8 9.0 6.3 33 1.4 0.7
- Bootstrapped 24.2 18.9 13.9 7.8 4.1 2.1
H
Asymptotic 16.7 13.3 10.0 6.8 4.2 2.3

Notes: See Table 1. The DGP is x, = (1-0.5L)'u,, where u, =exp(Lh,)e, With
h,=0.95h_ +7,. & and 7, are mean zero, independent normal random variables with
variances equal to 0.1
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Table 4: Power of Long Memory Tests for Fractionally Integrated Model (d = 1/3)

Sample Test Critical Normal Random Error Demeaned Log-Normal Error
Size Statistic Values 20% | 15% | 10% | 5% | 24% | 1% | 20% | 15% | 10% | 5% | 24% | 1%
S Bootstrapped | 27.9 199 114 5.0 25 1.1 | 302 205 127 62 1.8 0.4
Asymptotic 7.1 3.0 0.5 0.0 00 0.0 73 2.1 0.2 0.0 0.0 0.0
PSS Bootstrapped | 38.6 333 270 167 107 60 | 418 357 289 179 112 6.1
Asymptotic 469 391 320 190 103 23 | 496 431 340 205 107 19
=100 Vs Bootstrapped | 40.5  33.0 240 129 67 23 | 440 363 262 142 72 2.8
Asymptotic 481 395 243 67 0.7 00 | 533 422 261 64 0.5 0.0
PI Bootstrapped | 41.0  31.0 200 89 42 16 | 406 307 187 83 3.7 1.3
Asymptotic 478 404 311 203 113 55 | 467 399 309 205 127 67
A Bootstrapped | 42.6  30.6 182 83 3.9 11 | 4.0 292 172 75 3.2 0.9
" Asymptotic 67.6 631 586 510 446 360 | 699 664 628 516 446 351
S Bootstrapped | 53.4 474 396 276 182 114 | 551 478  40.1 284 197 115
Asymptotic 485 419 308 163 79 24 | 472 398 310 166 8.0 2.8
PSS Bootstrapped | 522 448 368 257 189 125 | 539 471 379 274 209 134
Asymptotic 60.9 534 438 307 231 144 | 581 524 441 328 242 165
=250 Vs Bootstrapped | 57.2 512 417 303 228 154 | 622 562 471 336 235 159
Asymptotic 662 594 503 370 250 148 | 581 524 441 328 242 165
i Bootstrapped | 66.1 588 484 324 211 119 | 674 603 515 377 272 159
Asymptotic 654 583 508 394 271 175 | 675 613 479 305 186 98
_ Bootstrapped | 758 684 564 376 248 118 | 778 695 575 353 205 87
" Asymptotic 8.0 799 752 682 611  SL1 | 8.1 815 779 699 613 526

Notes: See Table 1. The DGP is
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Table 4 (Continued): Power of Long Memory Tests for a Fractionally Integrated Model (d = 1/3)

Sample Test Critical Normal Random Error Demeaned Log-Normal Error
Size Statistic Values 20% | 15% | 10% | 5% | 24% | 1% | 20% | 15% | 10% | 5% | 24% | 1%
S Bootstrapped | 72.1 670 599 497 400 292 | 746  69.0 617 500 403  32.1
Asymptotic 731 679 603 493 385 251 | 739  67.6 604 468 377 267
PSS Bootstrapped | 66.6 599 513 379 309 236 | 665  60.5 524 403 312 241
Asymptotic 746 686 595 462 366 278 | 745 686 605 471 381 280
= 500 Vs Bootstrapped | 73.7  68.1  60.1 499 407 310 | 746 687 612 495 407 318
Asymptotic 8.0 760 704 581 478 370 | 8.6 769 694 566 473 361
PI Bootstrapped | 81.5 770 69.9 553 434 310 | 842 786 689 560 428 286
Asymptotic 771 726 644 512 400 275 | 779 716 647 518 393 261
A Bootstrapped | 89.0 852 803 678 559 405 | 909 8.9 8.0 685 539  39.1
" Asymptotic 89.8 877 844 782 716 630 | 917 8.7 8.0 791 707 623
S Bootstrapped | 87.0 829 771 675 605 509 | 886 860 800 712 633  53.8
Asymptotic 9.0 866 817 726 641 552 | 908 877 832 740 667 557
PSS Bootstrapped | 785 727 654 535 446 347 | 798 726 649 535 433 343
Asymptotic 853  80.1 728 616 530 427 | 84  8L1 733 616 525 409
= 1000 Vs Bootstrapped | 852  81.0 755 661 566 463 | 8.3 8.3 780 683 596  51.0
Asymptotic 914 878 87 751 667 559 | 920  89.1 840 765 688 588
i Bootstrapped | 929  90.0 858 781  69.1 554 | 934 912 870 794  70.1 564
Asymptotic 884 851 806 726 617 483 | 899 872 818 729 632  48.1
_ Bootstrapped | 97.0 959 938 898 8.1 750 | 977 964 947 894 837 740
" Asymptotic 9.4 953 940 912 879 817 | 972 965 947 922 878 817

Notes: See Table 1. The DGP is
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Table 5: Power of Long Memory Tests for a Fractionally Integrated Model with
Stochastic Volatility Error (d = 1/3 and y = 0.95)

Sample Test Critical Nominal Size of Test
Size Statistic Values 20% ‘ 15% | 10% | 59, ‘ 21404 1%
RIS Bootstrapped 53.4 47.5 38.9 25.9 17.5 10.5
Asymptotic 47.5 37.3 26.9 14.6 7.5 1.2
Bootstrapped 53.2 45.9 38.6 26.4 18.8 11.5
KPSS
Asymptotic 59.4 53.1 44.6 324 21.9 12.8
Bootstrapped 54.2 48.9 413 29.8 21.3 13.0
T =250 V/S
Asymptotic 61.8 55.7 47.2 33.0 22.9 11.4
Bootstrapped 57.9 50.7 41.8 29.1 17.1 9.5
GPH
Asymptotic 54.5 49.4 42.4 32.1 23.8 13.5
N Bootstrapped 65.0 57.7 48.1 323 20.8 10.0
H
Asymptotic 71.9 69.3 64.1 56.1 49.0 41.2
R/S Bootstrapped 68.5 63.2 56.2 45.5 36.3 25.7
Asymptotic 69.1 63.7 55.1 44.7 32.7 21.6
B . . 48.4 . 29. 22.2
KPSS ootstrapped 63.6 56.7 8 36.8 9.5
Asymptotic 71.0 64.8 56.1 429 34.4 25.9
T = 500 V/S Bootstrapped 70.8 65.6 56.4 45.2 36.5 27.4
Asymptotic 76.6 72.7 65.7 52.5 433 31.8
GPH Bootstrapped 78.8 73.6 65.3 52.5 41.2 25.6
Asymptotic 72.6 66.6 60.1 48.5 36.0 21.8
5 Bootstrapped 85.1 81.2 75.9 64.5 52.9 37.0
Asymptotic 85.3 83.2 79.7 74.9 68.5 59.5
Bootstrapped 81.6 76.0 70.5 61.1 52.8 43.2
R/S
Asymptotic 80.7 75.6 69.4 59.3 50.2 37.7
Bootstrapped 72.9 65.6 58.0 46.8 37.4 28.2
KPSS
Asymptotic 76.7 71.9 62.7 51.8 42.7 314
Bootstrapped 79.3 74.4 68.2 58.9 48.7 38.5
T=1000 V/S
Asymptotic 83.5 79.9 73.2 63.5 54.7 42.8
Bootstrapped 88.0 84.5 79.1 69.2 58.2 46.5
GPH
Asymptotic 81.8 78.2 72.3 60.6 50.6 39.1
5 Bootstrapped 94.0 91.6 87.8 82.1 73.1 61.9
Asymptotic 92.5 91.0 87.9 83.7 77.9 70.2

Notes: See Table 1. The DGP is x, =(1-L)"u

h, =0.95h_,+n,. ¢ and n,are mean zero, independent normal random variables with

,» where u, =exp(ih)e, with

variances equal to 1/10.
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Table 6: Size or Power of Long Memory Tests for Various Models with Stochastic Volatility Errors

. Test Critical Nominal Size
Data Generation Process Statisti
tatistic Values 20% 15% 0% | 5% 2%4% 1%
VIS Bootstrapped 20.9 15.8 11.3 54 2.6 1.0
AR(1) with SV Error Asymptotic 21.5 16.4 11.1 42 1.7 0.6
~ Bootstrapped 20.5 15.6 12.4 6.7 3.6 1.5
H
Asymptotic 14.2 12.5 10.1 6.6 4.5 3.0
VIS Bootstrapped 20.5 15.8 10.4 5.5 2.6 1.0
A toti 20.7 15.8 9.9 4.6 1.9 0.6
Sum of AR(1) and SV Errors SYmPpRotie
~ Bootstrapped 23.9 19.0 11.6 6.6 3.6 1.9
H
Asymptotic 16.8 13.4 10.3 7.2 43 2.5
VIS Bootstrapped 70.8 65.6 56.4 45.2 36.5 27.4
FI with SV Error Asymptotic 76.6 72.7 65.7 52.5 433 31.8
~ Bootstrapped 85.1 81.2 75.9 64.5 52.9 37.0
H
Asymptotic 85.3 83.2 79.7 74.9 68.5 59.5
VIS Bootstrapped 35.8 28.7 22.7 15.2 9.2 4.1
Asymptotic 36.7 29.6 23.2 14.4 7.8 3.7
Sum of FI and SV Errors
~ Bootstrapped 38.8 31.8 24.0 15.5 8.7 3.8
H
Asymptotic 314 27.4 234 17.1 12.0 7.1

Notes: Sample size T = 500. DGPs (i) and (iii) are the same as in Tables 3 and 5. DGP (ii) is x, =(1-0.5L)"'u, + exp(3 k)&, with
h, =0.95h,_,+n,. DGP (iv) is x, =(1—L) " u, +exp(3 h)¢&, withh, =0.95h,_, +7,. The random errors u,,&, and 7, are mean zero,
independent normal random variables with variances 0.1, 1 and 0.1 respectively.
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Table 7: Tests of Long Memory — Standard and Poor’s 500 (SP 500) Returns, Absolute Returns and Squared Returns

. " 1] a

Period Test Test Critical Values Test Critical Values Test Critical Values
Statistic 95% | 99% Statistic 95% | 99% Statistic 95% | 99%
R/S Bootstrapped 1.128 1.650 1.893 3.745 1.755 2.008 2.795 1.630 1.841
Asymptotic 1.747 2.001 1.747 2.001 1.747 2.001
KPSS Bootstrapped 0.229 0.421 0.620 5.423 0.557 0.789 2.899 0.537 0.808
Jan 1993 to Asymptotic 0.463 0.739 0.463 0.739 0.463 0.739
Dec 1999 V/S Bootstrapped 0.079 0.170 0.253 1.335 0.205 0.309 0.792 0.200 0.267
Asymptotic 0.187 0.266 0.187 0.266 0.187 0.266
(T=1768) GPH Bootstrapped -0.925 1.755 2.241 5.765 5.031 5.534 2.406 1.406 1.797
Asymptotic 1.960 2.575 1.960 2.575 1.960 2.575
~ Bootstrapped -0.017 2.014 2.873 8.521 6.473 7.109 5.025 3.818 4.765
H Asymptotic 1.960 2.575 1.960 2.575 1.960 2.575
R/S Bootstrapped 1.652 1.651 1.862 1.856 1.686 1.846 1.604 1.591 1.764
Asymptotic 1.747 2.001 1.747 2.001 1.747 2.001
KPSS Bootstrapp.ed 0.154 0.484 0.729 1.089 0.522 0.800 0.775 0.479 0.803
Jan 1997 to Asymptotic 0.463 0.739 0.436 0.739 0.463 0.739
Dec 1998 V/S Bootstrapped 0.116 0.199 0.248 0.276 0.172 0.270 0.209 0.192 0.262
Asymptotic 0.187 0.266 0.187 0.266 0.187 0.266
(T =505) GPH Bootstrapped 0.298 1.757 2.403 2.752 1.561 2.740 1.655 1.889 2.500
Asymptotic 1.960 2.575 1.960 2.575 1.960 2.575
~ Bootstrapped 0.805 2.345 2.957 3.658 2.084 3.498 2.309 2.379 3.606
H Asymptotic 1.960 2.575 1.960 2.575 1.960 2.575

Notes: Statistically significant outcomes are shown in bold. The MBB block length is 10 and the number of bootstrap replications is 999.
Other settings are the same as in Section 2.
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