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Smooth pasting as rate of return equalization

Mark B. Shackleton∗& Sigbjørn Sødal†

18 April 2005

Abstract

We further elucidate the smooth pasting condition behind optimal
early exercise of options. It is easy to show that smooth pasting implies
rate of return equalization between the option and the levered position
that results from exercise. This yields new economic insights into the
optimal early exercise condition that the option holder faces.

Key Words: Smooth pasting, rates of return, option elasticity, real
option.
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1 Introduction

The smooth pasting (or high–contact) condition associated with option and
real options decisions has generated considerable interest because of the
optimality of early exercise. It is well known that smooth pasting is a
first–order condition for optimum; proposed by Samuelson (1965), proven
by Merton (1973), discussed by Dumas (1991) and several others. Brekke
and Øksendal (1991) also show that the condition is sufficient under weak
constraints. Nonetheless, smooth pasting remains somewhat mysterious to
both economists and practitioners and it is apparently not very useful for
many except theorists. The popular real options introduction by Dixit and
Pindyck (1994) saves the discussion of smooth pasting for a quite technical
appendix, and no simple rules of thumb seem to exist for practitioners.

Dixit et al. (1999) bridged some of the gap between theory and prac-
tice using an analogy between optimal exercise of investment options of the

∗Corresponding author. Department of Accounting and Finance, Lancaster University
Management School, LA1 4YX, UK. +44(0)1524 594131 m.shackleton@lancaster.ac.uk.

†Agder University College, School of Management, Service Box 422, N-4604 Kris-
tiansand, NORWAY. +47 38141522 sigbjorn.sodal@hia.no.

1



McDonald and Siegel (1986) type and application of standard market power
models. Optimal investment can be characterized by an elasticity–based
premium, analogous to the markup price chosen by a profit–maximizing
monopolist.

We provide another, more intuitive and natural, explanation of the phe-
nomenon; that of rate of return equalization between the option and its
levered payoff. This allows a larger audience to appreciate and implement
smooth pasting techniques in a wider variety of situations. We also relate
results to the elasticity–based rules introduced by Dixit et al. (1999) and
Sødal (1998). The results are illustrated here using geometric Brownian
motion but are also valid for other diffusions.

2 Rates of return

Geometric Brownian diffusions can be written in the Risk Neutral Q or Real
World P, having drift r − δ or µ − δ respectively (r, δ, µ, σ represent the
continuous risk free, dividend, project return and volatility rates)

dS

S
= (r − δ) dt + σdWQ (1a)

dS

S
= (µ− δ) dt + σdWP . (1b)

Local changes dC in the call price C (puts can also be analyzed) are given
by the Ito expansion, furthermore no arbitrage requires that Risk Neutral
expectations EQ [dC] of these changes must be risk free (or the hedged
position yields the risk free rate)

dC =
∂C

∂S
dS +

1
2

∂2C

∂S2
(dS)2 +

∂C

∂t
dt (2)

EQ [dC] =
∂C

∂S
S (r − δ) dt +

1
2
σ2S2 ∂2C

∂S2
dt +

∂C

∂t
dt = rCdt. (3)

However, Real World returns depend on the premium µ− r through the ex-
pectation operator EP [dC] , which itself can be simplified using the previous
Risk Neutral condition

EP [dC] =
∂C

∂S
S (µ− δ) dt +

1
2
σ2S2 ∂2C

∂S2
dt +

∂C

∂t
dt (4)

=
∂C

∂S
S (µ− r) dt + rCdt.
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Thus, the well known local expected rate of return of the call option is given
by

rC =
1
dt

EP [dC]
C

= r + εC (µ− r) > µ (5)

(see Merton (1973)), where the elasticity εC = ∂C
∂S

S
C is interpreted as the

relative beta.

3 Smooth pasting

The rate of return can be investigated at the point of optimal early call
exercise S (where S > X, the exercise price). The two conditions necessary
for this are value matching (payoff compensates for option termination) and
smooth pasting (slope equality between option and payoff functions)

C
(
S

)
= S −X (6a)

∂C

∂S

∣∣∣∣
S=S

= 1. (6b)

Thus at the critical exercise boundary S = S the call return rC is

rC

(
S

)
= r +

S

C
(
S

) (µ− r) =
µS − rX

S −X
= rPO (7)

which is also rPO, the return rate of the levered payoff S −X (as a fraction
of the payoff value PO itself).

At early exercise, not only do the option and payoff functions have the
same value, but smooth pasting implies that expected rates of return on
both positions are the same.

Risk neutral returns are not useful for determining early exercise since
they are always equal (to r). Furthermore, any subjective estimate of the
future risk premia, µ̂ (> r) , affects both return equations equally; overesti-
mating or underestimating µ̂ has the same effect on subjective returns r̂C

and r̂PO at S. This means that every investor will exercise early when their
estimated rates of return on the option and the levered payoff are the same,
no matter what their belief µ̂

r̂C − r =
∂C

∂S

∣∣∣∣
S=S

S

C
(
S

) (µ̂− r) =
S

S −X
(µ̂− r) = r̂PO − r. (8)
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The analysis works equally well for puts (P (S) evaluated at a lower thresh-
old) whose expected return can be negative

rP (S) = r − S

P (S)
(µ− r) =

rX − µS

X − S
≷ 0. (9)

4 Relationship to other approaches

The result that the return on the option equates the return on the net
payoff is closely related to other findings on smooth pasting. Dixit et al.
(1999) argues that the optimal exercise of a perpetual call option consists
of maximizing the expected net present value

C = max
S

D(S, S)(S −X) (10)

D(S, S) = EP
[
e−ρT

]
= EQ

[
e−rT

]
(11)

where T is the (random) first–hitting time from the current value of the
project, S, up to the value S at which the option is exercised. The objective
is to maximize the expected, discounted value of the net pay–off S − X,
where D(S, S), EP

[
e−ρT

]
or equivalently EQ

[
e−rT

]
(depending on which

approach is applied, (1a) or (1b)) represent expected discount factors that
do not explicitly depend on time. Shackleton and Wojakowski (2002) use
expected stopping times to show that perpetual calls have constant rates
of return and that discounted expectations can be taken in either the Risk
Neutral or Real World.

For perpetual call options, the discount rate ρ (or option return rC) is
constant and consistent with prior analysis

ρ = r + (µ− r) εC (∞) = rC (12)

εC (∞) =
1
2
− (r − δ)

σ2
+

√(
(r − δ)

σ2
− 1

2

)2

+
2r

σ2
> 1. (13)

Here the elasticity of the perpetual option is labelled εC (∞) (section 5
details an analytic approximation to the finite case εC (T )). Maximizing C
with respect to S, optimal exercise is easily found through

S

S −X
= εD (∞) = − S

D

∂D

∂S
(14)

where εD (∞) is the magnitude of the elasticity of the discount factor with
respect to S, evaluated at the optimal exercise point S. The expected value
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of the project relative to the net payoff equals C/(S−X) = D(S, S), so the
relationship to the discount factor elasticity, εD (∞) (> 1), is imminent; the
elasticity of D(S, S) measures the relative change in the net payoff following
a marginal change in S. This is a measure of returns, but measured per unit
of S instead of time.

Using value matching (6a) and smooth pasting (6b) as well as (14), at
exercise, the discount factor elasticity coincides with the option elasticity
itself, (∂C/∂S)/(C/S)

εC (∞) =
(

∂C

∂S

)

S=S

S

C
= 1 · S

S −X
= εD (∞) . (15)

Thus the elasticity εD (∞) measures the return on the project relative
to the net option payoff, just as εC (∞), measures the return on the option
itself. Where Dixit et al. (1999) represents an approach to optimal exercise
of options that does not hinge on smooth pasting, Sødal (1998) also uses
the discount factor methodology, but for deriving value matching (6a) and
smooth pasting (6b) by direct optimization. Both references point out the
equivalence of the elasticities, but not the useful interpretation as measures
of return, which has motivated the writing of this note.

5 Dividend yields and an analytic approximation

The dividend yield δ is important since when zero, American calls become
zero dividend Black Scholes calls; early exercise, smooth pasting and rate
of return equalization are all ruled out (r is key for the put). Without an
opportunity cost of waiting, early exercise never occurs. Thus it is important
to understand the yield, δ in determining option returns, since without it
equalization is impossible.

The fractional amounts of stock and borrowing required in the replicat-
ing portfolio are often labelled ∆, κ (both positive functions of δ and S, T
dynamically)

C = ∆S − κX (16)

∆ =
∂C

∂S
=

C

S
εC κ = − ∂C

∂X
> 0. (17)

Although δ affects the respective stock and bond elasticities and also the cash
yield/capital gain balance, it does not directly affect the option rate of total
return. This is because when expected gains and flows are summed, δ cancels
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out of the total return (note also that replication requires simplification of
the Ito expansion of dC as a function of ∆, κ)

1
dt

EP [dC] = (µ− δ)∆S + δ∆S − rκX = µ∆S − rκX. (18)

If hedge ratios are homogenous functions in S/X (∆ (S/X) , −κ (S/X)),
smooth pasting also implies κ

(
S/X

)
= 1 so that the values and returns of

the hedge portfolio and the payoff converge irrespective of δ.
If early exercise and smooth pasting become impossible as δ → 0, it is

because the ∆ and elasticities are prevented from equalizing, not because of
a cashflow argument based on δ.

The effective role of the dividend yield δ on elasticities (εC), hedges (∆)
and early exercise can be illustrated through the analytic approximation of
Barone–Adesi, Whaley (1987) and MacMillan (1986) (hereafter BAWM).
By decomposing the premium of an American option over its corresponding
(dividend bearing) Black Scholes (1973) value into multiplicative functions
(j (T ) of time T and k

(
S, 1− e−rT

)
of price S and time T ) an approximate

form is obtained

C ≈ Se−δT N (d1 (S))−Xe−rT N (d2 (S)) (19)

+
(
1− e−δT N

(
d1

(
S (T )

))) S (T )
εC (T )

(
S

S (T )

)εC(T )

where the special, maturity dependent, elasticity parameter εC (T ) (which
increases in δ and is greater than εC (∞)) is defined by

εC (T ) =
1
2
− (r − δ)

σ2
+

√(
(r − δ)

σ2
− 1

2

)2

+
2r

(1− e−rT ) σ2
> εC (∞) .

(20)

The maturity dependent critical stock price S (T ) solves a value matching
condition, which implies a modified form of the critical threshold in the
perpetual case above

S (T )
X

=
1− e−rT N

(
d2

(
S (T )

))

1− e−δT N
(
d1

(
S (T )

)) εC (T )
εC (T )− 1

. (21)

If the dividend yield increases, exercise will be earlier and less waiting will
occur. The American option price itself is sensitive to δ (it decreases toward
immediate payoff max (S −X, 0) as δ increases, i.e. for S > X there is a
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critical δ∗ that triggers early exercise) but that opportunity cost of waiting
is partially offset by the early exercise feature (the lowering of S (T ) with
δ).

Under this approximation, the ∆ (and related elasticity εC) of the Amer-
ican option is given by the sum of ∆′s from the Black Scholes and early ex-
ercise premium. Even though BAWM is only an approximation, its analytic
form smooth pastes at S (T )

∂C

∂S
≈ e−δT N (d1 (S)) +

(
1− e−δT N

(
d1

(
S (T )

)))(
S

S (T )

)εC(T )−1

(22)

∂C

∂S

∣∣∣∣
S=S(T )

≈ 1.

Now as δ increases, the Black Scholes ∆ (and elasticity in 22) decreases (both
because of the exponent e−δT and the negative effect of δ on d1). However,
the early exercise premium’s ∆ increases because of the exponent e−δT , d1

term decrease and the critical threshold S (T ) decreasing with increasing δ
(even though εC (T ) increases), rendering the “discount factor” dependence
on S, greater. This is why (unlike Black Scholes) the American option ∆
can reach unity. The effect of an increased dividend rate δ makes the ∆ of
the European element smaller but that of the early exercise element larger.

In summary, it is the early exercise premium that mitigates the oppor-
tunity cost of waiting and the same is true for the returns. It is the return
on the early exercise premium that forces rate of return equalization as the
underlying dividend yield increases.

6 Intuition and implications

The results above have economic implications and intuition, particularly
for real option situations where it is difficult to evaluate the option value
function explicitly. Optimal early exercise of real options is driven by two
conditions; no loss (gain) of value on exercise and rate of return equalization.

This provides a second, more intuitive, condition to managers other than
smooth pasting, which may be difficult to evaluate for some pricing prob-
lems. Do managers think that the rate of return on the project launch
(call) has fallen to the same level as its underlying (levered) project? When
complex modelling is not possible, managers may be able to assess this new
condition heuristically.

If returns are near equalization (and the values of option and project
are also close), they should exercise because this is equivalent to smooth
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pasting (and value matching). This raises the possibility that a market par-
ticipant without a pricing model could determine his early exercise strategy
empirically from the returns and pricing he experiences.

Thus, even if the value function and its derivative are theoretically un-
known, empirical rates of return should be useful in determining the prox-
imity of early exercise.
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