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Abstract

Most decision making research in real options focuses on revenue uncertainty

assuming discount rates remain constant. For many decisions, however, revenue

or cost streams are relatively static and investment is driven by interest rate un-

certainty, for example the decision to invest in durable machinery and equipment.

Using interest rate models from Cox et al. (1985b), we generalize the work of Inger-

soll and Ross (1992) in two ways. Firstly, we include real options on perpetuities

(in addition to ”zero coupon” cash flows). Secondly, we incorporate abandonment

or disinvestment as well as investment options and thus model interest rate hystere-

sis [parallel to revenue uncertainty, Dixit (1989a)]. Under stochastic interest rates,

economic hysteresis is found to be significant, even for small sunk costs.
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1 Introduction

The capital theory of investment has typically ranged from models where investment is

costlessly reversible to models where investment is completely irreversible. The traditional

case of costlessly reversible investment occurs when there is no difference between the price

at which the firm can purchase capital and the price at which it can sell capital. Thus,

with perfect reversibility the wedge between the investment cost and the disinvestment

proceeds is zero and the optimal investment policy of a firm maintains the marginal

revenue product of capital equal to the Jorgenson (1963) user cost of capital. The case

of costlessly reversible investment is not realistic since it is not expected that a firm can

disinvest at no cost1. At the other opposite extreme, lies the case of complete irreversible

investment when the sale price of capital is zero, i.e., the firm cannot recoup any fraction of

the investment cost initially supported. For the sake of simplicity, the extreme assumption

that resale of capital goods is impossible, i.e., disinvestment proceeds are zero, is initially

introduced by Arrow (1968) and subsequently used by the majority of the literature on

optimal investment under uncertainty. This assumption is more realistic since in many

economic situations the sale of capital invested cannot be accomplished at the same price.

In the limiting case of complete irreversibility, firms are not able to recoup any fraction

1Most investment expenditures are at least in part irreversible, i.e., are sunk costs that cannot be

totally recouped should market conditions change adversely. Although some investments can be reversible,

the majority of them are at least partly irreversible because firms cannot recover all the investment costs.

On the contrary, in some cases additional costs of detaching and moving machinery may exist. Since most

of the capital expenditures are firm or industry specific they cannot be used in a different firm or different

industry. Therefore, they should be considered as largely a sunk cost. But even if the capital expenditures

would not be firm or industry specific, they could not be totally recovered due to the ”lemons” problem

of Akerlof (1970). Hence, major investment costs are in a large part irreversible. As a result, the full cost

of investment must be the sum of two terms: the cost of investment itself (a direct cost of investment)

and the opportunity cost value of the lost option (an indirect cost of investment). An extensive literature

has shown how this opportunity cost of the lost option can be evaluated and demonstrated that its value

is extremely sensitive to uncertainty and can have a large impact on investment spending. See Pindyck

(1991) and Dixit (1992) for an overview of the literature. Dixit and Pindyck (1994) provides an excellent

revision of the various approaches and applications. A complementary survey may be found in Caballero

(1999).
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of the investment cost2. However, the most common and realistic case is characterized

by investments with costly reversibility in which a firm can purchase capital at a given

price (by paying an investment cost I) and sell capital at a lower price (receive the

disinvestment proceeds I), i.e., there is a fraction α of the invested capital, α = I/I (with

0 < α < 1), that a firm can recoup when disinvesting3. Examples of an analysis for

reversible investment decisions include, among others, Dixit (1989a), Abel et al. (1996),

Abel and Eberly (1996) and Kandel and Pearson (2002) in which capital can be abandoned

at a cost since only a fraction of the entry cost can be recovered on exit4.

Decisions made under an uncertain environment where it is costly to reverse economic

actions will lead to an intermediate range of the state variable, called hysteretic band,

where inaction is the optimal policy. Several models of entry and exit decisions have shown

that the range of inaction can be remarkably large [see, for example, Brennan and Schwartz

(1985), Dixit (1989a,b) and Abel and Eberly (1996)]. The economic hysteresis effect is

also found to be wide in the optimal consumption and portfolio choice literature [see, for

example, Constantinides (1986)]. Therefore, such effect seems to be extremely relevant

for many economic applications. Since interest rates are also an important determinant of

investment and disinvestment decisions it is important to analyze the economic hysteresis

effect provoked by interest rate uncertainty. To our knowledge, this effect has not been

previously analyzed under stochastic interest rates.

Most decision making research in real options focuses on revenue uncertainty assuming

discount rates remain constant. For many decisions, however, revenue or cost streams are

relatively static and investment is driven by interest rate uncertainty, for example the

decision to invest in durable machinery and equipment. Using interest rate models from

2Moreover, there may even exist cases where additional costs of closing a project may exist, such as

the cases of a copper mine or a nuclear power station where environmental clean costs may have to be

supported.
3α = 0 represents the case where investment is completely irreversible, while α = 1 stands for the case

of costlessly reversible investment. For the cases where it is necessary to a pay a lump-sum cost to exit

the disinvestment proceeds I is of negative sign.
4It should be noted that in Dixit (1989a) model firms can decide to suspend operations but have to

pay a lump-sum exit cost l to do so. However, the case in which a part of the entry cost, k, can be

recovered on exit can easily extended to the costly reversible investment case by changing the sign of l.
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Cox et al. (1985b), we generalize the work of Ingersoll and Ross (1992) in two ways.

Firstly, we include real options on perpetuities (in addition to ”zero coupon” cash flows).

Secondly, we incorporate abandonment or disinvestment as well as investment options

and thus model interest rate hysteresis [parallel to revenue uncertainty, Dixit (1989a)].

Our paper is also related to a body of literature that examines the investment decision

problem under stochastic interest rates. Using the insights of the influent work of Ingersoll

and Ross (1992), Ross (1995) derives an approximation rule for the optimal hurdle rate

at which a project should be undertaken. Lee (1997) proposes a method for computing

the value of an investment-timing option on a postponable project with a finite maturity

that has multiple cash flows. In addition to interest rate volatility, the effects of mean

reversion are also included. His results confirms the evidence of Ingersoll and Ross (1992)

and Ross (1995) that interest rate uncertainty has a significant impact on NPV, because

sizable gains in NPV are obtained by waiting to invest. More recently, Alvarez and Koskela

(2005) generalize the findings of Ingersoll and Ross (1992) by allowing a stochastic interest

rate of a mean-reverting type. More specifically, they study the impact of interest rate

uncertainty on irreversible investment decisions using the mean-reverting model of Merton

(1975) as the underlying stochastic interest rate dynamics. Allowing for interest rate

volatility increases both the required exercise premium of the investment opportunity

and the value of waiting and, as a consequence, it decelerates investment. Thus, the

sign of the relationship between interest rate volatility and investment is unambiguously

negative, which is in concordance with previous results. They also extend their analysis

by exploring the interaction between the stochastic term structure and stochastic revenue

dynamics and conclude that increased revenue volatility strengthen the negative effect of

interest rate uncertainty on irreversible investment decisions and vice versa. However, it

should be noted that none of the cited papers consider abandonment options and thus the

hysteresis modelling problem under stochastic interest rates is not previously addressed.

Our results allow us to conclude that when there is some level of interest rate un-

certainty, the hysteresis level emerges very quickly even for very small investment costs.

This means that apart from the output price uncertainty [see, for example, Dixit (1989a)],

interest rate uncertainty also plays a critical role for widening the hysteretic band. When

4



interest rates fall, firms make durable investments, that is to say that they switch from

cash (an immediate asset) to longer lived assets with cash flows further ahead in time.

When interest rates rise, they will stop undertaking any durable projects. Furthermore, if

flexibility exists they will also try and reverse the investment process, i.e. disinvest away

from projects with long lived cash flows into projects with more immediate payoffs.

An outline of this paper is as follows: Section 2 describes the interest rate process in a

CIR economy and the behaviour near the natural zero interest rate boundary and details

the necessary risk adjustment for risk-neutral valuation in a CIR framework. Section 3

presents the solutions for the perpetuity function in a CIR economy. Section 4 discusses

the investment hysteresis problem under stochastic interest rates and solves it numerically

using the single-factor pure diffusion process of Ingersoll and Ross (1992). Section 5

concludes.

2 CIR’s Term Structure Interest Rate Dynamics

The well-known valuation framework of asset pricing in a continuous-time competitive

economy developed by Cox et al. (1985a) has been the basis for many equilibrium models

of contingent claims valuation. For example, the general equilibrium approach to term

structure modelling developed by Cox et al. (1985b) is an application of their more general

equilibrium framework. In their single-factor model of the term structure of interest rates

they assume that the interest rate dynamics can be expressed as a diffusion process known

as the mean-reverting square-root process5:

5It should be noted that the CIR model is a single-factor model and may be criticized on these grounds.

The criticism arises because in a single-factor Markovian model it is implicit that price changes in bonds

of different maturities are perfectly correlated and the long-term interest rate is constant. It also implies

that bond prices do not depend on the path followed by the spot interest rate in reaching its current

level. The Vasicek (1977) model is also a very popular one-factor model for the term structure dynamics

of interest rates. However, the criticism that is applied to Vasicek’s arbitrage model does not apply to the

CIR intertemporal general equilibrium term structure model, because the latter does not allow negative

interest rates which is a desirable and more realistic feature for the term structure dynamics of interest

rates [see Rogers (1995)]. Therefore, we will use the CIR framework for the valuation of perpetuities and

to study the economic hysteresis effects under stochastic interest rates. It should be noted that by passing
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drt = κ(θ − rt)dt + σ
√

rtdWt , r(0) = r0 (1)

where κ is the parameter that determines the speed of adjustment (reversion rate), i.e.,

it measures the intensity with which the interest rate is drawn back towards its long-

run mean, θ is the long-run mean of the instantaneous interest rate (asymptotic interest

rate), σ is the volatility of the process, rt is the instantaneous interest rate and dWt is

a standard Gauss-Wiener process. Moreover, it is usually assumed that κ, θ and σ are

strictly positive constants6. The drift term of the process, κ(θ − rt), is a restoring force

to multi-factor models one should get an improved fit to observed prices, but there is a heavy price to

pay since the resulting partial differential equation would have a higher dimension. If our objective were

to calculate prices of some interest rate derivatives then other factors could be included in the analysis

in order to match observed prices. However, since our focus is on the effects of interest rate uncertainty

on investment decisions a single-factor model of interest rates seems suitable due to its simplicity and

tractability. By choosing only one state variable (i.e., the interest rate r) we are making an effort to

achieve a reasonable compromise between the richness and understandability of a useful framework for

capital budgeting decisions. Adding more than one state variable yields more flexibility but at a cost of

much greater complication in analysis and possibly without any commensurate improvement in insights.

However, it would be possible to expand the problem to include other factors without changing the

essential nature of the analysis [see, for example, the multi-factor model specification of Chen and Scott

(1993) for the term structure of interest rates].
6One of the key issues of the square-root diffusion is the role played by the term κθ, which is closely

related with the dimension δ of a squared Bessel process (δ = 4κθ/σ2), and have important implications

for the boundary conditions of the problem [see, for example, Feller (1951); for a complete description

of the boundary classification for one-dimensional diffusions see Karlin and Taylor (1981, chap. 15) and

Borodin and Salminen (2002, chap. II)]. The values of the function both at r = 0 and r = +∞ are of

particular interest when we are dealing with interest rate problems. From these two points, only the

first one deserves particular attention since no key phenomenon occurs at infinity, because the infinite

point is a non-attracting natural boundary for all specifications of κθ. But, at r = 0 the specification

of the κθ term completely changes the behaviour of the problem. Three important properties are of

particular interest: (i) if 2κθ ≥ σ2, r = 0 is an entrance, but not exit, boundary point for the process.

This means that 0 acts both as absorbing and reflecting barrier such that no homogeneous boundary

conditions can be imposed there. Thus, the origin is inaccessible and the CIR process stays strictly

positive; (ii) if 0 < 2κθ < σ2, r = 0 is a reflecting boundary (exit and entrance), i.e., 0 is chosen to be an

instantaneously reflecting regular boundary; (iii) if κθ = 0, r = 0 is a trap or an absorbing point and no

boundary condition can be imposed there. Thus, when the CIR diffusion process hits 0 it is extinct, i.e.,
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which always pull the stochastic interest rate toward a long-term value of θ. The diffusion

term of the process, σ2rt, represents the variance of instantaneous changes in the interest

rates.

Under this framework, the fundamental partial differential equation to price a default-

free discount bond, P , promising to pay one unit of capital at time T , is equal to:

1

2
σ2r

∂2P (r)

∂r2
+ κ(θ − r)

∂P (r)

∂r
+

∂P (r)

∂t
− λr

∂P (r)

∂r
− rP (r) = 0 (2)

with the boundary condition P (r, T, T ) = 1. Since the first three terms of equation (2),

which come from Ito’s formula, represent the expected price change for the bond, the

expected return on the bond is r +(λr ∂P (r)
∂r

× 1
P
). The factor λr represents the covariance

of changes in the interest rate with percentage changes in optimally invested wealth and

λ is the ”market” risk parameter or price of interest rate risk7. Due to the fact that
∂P (r)

∂r
< 0, positive premiums will exist if λ < 0, i.e., if the covariance is negative. The

discount bond price is then equal to:

P (r, t0, T ) = A(t0, T ) e−B(t0,T ) r(t0) (3)

where

A(t0, T ) =

[
2ωe[(κ+λ+ω)(T−t0)]/2

(ω + κ + λ)(eω(T−t0) − 1) + 2ω

]2κθ/σ2

(4a)

B(t0, T ) =
2(eω(T−t0) − 1)

(ω + κ + λ)(eω(T−t0) − 1) + 2ω
(4b)

ω =
[
(κ + λ)2 + 2σ2

]1/2
(4c)

Although this solution was first introduced in finance by Cox et al. (1985b), the formula

was already obtained by Pitman and Yor (1982) but in a different context [see, for example,

Delbaen (1993) and Geman and Yor (1993)]. Thus, the price at time t = t0 of a zero

coupon bond maturing at time T is also equal to:

it remains at 0 forever (absorbing or exit boundary).
7More specifically, the parameter λ is related to the market price of risk λ∗(r, t) = −λ

√
r(t)/σ. It

turns out that in equilibrium the market price of risk is restricted to be of this particular functional form.
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P (r, t0, T ) = EQt0

[
e
− ∫ T

t0
r(s) ds

]
= A(t0, T ) e−B(t0,T ) r(t0) (5)

where EQt0 denotes the expectation under the risk-neutral probability Q (or martingale

measure Q), at time t = t0, with respect to the risk-adjusted process for the instantaneous

interest rate that can be written as the following stochastic differential equation:

drt = [κθ − (λ + κ) rt] dt + σ
√

rt dWt (6)

and where dWt is a standard Brownian motion under Q. It should be noted that option

pricing analysis usually resort in the so-called risk-neutral valuation which is essentially

based in replication and continuous trading arguments8. However, the interest rate r is

not the price of a traded asset, since there is no asset on the market whose price process is

given by r. This means that the present framework is somewhat more complicated than

a Black-Scholes setting due to the appearance of the market price of risk λ, which is not

determined separately within the model but rather obtained as part of the equilibrium.

We see that the value at time t = t0 of a zero coupon bond with maturity date T is

given as the expected value of the final payoff of one dollar discounted to t0. This expected

value is stated by equation (5), but in this case the expectation is not to be taken using

the objective probability measure P . Instead, a martingale measure Q must be used to

denote that the expectation is taken with respect to a risk-adjusted process, where the

risk adjustment is determined by reducing the drift of the underlying variable by a factor

risk premium λr. Therefore, the risk-adjusted drift of the interest rate square-root process

is denoted by the term [κθ − (λ + κ) rt]. It should also be emphasized that although risk

premiums for interest rates may be introduced, they cannot be observed or measured

separately. We know that the CIR model has four parameters in addition to the current

interest rate rt: the parameters associated with the objective probability measure P (e.g.,

κ, θ and σ) and the risk premium of the single-factor which drives the economy under the

8For example, it is possible to compute the Black and Scholes (1973) arbitrage free prices using such

arguments and a risk-neutral valuation approach, because there is a risk-neutral probability measure Q
equivalent to the real world probability measure P [see, for example, Cox and Ross (1976), Harrison and

Kreps (1979) and Harrison and Pliska (1981)].
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risk-neutral world (e.g., λ). It turns out that contingent claim prices depend only on the

parameters of the risk-adjusted process. These are the current interest rate rt, the interest

rate volatility σ, and two parameters that are combinations of the remaining ones, i.e.,

κθ and λ + κ. That is why the market price of risk is not determined separately within

the model, but rather obtained as part of the equilibrium. Obviously it is possible to

exogenously specify or impose a given λ, especially if we want to perform some numerical

analysis. If this is the case, however, there may be no underlying equilibrium that could

support the imposed premiums, but, on the other hand, there is no risk-neutral measure

either in such a situation [see Rogers (1995, section 6) for an excellent exposition about

this issue]. If a risk factor term is to be introduced it is determined by things such as

the forms of risk aversion possessed by the various agents on the market. This means

that if one makes an ad-hoc choice of λ = 0, then he is implicitly making an assumption

concerning the aggregate risk aversion on the market9.

3 Valuation of Perpetuities under Stochastic Interest

Rates within the CIR Framework

Following Cox et al. (1985a,b), the price of any interest rate contingent claims satisfies

the following partial differential equation:

1

2
σ2r

∂2F (r)

∂r2
+ κ(θ − r)

∂F (r)

∂r
+

∂F (r)

∂t
− λr

∂F (r)

∂r
− rF (r) + C(r, t) = 0 (7)

This equation is similar to equation (2). The only difference is the new term C(r, t) which

represents the net cash paid out to the claim10. For the valuation of a default-free discount

bond C(r, t) = 0, but for a perpetuity its value is 1 since a perpetuity is a default-free

financial instrument that pays a constant stream of one unit of capital11. In addition, for

9For a detailed technical exposition regarding these issues see, for example, Björk (2004).
10We also change the function notation to distinguish the value of a default-free discount bond, P (r),

from the value of a perpetuity, F (r).
11Another common name for a perpetuity is consol.
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a perpetuity the term ∂F (r)
∂t

will vanish as t goes to infinity. Thus, equation (7) can be

restated as:

1

2
σ2r

∂2F (r)

∂r2
+ κ(θ − r)

∂F (r)

∂r
− λr

∂F (r)

∂r
− rF (r) + 1 = 0 (8)

It is well known that the solution to this ordinary differential equation is the value of a

perpetuity in a CIR framework, that can be computed as follows12:

F (r) = EQt0

[ ∫ ∞

t0

e
− ∫ t

t0
r(s) ds

dt

]
=

∫ ∞

t0

P (r, t0, t) dt (9)

As we will see later, we need to use the first derivative of the perpetuity function. Differ-

entiation under the integral sign is allowed, even when a limit is infinite, and this gives

us:

F ′(r) =
d

dr

∫ ∞

t0

P (r, t0, t) dt =

∫ ∞

t0

∂P (r, t0, t)

∂r
dt = −

∫ ∞

t0

A(t0, t)B(t0, t) e−B(t0,t) r(t0) dt

(10)

4 The Hysteresis Problem Assuming There Is No

Mean Reversion

4.1 Perpetual Investment and Disinvestment Opportunities

To concentrate on the effects of interest rates on investment decisions we use a particular

model of real interest rates. To do so, we follow the single-factor pure diffusion process

of Ingersoll and Ross (1992) assuming that changes in the instantaneous interest rate, r,

satisfy the following Itô equation:

drt = σ
√

rt dWt (11)

12The valuation of perpetuities using the methodology of Bessel processes under stochastic interest

rates within the CIR’s framework can be found in Delbaen (1993), Geman and Yor (1993) and Yor

(1993). However, their analytical solutions cannot be used in our framework since we will consider that

the κθ term is zero and thus we have to rely on numerical methods.
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where σ is constant. This is equivalent to the interest rate dynamics of the risk-adjusted

stochastic process drt = −λrt dt+σ
√

rt dWt for risk-neutral pricing in the case of a nonzero

term premium λ where it is assumed that λ is constant and λ < 0 corresponds to positive

risk premiums. The process followed here restricts the more general mean-reverting drift

process of Cox et al. (1985b). Since we want to focus on the effects of interest rate

uncertainty on the investment and disinvestment decisions, the Ingersoll and Ross (1992)

process with a zero expected interest rate change allows the simplification of our analysis.

According to Cox et al. (1985a,b), the price of any interest-rate contingent claims

satisfies the following partial differential equation (for the case where mean reversion is

not considered):

1

2
σ2r

∂2F (r)

∂r2
− λr

∂F (r)

∂r
+

∂F (r)

∂t
− rF (r) + C(r, t) = 0 (12)

where C is the net cash paid out to the claim and λ measures the price of interest-rate

risk. Following the ideas that underlies most of the real options’ framework, we assume a

very long time to maturity options. This technique was firstly raised by Merton (1973) to

obtain closed-form solutions for the perpetual calls and puts options. Using this technique

the problem stated in equation (12) becomes time independent since the term ∂F (r)
∂t

will

vanish as t becomes very long
(

∂F (r)
∂t

→ 0
)
. In addition, for a very long time to maturity

the net cash paid out to the claim will be 1 dollar. For this perpetual case, equation (12)

reduces to an ordinary differential equation of the form:

1

2
σ2r

∂2F (r)

∂r2
− λr

∂F (r)

∂r
− rF (r) + 1 = 0 (13)

Looking at equation (13) it is easy to see that it does not have constant coefficients

since they are dependent on r. But with a single change we can turn the problem easier.

Thus, dividing both sides of the equation by r and rearranging we get:

1

2
σ2∂2F (r)

∂r2
− λ

∂F (r)

∂r
− F (r) = −1

r
(14)

Now, equation (14) is a linear nonhomogeneous constant coefficient equation. The general

solution to this equation is the sum of the complementary solution, y(r), and the particular

solution, Y (r). A possible and natural lower barrier for an interest rate process would be
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r = 0, but for this single-factor pure diffusion process such control is not possible because

the term κθ is equal to zero. As a result, we have to determine the barriers, as well as

the constants of the complementary solution, numerically since no closed-form solution is

available.

Since we want to consider models of investment and disinvestment we will add a new

state variable to the decision problem, a discrete variable that will indicate if the firm is

active (1) or idle (0). It turns out that the value of an idle or not active firm, F0(r), is

obtained by the solution of the complementary function of equation (14):

1

2
σ2∂2F0(r)

∂r2
− λ

∂F0(r)

∂r
− F0(r) = 0 (15)

and the value of an active firm, F1(r), is the solution of the entire equation (14):

1

2
σ2∂2F1(r)

∂r2
− λ

∂F1(r)

∂r
− F1(r) = −1

r
(16)

Let us now proceed with the solution of the complementary functions together, since

they are similar linear homogeneous equations with constant coefficients. Trying a solution

of the form F (r) = emr, we find that F ′(r) = memr and F ′′(r) = m2emr. Substitution

yields:

(
1

2
σ2m2 − λm− 1

)
emr = 0 (17)

Hence F (r) = emr is a solution of Equation (14) when m is a root of

1

2
σ2m2 − λm− 1 = 0 (18)

or

φ(m) = m2 − vm− w = 0 (19)

where we define v = 2λ/σ2 and w = 2/σ2. The convergence condition of equation (19)

is w > 1 − v. Then, it turns out that φ(0) = −w < 0 and φ(1) = 1 − v − w < 0. Since

φ′′(m) = 2 > 0 it means that the auxiliary equation has two roots, where one of them must

be greater than one (we will call it a) and the other one must be less than zero (we will call
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it b). The discriminant of the characteristic equation is positive, ∆ = v2 + 4w > 0, which

means that the respective solutions are real. Therefore, the two roots can be written out

as:

a =
+v +

√
v2 + 4w

2
> 1 (20a)

b =
+v −√v2 + 4w

2
< 0 (20b)

Thus, we can write the general solution of equation (15) as:

F0(r) = C1e
ar + C2e

br (21)

and the general solution of equation (16) as:

F1(r) = C3e
ar + C4e

br + Y (r) (22)

where C1, C2, C3 and C4 are constants to be determined from boundary conditions.

A simple economic intuition tells us that for very high interest rate levels idle firms

are not induced to invest. Therefore, the option of activating the firm should be nearly

worthless for this level rates. As a result, we need that the constant C1 = 0 (associated

with the positive root a). This means that the expected net present value of making an

investment in the idle state is:

F0(r) = C2e
br (23)

Since an idle firm is not operating does not have any return from the project yet. There-

fore, equation (23) is just the option value of a perpetual investment opportunity, IO(r).

Over the range interval of interest rates (r, ∞), an idle firm will not exercise its option

to invest. To simplify our analysis, we will consider that once the investment commit-

ment has been made, the investment project return is identical to a perpetuity making a

continuous payment of one unit over time. Thus, no additional resources or expenditures

apart from the initial investment are required to maintain the rights over the project or

to sustain the project after it has been accepted. A similar assumption is also used by

Ingersoll and Ross (1992), but in their case the project returns are identical to a T -period
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zero-coupon bond with a real face value of one dollar since they are considering finite

maturities, whereas we are considering infinite maturities. This assumption implies that

operating profits never become negative in our project. Such assumption is also used by,

among others, McDonald and Siegel (1986), Pindyck (1988) and Bertola (1998).

The value of an active firm is the sum of two components, the expected present value

of the profits and an option value of terminating the project. We know that for very low

interest rates an active firm will be induced to continue its operations and not disinvest.

Since the value of the abandonment option should go to zero as r becomes very low, we

must set C4 = 0 (associated with the negative root b). Therefore, the value of a firm for

the active state is:

F1(r) = C3e
ar + F (r) (24)

where F (r) is the particular solution Y (r) of the ordinary differential equation (16). It fol-

lows that a particular solution to this equation is, as it was already stated before, the value

of a perpetuity making a continuous payment of one unit over time, i.e,
∫∞

0
P (r, 0, t) dt,

where we are setting t0 = 0. It should be noted that we use equation (9) as F (r) but we

have to impose a fixed number T in the upper limit of the integral because the κθ param-

eter is zero. Since the perpetuity value represents the expected present value that can be

obtained from the project if it is maintained active forever, the remaining part of equation

(24) must be the value of a perpetual option to disinvest optimally, i.e., DO(r) = C3e
ar.

Over the interest rate range (0, r) an active firm will continue its operations, holding its

option to abandon alive.

4.2 Option to Invest

Let us suppose that an idle firm has an option to invest in a particular investment project

where interest rate uncertainty is a key factor for the decision to invest, but where, for now,

the disinvestment opportunity is not considered. Thus, the firm has to decide whether to

continue being idle or to enter in the market. If interest rates drop to a low level, the firm

may be induced to change an option to invest paying an investment cost I by a perpetuity

making a continuous payment of one unit over time. This investment cost is considered
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a sunk capital cost since it cannot be recouped if the firm should decide to quit at a later

date. The investment strategy can be stated as follows:

I + IO(r) → F (r)

The optimal policy to invest is determined using one value matching condition and

one smooth pasting condition (also called high contact condition)13. This yields a system

of two non-linear equations in two variables (C2 and r):

I + C2e
br =

∫ ∞

0

A(0, t)e−B(0,t)r dt (25a)

bC2e
br =

∫ ∞

0

−B(0, t)A(0, t)e−B(0,t)r dt (25b)

4.3 Option to Disinvest

Let us now suppose that an active firm is operating and its payoff is a perpetuity making

a continuous payment of one unit over time. But if interest rates start rising to very high

rates the firm may be induced to temporarily shut down or even abandon the project. If a

project is closed temporarily it turns out that the firm will incur some fixed maintenance

costs, but may be opened up again without having to pay again entry costs, i.e., I. If the

project is to be permanently abandoned it will incur no maintenance costs, but if the firm

wants to enter again in the market has to pay a new lump-sum cost I. This possibility

(i.e., a reentry option) will be ignore for now. In our case we will assume that once the

state variable reaches the upper trigger point it is optimal to abandon the project, and

such abandonment policy will not involve any costs. The disinvestment strategy can be

stated as follows:

I ← F (r) + DO(r)

13Our real options problems are of American-type nature since they are time-independent and, there-

fore, can be exercised at any time before maturity. Thus, they are optimal stopping problems. The

optimality conditions for such problems were introduced in the financial economics literature by Samuel-

son (1965), McKean (1965) and Merton (1973). For a general treatment of such conditions in a simpler

setting see, for example, Dixit (1991b, 1993) and Dumas (1991).
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where I takes a positive value since when the firm close its operations will not incur any

cost to disinvest. Obviously, there may be situations where firms have to incur an extra

cost when they want to close, such as the cases of a copper mine or a nuclear power

station where some environmental clean costs have to be supported. In our case, we want

to focus our analysis on the possibility that some fraction of the lump-sum cost I can

be recouped if firms decide to abandon its operations. Therefore, we will define a new

variable α that will measure the degree of reversibility, i.e., α = I/I. α = 0 corresponds

to an option in which the decision taken is irreversible and can be exercised only once.

The case 0 < α < 1 corresponds to partial reversibility. We will consider three cases:

α = 0.25, α = 0.50 and α = 0.75. The case where α = 1 represents perfect reversibility, a

situation that gives rise to a flow option in which two flows can be switched continuously

and costlessly [see Shackleton and Wojakowski (2001)]14.

The optimal policy to disinvest is determined using one value matching and one smooth

pasting conditions. This yields a system of two non-linear equations in two variables (C3

and r):

∫ ∞

0

A(0, t)e−B(0,t)r dt + C3e
ar = I (26a)

∫ ∞

0

−B(0, t)A(0, t)e−B(0,t)r dt + aC3e
ar = 0 (26b)

4.4 Switching Options

The most interesting problem is the one where optimal investment and disinvestment

decisions are considered together. Thus, entry and exit decisions are valued simultaneously

originating a lower bound (r) and an upper bound (r) with r < r, and where an idle firm

is induced to invest once the state variable r crosses the action trigger point r and an

active firm will be induced to disinvest if the state variable crosses the threshold point

r. The middle band of interest rates without entry or exit actions yields what is usually

14This limiting situation corresponds to the case where the two threshold will collapse to one common

switching level that will determine the optimal exercise strategy. The strategy change will occur when

the so-called Jorgenson (1963) user costs of capital are equals.
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called by economic hysteresis, since the optimal policy is to maintain the actual status

quo, whether the firm is operating or not.

The corresponding strategy for the entry and exit case can be stated as follows:

I + IO(r) → F (r) + DO(r)

I + IO(r) ← F (r) + DO(r)

In this case, the optimal policy is determined using two value matching and two smooth

pasting conditions resulting in a two-sided (r, r) policy [other examples of two-sided poli-

cies include Dumas and Luciano (1991), Shackleton and Wojakowski (2001), among oth-

ers]. It is important to note that the investment and disinvestment opportunities at the

lower threshold are, respectively, IO(r = r) = C2e
br and DO(r = r) = C3e

br. Similarly,

the investment and disinvestment opportunities at the upper threshold are, respectively,

IO(r = r) = C2e
br and DO(r = r) = C3e

br. This yields a system of four non-linear

equations in four variables (C2, C3, r and r):

I + C2e
br =

∫ ∞

0

A(0, t)e−B(0,t)r dt + C3e
ar (28a)

bC2e
br =

∫ ∞

0

−B(0, t)A(0, t)e−B(0,t)r dt + aC3e
ar (28b)

∫ ∞

0

A(0, t)e−B(0,t)r dt + C3e
ar = I + C2e

br (28c)

∫ ∞

0

−B(0, t)A(0, t)e−B(0,t)r dt + aC3e
ar = bC2e

br (28d)

The above equations are highly non-linear and, as a result, a closed-form solution is

not available. Although we have to rely on numerical methods to get the solution for

the two thresholds and the two constants, such numerical solutions are quite easy to

obtain using the numerical routines for solving simultaneous non-linear equations that

are available in many scientific computing software, such as Mathematica. However, some

important economic properties of the solution can also be obtained by analytical methods

similar to the ones employed by Dixit (1989a). We will use such technique to get a better

understanding of the hysteresis effect.
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4.5 Economic Hysteresis Effect

Decisions made under an uncertain environment where it is costly to reverse economic

actions will lead to an intermediate range of the state variable, called hysteretic band,

where inaction is the optimal policy. Several models of entry and exit decisions have shown

that the range of inaction can be remarkably large [see, for example, Brennan and Schwartz

(1985), Dixit (1989a,b) and Abel and Eberly (1996)]. The economic hysteresis effect is

also found to be wide in the optimal consumption and portfolio choice literature [see, for

example, Constantinides (1986)]. Therefore, such effect seems to be extremely relevant

for many economic applications. Since interest rates are also an important determinant of

investment and disinvestment decisions it is interesting to analyze the economic hysteresis

effect provoked by interest rate uncertainty. To our knowledge, this effect has not been

previously analyzed under stochastic interest rates.

The economic hysteresis effect produces a range of values for the state variable that

is usually defined by highly non-linear equations that need numerical solutions. In some

cases, it is possible to use analytic approximations that allow the use of explicit solutions

to help understanding the importance of the hysteresis effect [see, for example, Dixit

(1991a)]. In our case, we have highly non-linear equations that use functions with inte-

grals. As a result, such analytic approximations are very difficult to obtain and we do not

attempt to use them. However, we can established a general property of the solution that

yields economic hysteresis. A procedure like this was previously used by Dixit (1989a) to

examined the nature of hysteresis when the source of uncertainty arises from the output

market price, whereas in our case the uncertainty comes from the stochastic nature of the

interest rate term structure. To do so, let us define the following function:

V (r) = F1(r)− F0(r) (29)

Using the solutions stated by equations (23) and (24) we have:

V (r) = C3e
ar − C2e

br + F (r) (30)

where F (r) represents the perpetuity value. For small values of r the term with the

negative root b dominates. The term is negative, increasing and concave. For very high
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interest rate levels the dominant term is the one associated with the positive root a. The

term is positive, increasing and convex. For the intermediate range, it is the perpetuity

value that plays a critical role.

Now, the two value matching and the two smooth pasting conditions can be defined

in terms of V as:

V (r) = I , V ′(r) = 0 , V (r) = I , V ′(r) = 0 (31)

To get some analytical results it is important to note that:

V ′′(r) < 0 , V ′′(r) > 0 (32)

since V (r) is concave at r and convex at r15. Subtracting equation (15) from equation

(16) we see that the function V (r) satisfies the following ordinary differential equation:

1

2
σ2∂2V (r)

∂r2
− λ

∂V (r)

∂r
− V (r) = −1

r
(33)

Now evaluating this differential equation at r and using the conditions (31) and (32) we

get:

−1

r
=

1

2
σ2∂2V (r)

∂r2
− λ

∂V (r)

∂r
− V (r) < −I (34)

Using the same approach at the r we obtain:

−1

r
=

1

2
σ2∂2V (r)

∂r2 − λ
∂V (r)

∂r
− V (r) > −I (35)

Rearranging we get, respectively:

r < 1/I ≡ Mr (36)

and

15Using all these conditions it is easy to show that there exists an optimal policy similar in spirit to

the diagrams presented by Constantinides and Richard (1978), Harrison et al. (1983) and Dixit (1989a,

1991b).
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r > 1/I ≡ Mr (37)

where Mr and Mr can be viewed, respectively, as the Marshallian trigger interest rates for

investment and disinvestment. Taking decisions using this traditional concept can lead to

myopic actions since we are implicitly assuming a static expectation for the interest rate

dynamics. Thus, the differences between our thresholds and the Marshallian ones comes

from the uncertainty effect. Conditions (36) and (37) highlights that uncertainty widens

the Marshallian range of inaction.

Using these theoretical insights we can consider some limiting cases. The case where

both I and I tend to zero is not very interesting, since both r and r would diverge.

When they tend to extremely large values, both r and r tend to the common limit 0.

But these two issues indicate that sunk costs and disinvestment proceeds are essential for

the hysteresis effect. If we fix α at a level of 0.50 for example, and we impose a higher

investment cost both the lower and the upper thresholds diminish. Using equations (A.6)

and (A.10) that we present in appendix A, it is straightforward to show that dr < 0 when

dI > 0 and dr < 0 when dI > 0, respectively. But the upper threshold falls at a higher

rate. Thus, there is a tendency for narrowing the hysteretic band in this case. Let us now

fix the investment cost and analyze the impact of different levels of investment recoup.

Maintaining the level of investment cost fixed and rising the α parameter, originates a

very small rise in the lower threshold (using equation (A.11) we can show that dr > 0

when dI > 0) and a sharply decrease in the upper trigger point (using equation (A.10)

we can show that dr < 0 when dI > 0). Thus, the band of inaction will be narrower.

If we set α = 0 the upper threshold diverges to ∞. Thus, an active firm would never

abandon the project. But there is still a finite interest rate level that will induce an idle

firm to invest in a project that afterwards will not be abandoned. This issue derives from

the fact that the profits from the project never become negative. As a result, the firm

will continue its operations. But if there were some variable costs these could lead to

negative profits and then there would be an upper trigger point that would induce the

firm to shut down optimally. Similarly, if the investment costs to reenter again (if a firm

decides to shut down its operations previously) goes to ∞, the option to reinvest becomes
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worthless. An idle firm never invests due to high entrance costs and an operating firm

may be induced to optimally abandon its operations when the interest rate crosses the

upper trigger point. This point indicates how bad things must be, i.e., how high interest

rates should rise before an active firm abandon its operations, since it knows that due to

high entrance costs it can never reinvest later again.

If interest rate uncertainty goes to zero, then r → Mr and r → Mr. This imply

that without uncertainty the range of inaction is determined by the Marshallian trigger

points. As the interest rate volatility starts rising, the lower threshold will fall and the

upper threshold will rise, which will lead to a wider hysteretic band. Now, maintaining the

volatility fixed at a positive level and letting I → 0, we have dr/dI → −∞ and dr/dI →
∞. This can be confirmed using, respectively, equations (A.6) and (A.7) presented in

appendix A. This means that when there is some level of interest rate uncertainty, the

hysteresis level emerges very quickly even for very small investment costs. This also

means that apart from the output price uncertainty [see, for example, Dixit (1989a)], the

interest rate uncertainty also plays a critical role for widening the hysteretic band. All

these theoretical insights can be confirmed with the numerical results that we present

next.

4.6 Numerical Analysis

After providing some theoretical insights about the economic hysteresis effect under

stochastic interest rates, let us now proceed with some numerical results that will confirm

our analytical results. For simplicity we assume that κ = θ = λ = 0. We will consider

the base case volatility level σ = 0.0854 [taken from Chan et al. (1992)] and a smaller

and a higher volatility (σ = 0.03 and σ = 0.3, respectively) for comparative purposes.

In addition, we use two different levels of investment cost, I = 10 and I = 7.5. We also

establish three degrees of reversibility, α = 0.25, α = 0.50 and α = 0.75. We also present

the case of perfect reversibility, α = 1.00, to illustrate the limiting case. The case where

α = 0 is also illustrated since it falls in the single investment strategy situation.

We have to use equations (9) and (10) to compute the perpetuity and the derivative of

the perpetuity functions, respectively. However, we have to set a fixed upper limit for the
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integrals in both functions, otherwise their values would be +∞ and −∞, respectively.

A question now arises. What value T should we use at the upper limits of the integrals?

We have tried several time values such as T = 100, T = 500, T = 1000, T = 3000, etc. It

turns out that from a practical point of view any of these values can be considered as a

sufficient large maturity, which gives a time-independent resemblance for the problem16.

For the single investment strategy the choice of T is not sensible for the lower threshold

point. For the disinvestment single strategy, however, this is not the case. Indeed, the

upper threshold is rising with T , although not too much strongly marked, especially for

low and moderate volatility levels. But for the combined entry and exit strategy, which is

the most interesting one, the use of any of those T values does not produce any significative

change on both lower and upper trigger points. Yet, we present two different time values,

T = 500 and T = 1000, which confirms what we have described.

Table 1 presents the lower trigger points for the single investment strategy considering

different investment cost levels and different interest rate volatilities. Under this strategy,

an active firm never shuts its project, since the profits never become negative. Thus,

these thresholds indicate which is the interest rate level that will induce an idle firm to

enter in a project and continue its operations forever since the option to shut down is

worthless (i.e., it corresponds to the case where α = 0). For example, considering the

base case volatility level and I = 10 it would be necessary that the interest rate falls

to 1.94% to induce an idle firm to invest. At this rate level, the firm will change the

full cost of investment (i.e., option to invest plus investment cost) by a project paying a

perpetuity. From the table we can conclude that: (i) for a given level of volatility the

lower threshold falls as the investment cost rises. This confirms our theoretical results

stated by equation (A.6); and (ii) for a given investment cost level the lower trigger point

falls as the volatility level rises. In addition, all investment thresholds when uncertainty

is considered are lower than the Marshallian investment trigger point (0.10 and 0.1333 for

I = 10 and I = 7.5, respectively). It should be noted that for high levels of uncertainty

firms would never invest.

16For example, Schaefer and Schwartz (1984) calculate the price of a consol by actually computing the

price of a 200-year annuity.
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[Insert Table 1 Here]

Table 2 presents the upper trigger points for the single disinvestment strategy consid-

ering different investment cost levels and interest rate volatilities and different fractions

of disinvestment proceeds to investment costs. This case corresponds to the one where

the option to reinvest becomes worthless since the investment costs to reenter again are

extremely high. Thus, idle firms do not invest and active firms will only disinvest if inter-

est rates goes to sufficiently high values, because they know they cannot reinvest again.

Considering the volatility level of σ = 0.0854, an investment cost of I = 10 and α = 0.50,

it would be necessary that interest rates would be around 40% to induce an active firm

to abandon its operations, knowing that its action could not be reversed later. From the

table we can take the following conclusions: (i) for a given level of volatility and invest-

ment cost the upper threshold falls when the parameter α rises (i.e., the disinvestment

proceeds rises). This confirms our theoretical results stated by equation (A.10); (ii) for

a given volatility level and α parameter the upper trigger point falls as the investment

cost rises (at the end it originates a rise on the disinvestment proceeds). Once again, this

confirms equation (A.10); and (iii) for a given investment cost and α parameter the op-

timal disinvestment threshold rises as volatility rises. All disinvestment thresholds when

uncertainty is considered are higher than the Marshallian disinvestment trigger points.

Thus, higher uncertainty produces higher upper trigger points. It should be noted that for

high levels of uncertainty firms would never disinvest almost for sure. Even for moderate

and low levels of uncertainty it would be necessary that firms could recoup a very high

fraction of the investment costs to induce firms to abandon permanently their operations.

This issue arises from the fact that operating profits can never become negative and there

is no option to reenter again. As we will see below, when the option to invest again is

considered these thresholds will fall significantly due to the reentry option effect.

[Insert Table 2 Here]

Tables 3 and 4 present both the lower and upper trigger points for the entry and exit

combined strategy considering different investment cost levels, I = 10 for Table 3 and

I = 7.5 for Table 4, and different interest rate volatilities and fractions of disinvestment
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proceeds to investment costs. This case corresponds to the one where idle firms are

induced to invest if the interest rate value falls to a sufficient low level, but they own

an option to abandon later if interest rates rise to very high values. Once the project

is abandoned, firms own an option to reinvest again if interest rates reverse to very low

levels again. It turns out that this combined strategy originates a range where inaction

is the optimal policy, i.e., idle firms do not invest and active firms do not abandon their

operations. Considering a volatility level of σ = 0.0854, an investment cost of I = 10 and

α = 0.50, the lower and upper trigger points are, respectively, r = 0.0199 and r = 0.2641,

which originates a range of inaction of 0.2442 (r − r). Figure 1 depicts this numerical

example. It is possible to see that an unique optimal solution exists. In this case, the

Marshallian trigger points would be Mr = 1/I = 0.10 and Mr = 1/I = 0.20, originating a

band of inaction of 0.10 (Mr −Mr). Our lower trigger point is approximately 80 percent

below the Marshallian investment threshold and our upper trigger point is approximately

32 percent above the corresponding Marshallian exit point. Therefore, uncertainty and

the embedded option values are responsible for the hysteretic band widening.

[Insert Table 3 Here]

[Insert Table 4 Here]

[Insert Figure 1 Here]

Considering these parameters, it is possible to see that the lower trigger point for the

single investment strategy (i.e., without the exit option) is r = 0.0194 (see Table 1). For

the combined strategy, this lower trigger point is now r = 0.0199 (see Table 3). The

small difference in value arises from the firm’s possibility to shut down later if interest

rates start rising for very high levels. Similarly, the upper trigger point for the single

disinvestment strategy (i.e., without the reentry option) is r = 0.3818 (see Table 2). For

the combined strategy, the upper trigger point is now r = 0.2641 (see Table 3). This

difference comes from the value of the reentry option that is owned by the firm. But

now the difference is much more pronounced. There is an economic explanation for this

fact. Thus, when the firm invests in a project and has an option to shut down in the
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future, the disinvestment proceeds present value is very small because the prospect of

close its operations is sufficiently far in the future. As a result, the impact on the lower

trigger point is very diminutive. However, when a firm is operating and decides to shut

down its activities it will receive almost immediately the disinvestment proceeds value,

which originates a bigger present value and justifies the greater differences between the

two upper trigger points.

We can take the following conclusions from the tables: (i) for a given level of volatility

and investment cost the lower threshold rises and the upper threshold falls when the

parameter α rises (i.e., the disinvestment proceeds rises). Thus, the range of inaction

will be narrower. This confirms our theoretical results stated by equations (A.11) and

(A.10), respectively; (ii) for a given volatility level and α parameter both the lower and

upper trigger points falls as the investment cost rises (at the end it originates a rise on

the disinvestment proceeds). This confirms the theoretical insights of equations (A.6) and

(A.10), respectively; and (iii) for a given investment cost and α parameter the optimal

lower trigger point falls and the upper threshold rises as volatility rises, widening the

hysteretic range17.

We know that it is extremely complicated to analyze analytically the impact of the σ

parameter on the optimal trigger points due to the effects it produces on the value function

V (r), because it enters in the quadratic equation with roots a and b. However, we can

resort some numerical simulations that can highlight its effects. For greater visual appeal

we show the corresponding picture as a continuous curve and not as a step function. Figure

2 presents the impact on the entry and exit thresholds as the volatility rises, considering

I = 10, α = 0.50 and λ = 0. Clearly, there is a tendency to a wider range of inaction as

the volatility rises, as we have already mentioned before.

[Insert Figure 2 Here]

17It should be noted that this is not always true for the upper trigger point. Thus, for very high

values of α and investment costs, which produces high disinvestment proceeds, the upper threshold starts

rising as the volatility rises, but for very high volatility levels the upper threshold turns its behaviour

and starts falling. A possible explanation for this issue may come from the ”bird-in-the-hand” argument.

Thus, since uncertainty is so high and the value of the disinvestment proceeds is significant, firms may

be induced to shut down at lower rates in order to get a safe present value of the disinvestment proceeds.
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5 Conclusions

We model the investment hysteresis problem under stochastic interest rates explicitly

using the most tractable form of interest rate uncertainty and describe the sensitivity of

the interest rate band to the model parameters. We do this to analyze the beneficial

effects of waiting to invest in the presence of uncertainty as well as to shed light on the

macro influence of interest rate changes on investment policies.

Our results allow us to conclude that when there is some level of interest rate uncer-

tainty, the hysteresis level emerges very quickly even for very small investment costs. This

means that apart from the output price uncertainty [see, for example, Dixit (1989a)], the

interest rate uncertainty also plays a critical role for widening the hysteretic band. When

interest rates fall, firms make durable investments, that is to say that they switch from

cash (an immediate asset) to longer lived assets with cash flows further ahead in time.

When interest rates rise, they will stop undertaking any durable projects. Furthermore, if

flexibility exists they will also try and reverse the investment process, i.e. disinvest away

from projects with long lived cash flows into projects with more immediate payoffs.

In this paper we use the single-factor pure diffusion process of Ingersoll and Ross

(1992), thus assuming that there is no mean reversion. However, the empirical evidence

on interest rate behaviour seems to indicate that interest rates are pulled back to some

long-run mean value over time, which implies that for optimal investment decisions or

capital budgeting problems in a competitive environment under interest rate uncertainty

the assumption of no mean reversion of interest rates may not be adequate. Thus, a

natural extension of this work is to consider the mean reversion feature using the mean-

reverting square-root process of Cox et al. (1985b). In addition, it is important to point

out that the aggregate annual rate of replacement investment typically exceeds expansion

or new investments by a wide margin. Thus, it is also interesting to tackle the replacement

decision problem within a CIR economy. These two problems are left for future research.
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Appendix A: Analytical Comparative Statics Expres-

sions

We know that it is not possible to achieve closed-form solutions due to the high non-

linearity of the equations that define the thresholds. However, it is possible to obtain

some comparative statics for some parameters since the total differentials corresponding

to small changes in the parameters are linear. Thus, the purpose of this appendix is

to present such analytical comparative static expressions. It would be interesting to get

qualitative comparative statics for all parameters. However, some of them, such as σ and

λ (or even κ and θ for the mean-reverting case), produce effects on the value function V (r)

that are extremely complicated to analyze analytically since they enter in the quadratic

equation with roots a and b. As a result, we will restrict our comparative statics to I and

I.

We know that the general solution of the value function V (r) is as follows:

V (r) = C3e
ar − C2e

br + F (r) (A.1)

where F (r) represents the perpetuity value. The function is dependent of the state variable

r and the options coefficients C3 and C2. Therefore, throughout this appendix we will

write the value function as V (r, C3, C2). Now, the value matching conditions and the

smooth pasting conditions can be stated as follows:

V (r, C3, C2) = I , V (r, C3, C2) = I (A.2a)

Vr(r, C3, C2) = 0 , Vr(r, C3, C2) = 0 (A.2b)

To simplify the notation we will denote the partial derivatives of V by subscripts. In

addition, we will consider that Vi(L) = Vi(r, C3, C2) and Vi(U) = Vi(r, C3, C2) for i =

r, C3, C2 and where L and U stands for lower and upper, respectively.

Let us now suppose that the investment cost I changes by dI and let see how the

two thresholds and the two constants behave. In order to simplify the analytical expres-

sions we will not consider the relationship between I and I explicitly. We will start by

differentiating the value matching conditions (A.2a) totally:
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Vr(L) dr + VC3(L) dC3 + VC2(L) dC2 = dI (A.3a)

Vr(U) dr + VC3(U) dC3 + VC2(U) dC2 = 0 (A.3b)

From the smooth pasting conditions (A.2b) we know that Vr(L) dr and Vr(U) dr will

disappear from the above system since they are zero. In addition, it is quite easy to show

that VC3(L) = ear, VC2(L) = −ebr, VC3(U) = ear and VC2(U) = −ebr. Thus we can solve

explicitly dC2 and dC3 as:

dC2 = −ear dI/∆ (A.4a)

dC3 = −ebr dI/∆ (A.4b)

where ∆ = ear+br − ear+br > 0, since a > 1, b < 0 (i.e., a > 0 > b) and r > r.

Now differentiating the smooth pasting condition (A.2b) at r we get:

Vrr(L) dr + VrC3(L) dC3 + VrC2(L) dC2 = 0 (A.5)

Noting that VrC3(L) = aear, VrC2(L) = −bebr and making the appropriate substitutions

yields:

Vrr(L) dr =
[
aear+br − bear+br

]
dI/∆ (A.6)

We know that Vrr(L) < 0 because V (r) is concave at r and the term in brackets is positive.

Now it is easy to prove that dr < 0 when dI > 0. Thus, the lower trigger point falls as

the investment cost rises as we expected.

Similarly, differentiating the smooth pasting condition (A.2b) at r and following the

same steps as before we get:

Vrr(U) dr =
[
(a− b)e(a+b)r

]
dI/∆ (A.7)

Since V (r) is convex at r, Vrr(U) > 0. The term in brackets is also positive. As a result,

dr > 0 when dI > 0. This means that the upper trigger point rises with the investment

cost. This is economically intuitive if we consider that when the firm shuts down it will

not recoup any part of the investment cost made initially (i.e., α = 0) or if it has to pay a
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new lump-sum cost to abandon. In our case, we are interested in analyzing the problem

when the firm has the possibility to recoup a fraction of the investment cost. Thus, we

expect that as the disinvestment proceeds rises the abandonment threshold falls. It is

also possible to prove analytically our intuition as we will show below.

To do so, let us suppose that the disinvestment proceeds I changes by dI and let see

how the two thresholds and the two constants behave. Once again, we will differentiate

the value matching conditions (A.2a) totally:

Vr(L) dr + VC3(L) dC3 + VC2(L) dC2 = 0 (A.8a)

Vr(U) dr + VC3(U) dC3 + VC2(U) dC2 = dI (A.8b)

The explicit solutions for dC2 and dC3 are:

dC2 = ear dI/∆ (A.9a)

dC3 = ebr dI/∆ (A.9b)

Following the same procedure used before and differentiating the smooth pasting condition

(A.2b) at r we get:

Vrr(U) dr =
[
bear+br − aear+br

]
dI/∆ (A.10)

We know that Vrr(U) > 0 and the term in brackets is negative. Therefore, the upper

trigger point falls as the disinvestment proceeds rises as we intuitively expected, i.e.,

dr < 0 when dI > 0. It should be noted that the disinvestment proceeds can rise due to

a higher recouped fraction α or to a higher investment cost but maintaining a positive

α fixed. We are not considering the relationship between I and I explicitly in order to

simplify the comparative statics expressions of this appendix. However, since we know

that I = α I it is extremely easy to show the impact of rising α on the upper threshold.

To do so, we just need to use dα I instead of dI in equation (A.8b) and proceed as before.

It turns out that dr < 0 when dα > 0.

Similarly, differentiating the smooth pasting condition (A.2b) at r and following the

same steps we get:
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Vrr(L) dr =
[
(b− a)e(a+b)r

]
dI/∆ (A.11)

Vrr(L) < 0 and the term in brackets is negative. Therefore, dr > 0 when dI > 0. In this

case it is also easy to prove that dr > 0 when dα > 0.
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Table 1: Lower thresholds for the investment option case

under different levels of investment costs and interest rate

volatility. CIR parameters: κ = θ = λ = 0.

I = 10 I = 7.5

T σ = 0.03 σ = 0.0854 σ = 0.3 σ = 0.03 σ = 0.0854 σ = 0.3

500 0.0809 0.0194 −0.4470 0.1145 0.0642 −0.3450

1000 0.0809 0.0194 −0.4470 0.1145 0.0642 −0.3450

Table 2: Upper thresholds for the disinvestment option

case under different levels of disinvestment proceeds and

interest rate volatility and different ratios of the disin-

vestment proceeds to the investment costs. CIR param-

eters: κ = θ = λ = 0.

I = 10 I = 7.5

T α σ = 0.03 σ = 0.0854 σ = 0.3 σ = 0.03 σ = 0.0854 σ = 0.3

500 0.25 0.4225 0.5091 1.3648 0.5555 0.6138 1.4557

1000 0.4225 0.5286 1.4998 0.5555 0.6222 1.5871

500 0.50 0.2251 0.3818 1.1746 0.2900 0.4229 1.2499

1000 0.2260 0.4145 1.3148 0.2901 0.4520 1.3884

500 0.75 0.1659 0.3365 1.0739 0.2044 0.3675 1.1447

1000 0.1707 0.3723 1.2160 0.2062 0.4013 1.2856

500 1.00 0.1402 0.3095 1.0053 0.1659 0.3365 1.0739

1000 0.1479 0.3467 1.1484 0.1707 0.3723 1.2160
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Table 3: Upper and lower thresholds for the switching

option case under an investment cost of 10 for different

ratios of the disinvestment proceeds to the investment

costs and different interest rate volatilities. CIR param-

eters: κ = θ = λ = 0.

I = 10

σ = 0.03 σ = 0.0854 σ = 0.3

T α r r r r r r

500 0.25 0.0809 0.4225 0.0194 0.4725 −0.4467 0.5922

1000 0.0809 0.4225 0.0194 0.4725 −0.4467 0.5922

500 0.50 0.0810 0.2239 0.0199 0.2641 −0.4427 0.2217

1000 0.0810 0.2239 0.0199 0.2641 −0.4427 0.2217

500 0.75 0.0815 0.1556 0.0233 0.1717 −0.4273 0.0061

1000 0.0815 0.1556 0.0233 0.1717 −0.4273 0.0061

500 1.00 0.0991 0.0991 0.0671 0.0671 −0.2872 −0.2872

1000 0.0991 0.0991 0.0671 0.0671 −0.2872 −0.2872
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Table 4: Upper and lower thresholds for the switching

option case under an investment cost of 7.5 for different

ratios of the disinvestment proceeds to the investment

costs and different interest rate volatilities. CIR param-

eters: κ = θ = λ = 0.

I = 7.5

σ = 0.03 σ = 0.0854 σ = 0.3

T α r r r r r r

500 0.25 0.1145 0.5555 0.0642 0.6029 −0.3447 0.7614

1000 0.1145 0.5555 0.0642 0.6029 −0.3447 0.7614

500 0.50 0.1145 0.2899 0.0645 0.3355 −0.3412 0.3497

1000 0.1145 0.2899 0.0645 0.3355 −0.3412 0.3497

500 0.75 0.1148 0.2005 0.0676 0.2271 −0.3262 0.1200

1000 0.1148 0.2005 0.0676 0.2271 −0.3262 0.1200

500 1.00 0.1331 0.1331 0.1127 0.1127 −0.1838 −0.1838

1000 0.1331 0.1331 0.1127 0.1127 −0.1838 −0.1838
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Figure 1: Determination of the numerical upper and lower thresholds. CIR parameters:

κ = θ = λ = 0 and σ = 0.0854. I = 10 and α = 0.50.
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Figure 2: Entry and exit thresholds as functions of interest rate volatility. CIR parameters:

κ = θ = λ = 0. I = 10 and α = 0.50.
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