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Abstract

In this paper we first derive Nth order stochastic dominance option

bounds from concurrently expiring options. We show that these bound-

s are given by pricing kernels that have piecewise constant (N − 2)th

derivatives. When these option bounds are violated there are Nth or-

der arbitrage opportunities interpreted as (weighted average) conditional

expected return comparison. We then establish a way to explore these

arbitrage opportunities in option markets.

Keywords: Option bounds, Option pricing, Stochastic Dominance.
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Introduction

It has been recognized that meaningful option bounds can be obtained under

less strong assumptions than exact option prices. Perrakis and Ryan (1984),

Ritchken (1985), and Levy (1985) derive option bounds under the assumption of

risk aversion or second order stochastic dominance.1 Ritchken and Kuo (1989)

derive option bounds under the assumption of higher order stochastic domi-

nance rules. Basso and Pianca (1997) and Mathur and Ritchken (2000) obtain

option pricing bounds by assuming decreasing absolute (relative) risk aversion

(hereafter DARA (DRRA)).

Ryan (2003) tightens the second order stochastic dominance option bound-

s by using the observed price of one concurrently expiring option at a time.

Huang (2004b) uses a new methodology to further improve second stochastic

dominance option bounds and discusses the second order arbitrage opportu-

nities in the markets of concurrently expiring options. The methodology is

presented by Huang (2004a) which takes the advantage of options’s distinctive

features. Using the same methodology, Huang (2004c) improves the DARA and

DRRA bounds by using the observed prices of concurrently expiring options.

Huang (2004d) derives option bounds from concurrently expiring options when

the pricing representative investor’s relative risk aversion is bounded.
1We use SSD, TSD, and NSD to denote the second, third, and Nth order stochastic

dominance.
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In this paper we tighten the Nth (N ≥ 3) stochastic dominance (hereafter

NSD) option bounds by using the observed prices of concurrently expiring op-

tions. We show that given the prices of a unit bond, underlying stock, and n

option prices, the kth order stochastic dominance option bounds are given by

a pricing kernel whose (N − 2)th derivative is (n/2)-segmented and piecewise

constant if n is even or ((n + 1)/2)-segmented and piecewise constant if n is

odd.

When the Nth stochastic dominance option bounds are violated then there

are Nth order arbitrage opportunities. An Nth order arbitrage opportunity

can be similarly understood to the second order arbitrage opportunity, which

is interpreted by Ryan (2003) as (conditional) expected return comparison.2

An Nth order arbitrage opportunity can be interpreted as a weighted average

conditional expected return comparison but the conditional expectation has to

be taken average N−2 times with less weights on lower stock prices. We present

the Nth order arbitrage portfolios which can be used to make profits when the

NSD option bounds are violated.

This paper is also related to the important works by Cochrane and Saa-

Requejo (2000) and Bernardo and Ledoit (2000). Cochrane and Saa-Requejo

derive option bounds using restrictions on the volatility of the pricing kernel,

while Bernardo and Ledoit derive option pricing bounds using restrictions on

the deviation of the pricing kernel from a benchmark pricing kernel.

Other related works include Lo (1987), Grundy (1991), and Constantinides

2See Huang (2004b).
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and Zariphopoulou (1999, 2001) who all derive option bounds under different

conditions.

The structure of the remaining paper is as follows: In Section 1 we derive

option bounds from concurrently expiring options when the third order stochas-

tic dominance rule applies. In Section 2 we generalize the results in Section 1

to the case where the Nth (N ≥ 3) order stochastic dominance rule applies. In

Section 3 we present the arbitrage portfolios. The final section concludes the

paper.

1 TSD Option Bounds

In this section we derive option bounds from concurrently expiring options

assuming third order stochastic dominance. According to Ritchken and Kuo

(1989), applying third order stochastic dominance we have a pricing kernel that

is decreasing and convex in the underlying stock price.

1.1 Option Bound Problem and Its Dual

Given the prices of a unit bond, a stock and some European options written on

the stock with the same maturity, we want to know the bounds on the price of

another option which has the same maturity when Nth (N ≥ 3) order stochastic

dominance rule applies. That is,

max (or min) E(cX (ST )φ(ST ))B0
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subject to

φ(x) ≥ 0; φ′(x) ≤ 0; φ′(x) is increasing in x.

E(φ(ST ) = 1

E(ST φ(ST ))B0 = S0

E(ci(ST )φ(ST ))B0 = ci0, i = 1, ..., n.

The dual problem is3

min (or max) α1B0 + α2S0 +
n∑

i=1

αic
i
0

subject to

∫ s

0
E(α1 + α2x +

∑n
i=1 αici(x)|x < x0)Pr(x < x0)dx0∫ ST

0
Pr(x < x0)dx0

≥ (≤)

∫ ST

0
E(cX (x)|x < x0)Pr(x < x0)dx0∫ ST

0 Pr(x < x0)dx0

, for all s. (1)

The above dual problem suggests a third order arbitrage opportunity if the

option bound is violated. Suppose, for example, the upper bound is violated.

Then by selling the over priced option cX and buying the arbitrage portfolio

L = (α1, ..., αn+2), we make a profit (cX
0 − L0 > 0) at time 0. Now consider

the net payoff (L(St)−CX
0 (St)) at the maturity of the option. The conditional

expectation of the net payoff of our position

∫ s

0 E(L(St) − CX
0 (St)|St < x0)Pr(St < x0)dx0∫ ST

0 Pr(St < x0)dx0

will be non-negative for every s.
3The proof of the duality can be given by using the Ritchken and Kuo’s (1989) results in

the discrete case. For brevity, it is omitted.
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To understand third order arbitrage opportfunities we first analyze the above

expression. Note is the expected net payoff under the condition that the stock

price will be lower than x0. In the case of second order arbitrage opportuni-

ty, this conditional expectation of the net payoff will be always non-negative.4

However, in the case of the third order arbitrage opportunity, this is not guaran-

teed to be non-negative; only a weighted average of this conditional expectation

is guaranteed to be non-negative. Since for E(L(St) − CX
0 (St)|St < x0), the

weight is Pr(St < x0), the lower x0, the less weight the conditional expectation

carries. Hence the comparison of these weighted average conditional expecta-

tions is weaker the comparison of the conditional expectations. Thus the third

order arbitrage opportunities are weaker than the second order arbitrage oppor-

tunities.

To solve the above option bound problem, we first solve a similar but more

general problem in which we assume that not only the third order stochastic

dominance rule applies but also the absolute value of the pricing kernel’s first

derivative is bounded from above.

We will show in this paper that under this condition, the option bounds are

given by a pricing kernel that has piecewise constant first derivative, where the

number of segments of the risk aversion depends on the number of observed

option prices.

Moreover, we will see that for an even number of observed option prices the

pricing kernel that gives the option bounds has a certain pattern while for an
4See Ryan (2003) or Huang (2004b).
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odd number of observed option prices the pricing kernel that gives the option

bounds has a different pattern. Thus in order to explain the solutions more

clearly we start with the case where we have only one observed option price

then continue with the case where we have two observed options. Building

on the above two cases we explore the general case where we have n observed

options.

1.2 The Case with One Observed Option

In this subsection we deal with the case where we observe the price of one

concurrently expiring option. Before we proceed, we introduce two lemmas.

Lemma 1 (FSS (1999)) Assume two pricing kernels give the same stock price.

If they intersect twice, then the pricing kernel with fatter tails gives higher prices

of convex-payoff contingent claims writhen on the stock.

Proof: See the proof of Theorem 1 in FSS (1999).

Lemma 2 Assume two pricing kernels give the same prices of the underlying

stock and an option with strike price K. If they intersect three times, then the

pricing kernel with fatter left tail will give higher [lower] prices for all options

with strike prices below [above] K than the other.

Proof: See Huang (2004a).

We now derive the option bounds under the assumption that the third order

stochastic dominance rule applies and the absolute value of the pricing kernel’s
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first derivative is bounded from above.

Lemma 3 Assume the pricing kernel is decreasing and convex in St and its

first derivative is bounded below by −δ. Assume the current price of a unit bond

is B0, the current price of the underlying stock is S0 and the current price of

an option with strike price K is cK0.

• Then the upper bound for an option with strike price below K is given

by a pricing kernel, φ∗∗
1 (x), which has a three-segmented and piecewise

constant first derivative. More precisely its first derivative is equal to −δ

for x < s∗∗1 , −δ∗∗ for x ∈ (s∗∗1 , s∗∗2 ), and zero for x > s∗∗2 . That is,

φ∗∗
1 (x) =

δ∗∗(s∗∗2 − s∗∗1 ) + δ(s∗∗1 − x), x < s∗∗1

δ∗∗(s∗∗2 − x), x ∈ (s∗∗1 , s∗∗2 )

0, x ≥ s∗∗2 ,

where s∗∗1 , s∗∗, and δ∗∗ are to be decided such that E(φ∗∗
1 (St)) = 1,

E(Stφ
∗∗
1 (St))/B0 = S0, and E(cK(St)φ∗∗

1 (St))/B0 = cK0.

• The lower bound for an option with strike price below K is given by a

pricing kernel, φ∗
0(x), which has a two-segmented and piecewise constant

first derivative. More precisely its first derivative is equal to −δ∗ for x <

s∗, and zero for x > s∗, and its value is zero at its right tail. That is,

φ∗
1(x) = {

b + δ∗(s∗ − x), x < s∗

b, x ≥ s∗,

where b, δ∗, and s∗ are to be decided such that E(φ∗
1(St)) = 1, E(Stφ

∗
0(St))/B0 =

S0, and E(cK(St)φ∗
1(St))/B0 = cK0.
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• The upper (lower) bound for an option with strike price above K is given

by pricing kernel φ∗
0(x) (φ∗∗

0 (x)).

Proof: From Lemma 2 we need only prove that the true pricing kernel intersects

the pricing kernels that give the option bounds exactly three times and then

examine which one has a fatter left tail.

We first examine φ∗∗
1 . Note it has a three-segmented and piecewise constant

first derivative. More precisely its first derivative is equal to −δ for x < s∗∗1 ,

−δ∗∗ for x ∈ (s∗∗1 , s∗∗2 ), and zero for x > s∗∗2 , and its value is zero at its right

tail. Obviously we must have 0 < δ∗∗ < δ. Otherwise the true pricing kernel

will intersect φ∗∗
1 at most twice. In this case, applying Lemma 1, we find that

the two pricing kernels cannot give the same observed option price. From this,

we can immediately conclude that the true pricing kernel intersects φ∗∗
1 exactly

three times. It is not difficult to verify that φ∗∗
1 has fatter left tail. For φ∗

1 the

proof is similar. Q.E.D.

Proposition 1 Assume the pricing kernel is decreasing and convex in St. As-

sume the current price of a unit bond is B0, the current price of the underlying

stock is S0 and the current price of an option with strike price K is cK0.

• Then the upper bound for an option with strike price below K is given by

the pricing kernel ϕ∗∗
1 (St) = a0

δ(St)
p(St)

+ f∗∗
1 (St), where p(St) is the true

probability density function and δ(St) is the Dirac function and

f∗∗
1 (St) = {

δ∗∗(s∗∗ − x), x < s∗∗

0, x ≥ s∗∗,
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where a0, s∗∗, and δ∗∗ are to be decided such that E(ϕ∗∗
1 (St)) = 1, E(Stϕ

∗∗
1

(St))/B0 = S0, and E(cK(St)ϕ∗∗
1 (St))/B0 = cK0.

• The lower bound for an option with strike price below K is given by the

pricing kernel ϕ∗
1(x) = φ∗

1(x).

• The upper (lower) bound for an option with strike price above K is given

by pricing kernel φ∗
0(x) (φ∗∗

0 (x)).

Proof: Let δ → +∞; we immediately obtain the result from Lemma 8.

1.3 The Case with Two Observed Options

In this subsection we deal with the case where we have two observed concurrently

expiring options. We first introduce a lemma.

Lemma 4 Assume two pricing kernels give the same prices of the underlying

stock and two options with strike prices K1 and K2, where K1 < K2. If they

intersect four times, then the pricing kernel with fatter left tail will give higher

(lower) prices for options with strike prices outside (inside) (K1, K2).

Proof: See Huang (2004a).

We now derive the option bounds under the assumption that the third order

stochastic dominance rule applies and the absolute value of the pricing kernel’s

first derivative is bounded from above.

Lemma 5 Assume the pricing kernel is decreasing and convex in St and its

first derivative is bounded below by −δ. Assume the current price of a unit bond
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is B0, the current price of the underlying stock is S0, and the current prices of

two options with strike prices K1 and K2 are c10 and c20 respectively.

• Then the upper bound for an option with a strike price below K1 or above

K2 is given by a pricing kernel, φ∗∗
2 (x), which has a three-segmented and

piecewise constant first derivative. More precisely its first derivative is

equal to −δ for x < s∗∗1 , −δ∗∗ for x ∈ (s∗∗1 , s∗∗2 ), and zero for x > s∗∗2 , and

its value is a positive constant b at its right tail. That is,

φ∗∗
2 (x) = {

b + δ∗∗(s∗∗2 − s∗∗1 ) + δ(s∗∗1 − x), x < s∗∗1

b + δ∗∗(s∗∗2 − x), x ∈ (s∗∗1 , s∗∗2 )

b, x ≥ s∗∗2 ,

where b, s∗∗1 , s∗∗2 , and δ∗∗ are to be decided such that E(φ∗∗
1 (St)) = 1,

E(Stφ
∗∗
1 (St))/B0 = S0, and E(ci(St)φ∗∗

1 (St))/B0 = ci0, i = 1, 2.

• The lower bound for an option with a strike price below K1 or above K2 is

given by a pricing kernel,φ∗
2(x), which has a three-segmented and piecewise

constant first derivative. More precisely its first derivative is equal to −δ∗1

for x < s∗1, −δ∗2 for x ∈ (s∗1, s
∗
2), and zero for x > s∗2. That is,

φ∗
2(x) = {

δ∗1(s∗2 − s∗1) + δ∗2(s∗1 − x), x < s∗1

δ∗1(s∗2 − x), x ∈ (s∗1, s
∗
2)

0, x ≥ s∗2,

where s∗1, s∗2, δ∗1 , and δ∗2 are to be decided such that E(φ∗
1(St)) = 1,

E(Stφ
∗
1(St))/B0 = S0, and E(ci(St)φ∗

1(St))/B0 = ci0, i = 1, 2.

Proof: From Lemma 4 we need only prove that the true pricing kernel intersects

the pricing kernels that give the option bounds exactly four times and then
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examine which one has a fatter left tail.

We first examine φ∗∗
2 . Note it has a three-segmented and piecewise constant

first derivative. More precisely its first derivative is equal to −δ for x < s∗∗1 ,

−δ∗∗ for x ∈ (s∗∗1 , s∗∗2 ), and zero for x > s∗∗2 , and its value is a positive constant

b at its right tail.

Obviously we must have 0 < δ∗∗ < δ and b > infx φ(x), where φ(x) is the

true pricing kernel. Otherwise the true pricing kernel will intersect φ∗∗
2 at most

three times. In this case, applying Lemma 2, we find that the two pricing kernels

cannot give the same two observed option prices. From this, we can immediately

conclude that the true pricing kernel intersects φ∗∗
2 exactly four times. It is not

difficult to verify that φ∗∗
2 has fatter left tail. For φ∗

2 the proof is similar. Q.E.D.

Proposition 2 Assume the pricing kernel is decreasing and convex in St. As-

sume the current price of a unit bond is B0, the current price of the underlying

stock is S0, and the current prices of two options with strike prices K1 and K2

are c10 and c20 respectively.

• Then the upper bound for an option with a strike price below K1 or above

K2 is given by the pricing kernel ϕ∗∗
2 (St) = a0

δ(St)
p(St)

+f∗∗
2 (St), where p(St)

is the true probability density function and δ(St) is the Dirac function and

f∗∗
2 (St) = {

b + δ∗∗(s∗∗ − x), x < s∗∗

b, x ≥ s∗∗,

where a0, b, s∗∗, and δ∗∗ are to be decided such that E(ϕ∗∗
2 (St)) = 1,

E(Stϕ
∗∗
2 (St))/B0 = S0, and E(ci(St)ϕ∗∗

2 (St))/B0 = ci0, i = 1, 2.
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• The lower bound for an option with a strike price below K1 or above K2

is given by the pricing kernel ϕ∗
2(x) = φ∗

2(x).

Proof: Let δ → +∞; we immediately obtain the result from Lemma 9.

1.4 The General Case

In this subsection we deal with the case where we have n observed concurrently

expiring options. We first introduce a lemma.

Lemma 6 Assume two pricing kernels give the same prices of the underlying

stock and options with strike prices K1, K2, ..., Kn, where K1 < K2 < ... < Kn.

Let K0 = 0 and Kn+1 = +∞. If the two pricing kernels intersect n + 2 times

then the one with fatter left tail will give higher (lower) prices for all options

with strike prices between (K2i−2, K2i−1) ((K2i−1, K2i)), i = 1, 2, ....

Proof: See Huang (2004a).

We now derive the option bounds under the assumption that the third order

stochastic dominance rule applies and the absolute value of the pricing kernel’s

first derivative is bounded from above.

Lemma 7 Assume the pricing kernel is decreasing and convex in St and its

first derivative is bounded below by −δ. Assume the current price of a unit bond

is B0, the current price of the underlying stock is S0, and the current prices of

n options with strike prices K1, ..., and Kn are c10, ..., and cn0 respectively.

Let K0 = 0 and Kn+1 = +∞.

• Assume n is odd. Let m = (n + 1)/2.
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– Then the upper bound for options with strike prices between (K2i−2,

K2i−1), i = 1, 2, ..., is given by a pricing kernel, φ∗∗
n (x), which has

a (m+2)-segmented and piecewise constant first derivative. More

precisely its first derivative is equal to −δ for x < s∗∗1 , −δ∗∗1 for

x ∈ (s∗∗1 , s∗∗2 ), ..., −δ∗∗m for x ∈ (s∗∗m , s∗∗m+1), and zero for x > s∗∗m+1.

That is, φ∗∗
n (x) =

δ∗∗m (s∗∗m+1 − s∗∗m ) + ... + δ∗∗1 (s∗∗2 − s∗∗1 ) + δ(s∗∗1 − x), x < s∗∗1

......

δ∗∗m (s∗∗m+1 − x), x ∈ (s∗∗m , s∗∗m+1)

0, x ≥ s∗∗m+1,

where s∗∗1 , ..., s∗∗m+1, δ∗∗1 , ..., and δ∗∗m are to be decided such that

E(φ∗∗
n (St)) = 1, E(Stφ

∗∗
n (St))/B0 = S0, and E(ci(St)φ∗∗

n (St))/B0 =

ci0, i = 1, 2, ..., n.

– The lower bound for options with strike prices between (K2i−2, K2i−1),

i = 1, 2, ..., is given by a pricing kernel φ∗
n(x), which has a (m+1)-

segmented and piecewise constant first derivative. More precisely

its first derivative is equal to −δ∗1 for x < s∗1, ..., −δ∗m for x ∈

(s∗m−1, s
∗
m), and zero for x > s∗m. That is, φ∗

n(x) =

b + δ∗m(s∗m − s∗m−1) + ... + δ∗2(s∗2 − s∗1) + δ∗1(s∗1 − x), x < s∗1

......

b + δ∗m(s∗m − x), x ∈ (s∗m−1, s
∗
m)

b, x ≥ s∗m,

where b, s∗1, ..., s∗m, δ∗1 , ..., and δ∗m are to be decided such that
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E(φ∗
n(St)) = 1, E(Stφ

∗
n(St))/B0 = S0, and E(ci(St)φ∗

n(St))/B0 =

ci0, i = 1, 2, ..., n.

• Assume n is even. Let m = n/2.

– Then the upper bound for options with strike prices between (K2i−2,

K2i−1), i = 1, 2, ..., is given by a pricing kernel, φ∗∗
n (x), which has

a (m+2)-segmented and piecewise constant first derivative. More

precisely its first derivative is equal to −δ for x < s∗∗1 , −δ∗∗1 for

x ∈ (s∗∗1 , s∗∗2 ), ..., −δ∗∗m for x ∈ (s∗∗m , s∗∗m+1), and zero for x > s∗∗m+1,

and its value at its right tail is a positive constant b. That is, φ∗∗
n (x) =

b + δ∗∗m (s∗∗m+1 − s∗∗m ) + ... + δ∗∗1 (s∗∗2 − s∗∗1 ) + δ(s∗∗1 − x), x < s∗∗1

......

b + δ∗∗m (s∗∗m+1 − x), x ∈ (s∗∗m , s∗∗m+1)

b, x ≥ s∗∗m+1,

where b, s∗∗1 , ..., s∗∗m+1, δ∗∗1 , ..., and δ∗∗m are to be decided such that

E(φ∗∗
n (St)) = 1, E(Stφ

∗∗
n (St))/B0 = S0, and E(ci(St)φ∗∗

n (St))/B0 =

ci0, i = 1, 2, ..., n.

– The lower bound for options with strike prices between (K2i−2, K2i−1),

i = 1, 2, ..., is given by a pricing kernel, φ∗
n(x), which has a (m+2)-

segmented and piecewise constant first derivative. More precisely it-

s first derivative is equal to −δ∗1 for x < s∗1, ..., −δ∗m+1 for x ∈
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(s∗m, s∗m+1), and zero for x > s∗m+1. That is, φ∗
n(x) =

δ∗m+1(s
∗
m+1 − s∗m) + ... + δ∗2(s∗2 − s∗1) + δ∗1(s∗1 − x), x < s∗1

......

δ∗m+1(s
∗
m+1 − x), x ∈ (s∗m−1, s

∗
m)

0, x ≥ s∗m+1,

where s∗1, ..., s∗m+1, δ∗1 , ..., and δ∗m+1 are to be decided such that

E(φ∗
n(St)) = 1, E(Stφ

∗
n(St))/B0 = S0, and E(ci(St)φ∗

n(St))/B0 =

ci0, i = 1, 2, ..., n.

Proof: From Lemma 6 we need only prove that the true pricing kernel intersects

the pricing kernels that give the option bounds exactly (n + 2) times and then

examine which one has a fatter left tail.

We first examine φ∗∗
n . Assume n is odd. Note it has a (m+2)-segmented

and piecewise constant first derivative, where m = (n + 1)/2. More precisely,

its first derivative is equal to −δ for x < s∗∗1 , −δ∗∗1 for x ∈ (s∗∗1 , s∗∗2 ), ..., −δ∗∗m

for x ∈ (s∗∗m , s∗∗m+1), and zero for x > s∗∗m+1, and its value at its right tail is 0.

Obviously we must have δ > δ∗∗1 > ...δ∗∗m > 0 and b > infx φ(x), where

φ(x) is the true pricing kernel. Otherwise the true pricing kernel will intersect

φ∗∗
n at most n + 1 times. In this case, applying Lemma 6, we find that the

two pricing kernels cannot give the same n observed option prices. From this,

we can immediately conclude that the true pricing kernel intersects φ∗∗
n exactly

n + 2 times. It is not difficult to verify that φ∗∗
n has fatter left tail.

Assume n is even. Note it has a (m+2)-segmented and piecewise constant

first derivative, where m = n/2. More precisely, its first derivative is equal to
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−δ for x < s∗∗1 , −δ∗∗1 for x ∈ (s∗∗1 , s∗∗2 ), ..., −δ∗∗m for x ∈ (s∗∗m , s∗∗m+1), and zero

for x > s∗∗m+1, and its value at its right tail is a positive constant b.

Obviously we must have δ > δ∗∗1 > ...δ∗∗m > 0 and b > infx φ(x), where

φ(x) is the true pricing kernel. Otherwise the true pricing kernel will intersect

φ∗∗
n at most n + 1 times. In this case, applying Lemma 6, we find that the

two pricing kernels cannot give the same n observed option prices. From this,

we can immediately conclude that the true pricing kernel intersects φ∗∗
n exactly

n + 2 times. It is not difficult to verify that φ∗∗
n has fatter left tail.

For φ∗
n the proof is similar. Q.E.D.

Proposition 3 Assume the pricing kernel is decreasing and convex in St. As-

sume the current price of a unit bond is B0, the current price of the underlying

stock is S0, and the current prices of n options with strike prices K1, ..., and

Kn are c10, ..., and cn0 respectively. Let K0 = 0 and Kn+1 = +∞.

• Assume n is odd. Let m = (n + 1)/2.

– Then the upper bound for options with strike prices between (K2i−2,

K2i−1), i = 1, 2, ..., is given by the pricing kernel ϕ∗∗
n (St) = a0

δ(St)
p(St)

+

f∗∗
n (St), where p(St) is the true probability density function, δ(St) is

the Dirac function, and f∗∗
n (x) =

δ∗∗m (s∗∗m+1 − s∗∗m ) + ... + δ∗∗2 (s∗∗3 − s∗∗2 ) + δ∗∗1 (s∗∗2 − x), x < s∗∗2

......

δ∗∗m (s∗∗m+1 − x), x ∈ (s∗∗m , s∗∗m+1)

0, x ≥ s∗∗m+1,
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where a0, s∗∗2 , ..., s∗∗m+1, δ∗∗1 , ..., and δ∗∗m are to be decided such that

E(φ∗∗
n (St)) = 1, E(Stφ

∗∗
n (St))/B0 = S0, and E(ci(St)φ∗∗

n (St))/B0 =

ci0, i = 1, 2, ..., n.

– The lower bound for options with strike prices between (K2i−2, K2i−1),

i = 1, 2, ..., is given by the pricing kernel ϕ∗
n(x) =

b + δ∗m(s∗m − s∗m−1) + ... + δ∗2(s∗2 − s∗1) + δ∗1(s∗1 − x), x < s∗1

......

b + δ∗m(s∗m − x), x ∈ (s∗m−1, s
∗
m)

b, x ≥ s∗m,

where b, s∗1, ..., s∗m, δ∗1 , ..., and δ∗m are to be decided such that

E(φ∗
n(St)) = 1, E(Stφ

∗
n(St))/B0 = S0, and E(ci(St)φ∗

n(St))/B0 =

ci0, i = 1, 2, ..., n.

• Assume n is even. Let m = n/2.

– Then the upper bound for options with strike prices between (K2i−2,

K2i−1), i = 1, 2, ..., is given by a pricing kernel ϕ∗∗
n (St) = a0

δ(St)
p(St)

+

b+f∗∗
n (St), where p(St) is the true probability density function, δ(St)

is the Dirac function, and f∗∗
n (x) =

δ∗∗m (s∗∗m+1 − s∗∗m ) + ... + δ∗∗2 (s∗∗3 − s∗∗2 ) + δ∗∗1 (s∗∗2 − x), x < s∗∗2

......

δ∗∗m (s∗∗m+1 − x), s∗∗m < x < s∗∗m+1

0, x ≥ s∗∗m+1,

where a0, b, s∗∗2 , ..., s∗∗m+1, δ∗∗1 , ..., and δ∗∗m are to be decided such that
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E(φ∗∗
n (St)) = 1, E(Stφ

∗∗
n (St))/B0 = S0, and E(ci(St)φ∗∗

n (St))/B0 =

ci0, i = 1, 2, ..., n.

– The lower bound for options with strike prices between (K2i−2, K2i−1),

i = 1, 2, ..., is given by a pricing kernel ϕ∗
n(x) =

δ∗m+1(s
∗
m+1 − s∗m) + ... + δ∗2(s∗2 − s∗1) + δ∗1(s∗1 − x), x < s∗1

......

δ∗m+1(s
∗
m+1 − x), x ∈ (s∗m−1, s

∗
m)

0, x ≥ s∗m+1,

where s∗1, ..., s∗m+1, δ∗1 , ..., and δ∗m+1 are to be decided such that

E(φ∗
n(St)) = 1, E(Stφ

∗
n(St))/B0 = S0, and E(ci(St)φ∗

n(St))/B0 =

ci0, i = 1, 2, ..., n.

Proof: Let δ → +∞; we immediately obtain the result from Lemma 9.

2 NSD Option Bounds

In this section we apply the Nth order stochastic dominance rule to derive option

bounds from concurrently expiring options. According to Ritchken and Kuo

(1989), applying Nth order stochastic dominance we have such a pricing kernel

that its derivatives alternate to be negative and positive up to the (N − 1)th

order.
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2.1 Option Bound Problem and Its Dual

Given the prices of a unit bond, a stock and some European options written on

the stock with the same maturity, we want to know the bounds on the price of

another option which has the same maturity when Nth (N ≥ 3) order stochastic

dominance rule applies. That is,

max (or min) E(cX (ST )φ(ST ))B0

subject to

φ(i)(x) ≥ 0, for even i ≤ N ; φ(i)(x) ≤ 0, for odd i ≤ N

E(φ(ST ) = 1

E(ST φ(ST ))B0 = S0

E(ci(ST )φ(ST ))B0 = ci0, i = 1, ..., n.

The dual problem5

min (or max) α1B0 + α2S0 +
n∑

i=1

αn+2ci0

subject to

∫ ST

0

∫ xk

0 ...
∫ x1

0 E(α1 + α2x +
∑n

i=1 αn+2ci(x)|x < x0)Pr(x < x0)dx0...dxk∫ ST

0

∫ xk

0 ...
∫ x1

0 Pr(x < x0)dx0...dxk

≥ (≤)

∫ ST

0

∫ xk

0 ...
∫ x1

0 E(cX(x)|x < x0)Pr(x < x0)dx0...dxk∫ ST

0

∫ xk

0
...

∫ x1

0
Pr(x < x0)dx0...dxk

, for all ST ,

where k = N − 3.
5The proof of the duality is similar to the case of TSD. For brevity, it is omitted.
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The above dual problem suggests an Nth (N > 3) order arbitrage opportu-

nity if the option bound is violated. An Nth order arbitrage opportunity can

be understood similar to the third order arbitrage opportunity. Obviously, an

Nth order arbitrage opportunity is weaker than an (N − 1)th order arbitrage

opportunity, because the weighted average conditional expectations in the case

of (N − 1)th order are taken weighted average again with the same weights.

This means in the case of Nth order the conditional expected returns in the

states of lower stock prices carry even less weights than in the case of (N − 1)th

order.

As in the case of TSD, to solve the above two problems we first solve a

similar but more general problem in which we assume that not only the Nth

order stochastic dominance rule applies but also the absolute value of the pricing

kernel’s Nth derivative is bounded above.

We will show in this paper that under this condition, the option bounds

are given by pricing kernels which have piecewise constant (N −2)th derivative,

where the number of segments of the (N−2)th derivative depends on the number

of observed options. Moreover, we will see that for an even number of observed

options the pricing kernel which gives the option bounds has a certain pattern

while for an odd number of observed options the pricing kernel which gives

option bounds has a different pattern. Thus in order to explain the solutions

more clearly we start with the case where we have only one observed option

price then continue with the case where we have two observed options. In the

end we solve the general case where we have n observed options.
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2.2 The Case with One Observed Option

In this subsection we deal with the case where we observe the price of one

concurrently expiring option.

We first derive the option bounds under the assumption that the third order

stochastic dominance rule applies and the absolute value of the pricing kernel’s

(N − 2)th derivative is bounded from above.

Lemma 8 Assume the pricing kernel φ(x) satisfies the Nth order stochastic

dominance rule, i.e., φ(i)(x) ≥ 0, for even i < N , φ(i)(x) ≤ 0, for odd i < N ,

and |φ(N−1)(x)| is increasing in x. Assume |φ(N−2)(x)| is bounded above by δ.

Assume the current price of a unit bond is B0, the current price of the underlying

stock is S0 and the current price of an option with strike price K is cK0.

• Then the upper option bound is given by a pricing kernel (φ∗∗
1 (x)) that has

a three-segmented and piecewise constant (N − 2)th derivative, where its

(N − 2)th derivative is equal to −δ for x < s∗∗1 , −δ∗∗ for x ∈ (s∗∗1 , s∗∗2 ),

and zero for x > s∗∗2 , and its value is zero at its right tail. More precisely

,

φ∗∗
1 (x) = {

δ
(s∗∗

1 −x)N−2

(N−2)! + δ∗∗
∑N−2

1
(s∗∗

2 −s∗∗
1 )i

i!
(s∗∗

1 −x)(N−2−i)

(N−2−i)! , x < s∗∗1

δ∗∗

(N−2)!(s
∗∗
2 − x)N−2, x ∈ (s∗∗1 , s∗∗2 )

0, x ≥ s∗∗2 ,

where s∗∗1 , s∗∗, and δ∗∗ are to be decided such that E(φ∗∗
1 (St)) = 1,

E(Stφ
∗∗
1 (St))/B0 = S0, and E(cK(St)φ∗∗

1 (St))/B0 = cK0.

• The lower option bound is given by a pricing kernel (φ∗
0(x)) that has a
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two-segmented and piecewise constant (N-2)th derivative. More precisely

its (N-2)th derivative is equal to −δ∗ for x < s∗, and zero for x > s∗.

That is,

φ∗
1(x) = {

b + δ∗

(N−2)!(s
∗ − x)N−2, x < s∗

b, x ≥ s∗,

where b, δ∗, and s∗ are to be decided such that E(φ∗
1(St)) = 1, E(Stφ

∗
0

(St))/B0 = S0, and E(cK(St)φ∗
1(St))/B0 = cK0.

Proof: From Lemma 2 we need only prove that the true pricing kernel intersects

the pricing kernels that give the option bounds exactly three times and then

examine which one has a fatter left tail.

We first examine φ∗∗
1 . Note it has a three-segmented and piecewise constant

(N − 2)th derivative. More precisely its (N − 2)th derivative is equal to −δ for

x < s∗∗1 , −δ∗∗ for x ∈ (s∗∗1 , s∗∗2 ), and zero for x > s∗∗2 , and its value is zero at

its right tail. Obviously we must have 0 < δ∗∗ < δ. Otherwise the true pricing

kernel will intersect φ∗∗
1 at most twice. In this case, applying Lemma 1, we find

that the two pricing kernels cannot give the same observed option price. From

this, we can immediately conclude that the true pricing kernel intersects φ∗∗
1

exactly three times. It is not difficult to verify that φ∗∗
1 has fatter left tail. For

φ∗
1 the proof is similar. Q.E.D.

Proposition 4 Assume the pricing kernel φ(x) satisfies the Nth order stochas-

tic dominance rule, i.e., φ(i)(x) ≥ 0, for even i < N , φ(i)(x) ≤ 0, for odd i < N ,

and |φ(N−1)(x)| is increasing in x. Assume the current price of a unit bond is

B0, the current price of the underlying stock is S0 and the current price of an
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option with strike price K is cK0.

• Then the upper option bound is given by the pricing kernel ϕ∗∗
1 (St) =

a0
δ(St)
p(St)

+ f∗∗
1 (St), where p(St) is the true probability density function and

δ(St) is the Dirac function and

f∗∗
1 (St) = {

δ∗∗

(N−2)! (s
∗∗ − x)N−2, x < s∗∗

0, x ≥ s∗∗,

where a0, s∗∗, and δ∗∗ are to be decided such that E(ϕ∗∗
1 (St)) = 1, E(Stϕ

∗∗
1

(St))/B0 = S0, and E(cK(St)ϕ∗∗
1 (St))/B0 = cK0.

• The lower option bound is given by the pricing kernel ϕ∗
1(x) = φ∗

1(x).

2.3 The Case with Two Observed Options

In this subsection we deal with the case where we observe the prices of two

concurrently expiring options.

We first derive the option bounds under the assumption that the third order

stochastic dominance rule applies and the absolute value of the pricing kernel’s

(N − 2)th derivative is bounded from above.

Lemma 9 Assume the pricing kernel φ(x) satisfies the Nth order stochastic

dominance rule, i.e., φ(i)(x) ≥ 0, for even i < N , φ(i)(x) ≤ 0, for odd i < N ,

and |φ(N−1)(x)| is increasing in x. Assume |φ(N−2)(x)| is bounded above by δ.

Assume the current price of a unit bond is B0, the current price of the underlying

stock is S0, and the current prices of two options with strike prices K1 and K2

are c10 and c20 respectively.
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• Then the upper bound for an option with a strike price below K1 or above

K2 is given by a pricing kernel (φ∗∗
2 (x)) that has a three-segmented and

piecewise constant (N-2)th derivative, where its (N-2)th derivative is equal

to −δ for x < s∗∗1 , −δ∗∗ for x ∈ (s∗∗1 , s∗∗2 ), and zero for x > s∗∗2 , and its

value is a positive constant b at its right tail. More precisely, φ∗∗
2 (x) = b+

{

δ
(N−2)! (s

∗∗
1 − x)N−2 + δ∗∗

∑N−2
1

(s∗∗
2 −s∗∗

1 )i

i!
(s∗∗

1 −x)(N−2−i)

(N−2−i)! , x < s∗∗1

δ∗∗

(N−2)!(s
∗∗
2 − x)N−2, s∗∗1 < x < s∗∗2

0, x ≥ s∗∗2 ,

where b, s∗∗1 , s∗∗2 , and δ∗∗ are to be decided such that E(φ∗∗
1 (St)) = 1,

E(Stφ
∗∗
1 (St))/B0 = S0, and E(ci(St)φ∗∗

1 (St))/B0 = ci0, i = 1, 2.

• The lower bound for an option with a strike price below K1 or above K2 is

given by a pricing kernel (φ∗
2(x)) that has a three-segmented and piecewise

constant (N-2)th derivative. More precisely its (N-2)th derivative is equal

to −δ∗1 for x < s∗1, −δ∗2 for x ∈ (s∗1, s
∗
2), and zero for x > s∗2. That is,

φ∗
2(x) = {

δ∗
1

(N−2)!(s
∗
1 − x)N−2 + δ∗2

∑N−2
1

(s∗
2−s∗

1)i

i!
(s∗

1−x)(N−2−i)

(N−2−i)! , x < s∗1

δ∗
2

(N−2)! (s
∗
2 − x)N−2, x ∈ (s∗1, s

∗
2)

0, x ≥ s∗2,

where s∗1, s∗2, δ∗1 , and δ∗2 are to be decided such that E(φ∗
1(St)) = 1,

E(Stφ
∗
1(St))/B0 = S0, and E(ci(St)φ∗

1(St))/B0 = ci0, i = 1, 2.

Proof: From Lemma 4 we need only prove that the true pricing kernel intersects

the pricing kernels that give the option bounds exactly four times and then

examine which one has a fatter left tail.
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We first examine φ∗∗
2 . Note it has a three-segmented and piecewise constant

(N − 2)th derivative. More precisely its (N − 2)th derivative is equal to −δ for

x < s∗∗1 , −δ∗∗ for x ∈ (s∗∗1 , s∗∗2 ), and zero for x > s∗∗2 , and its value is a positive

constant b at its right tail.

Obviously we must have 0 < δ∗∗ < δ and b > infx φ(x), where φ(x) is the

true pricing kernel. Otherwise the true pricing kernel will intersect φ∗∗
2 at most

three times. In this case, applying Lemma 2, we find that the two pricing kernels

cannot give the same two observed option prices. From this, we can immediately

conclude that the true pricing kernel intersects φ∗∗
2 exactly four times. It is not

difficult to verify that φ∗∗
2 has fatter left tail. For φ∗

2 the proof is similar. Q.E.D.

Proposition 5 Assume the pricing kernel φ(x) satisfies the Nth order stochas-

tic dominance rule, i.e., φ(i)(x) ≥ 0, for even i < N , φ(i)(x) ≤ 0, for odd i < N ,

and |φ(N−1)(x)| is increasing in x. Assume the current price of a unit bond is

B0, the current price of the underlying stock is S0, and the current prices of two

options with strike prices K1 and K2 are c10 and c20 respectively.

• Then the upper bound for an option with a strike price below K1 or above

K2 is given by the pricing kernel ϕ∗∗
2 (St) = a0

δ(St)
p(St)

+f∗∗
2 (St), where p(St)

is the true probability density function and δ(St) is the Dirac function and

f∗∗
2 (St) = {

b + δ∗∗

(N−2)!(s
∗∗ − x)N−2, x < s∗∗

b, x ≥ s∗∗,

where a0, b, s∗∗, and δ∗∗ are to be decided such that E(ϕ∗∗
2 (St)) = 1,

E(Stϕ
∗∗
2 (St))/B0 = S0, and E(ci(St)ϕ∗∗

2 (St))/B0 = ci0, i = 1, 2.
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• The lower bound for an option with a strike price below K1 or above K2

is given by the pricing kernel ϕ∗
2(x) = φ∗

2(x).

2.4 The General Case

In this subsection we deal with the case where we observe the prices of n con-

currently expiring options.

We first derive the option bounds under the assumption that the third order

stochastic dominance rule applies and the absolute value of the pricing kernel’s

(N − 2)th derivative is bounded from above.

Lemma 10 Assume the pricing kernel φ(x) satisfies the Nth order stochastic

dominance rule, i.e., φ(i)(x) ≥ 0, for even i < N , φ(i)(x) ≤ 0, for odd i < N ,

and |φ(N−1)(x)| is increasing in x. Assume |φ(N−2)(x)| is bounded above by δ.

Assume the current price of a unit bond is B0, the current price of the underlying

stock is S0, and the current prices of n options with strike prices K1, ..., and

Kn are c10, ..., and cn0 respectively. Let K0 = 0 and Kn+1 = +∞.

• Assume n is odd. Let m = (n + 1)/2.

– Then the upper bound for options with strike prices between (K2i−2,

K2i−1), i = 1, 2, ..., is given by a pricing kernel (φ∗∗
n (x)) that has a

(m+2)-segmented and piecewise constant (N-2)th derivative, where

the absolute of value of its (N-2)th derivative is equal to δ for x <

s∗∗1 , δ∗∗1 for x ∈ (s∗∗1 , s∗∗2 ), ..., δ∗∗m for x ∈ (s∗∗m , s∗∗m+1), and zero

for x > s∗∗m+1, and its value at its right tail is 0. More precisely,
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φ∗∗
n (x) = φ∗∗

ni(x), for x ∈ (s∗∗i−1, s
∗∗
i ), i = 1, ..., m + 2, where s∗∗0 = 0,

s∗∗m+2 = +∞, φ∗∗
n(m+2)(x) = 0, φ∗∗

n(m+1)(x) = δ∗∗
m

(N−2)! (s
∗∗
m+1 − x)N−2,

and for i = 1, ...m,

φ∗∗
ni(x) = φ∗∗

n(i+2)(s
∗∗
i+1) + δ∗∗i−1

(s∗∗i − x)N−2

(N − 2)!

+δ∗∗i

N−2∑

1

(s∗∗i+1 − s∗∗i )j

j!
(s∗∗i − x)(N−2−j)

(N − 2 − j)!
,

where δ∗∗0 = δ while s∗∗1 , ..., s∗∗m+1, δ∗∗1 , ..., and δ∗∗m are to be decided

such that E(φ∗∗
n (St)) = 1, E(Stφ

∗∗
n (St))/B0 = S0, and E(ci(St)φ∗∗

n

(St))/B0 = ci0, i = 1, 2, ..., n.

– The lower bound for options with strike prices between (K2i−2, K2i−1),

i = 1, 2, ..., is given by a pricing kernel (φ∗
on(x)) that has a (m+1)-

segmented and piecewise constant (N-2)th derivative, where the ab-

solute of value of its (N-2)th derivative is equal to δ∗1 for x < s∗1,

..., δ∗m for x ∈ (s∗m−1, s
∗
m), and zero for x > s∗m. More precisely,

φ∗
on(x) = φ∗

ni(x), for x ∈ (s∗i−1, s
∗
i ), i = 1, ..., m + 1, where s∗0 = 0,

s∗m+1 = +∞, φ∗
n(m+1)(x) = b, φ∗

nm(x) = b+ δ∗
m

(N−2)!(s
∗
m −x)N−2, and

for i = 1, ..., m − 1,

φ∗
ni(x) = φ∗

n(i+2)(s
∗
i+1) + δ∗i

(s∗i − x)N−2

(N − 2)!

+δ∗i+1

N−2∑

1

(s∗i+1 − s∗i )
j

j!
(s∗i − x)(N−2−j)

(N − 2 − j)!
,

where b, s∗1, ..., s∗m, δ∗1 , ..., and δ∗m are to be decided such that

E(φ∗
on(St)) = 1, E(Stφ

∗
on(St))/B0 = S0, and E(ci(St)φ∗

on(St))/B0 =

ci0, i = 1, 2, ..., n.
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• Assume n is even. Let m = n/2.

– Then the upper bound for options with strike prices between (K2i−2,

K2i−1), i = 1, 2, ..., is given by a pricing kernel (φ∗∗
n (x)) that has a

(m+2)-segmented and piecewise constant (N-2)th derivative, where

the absolute value of its (N-2)th derivative is equal to δ for x <

s∗∗1 , δ∗∗1 for x ∈ (s∗∗1 , s∗∗2 ), ..., δ∗∗m for x ∈ (s∗∗m , s∗∗m+1), and zero for

x > s∗∗m+1. More precisely, φ∗∗
n (x) = φ∗∗

ni(x), for x ∈ (s∗∗i−1, s
∗∗
i ),

i = 1, ..., m + 2, where s∗∗0 = 0, s∗∗m+2 = +∞, φ∗∗
n(m+2)(x) = b,

φ∗∗
n(m+1)(x) = b + δ∗∗

m

(N−2)! (s
∗∗
m+1 − x)N−2, and for i = 1, ...m,

φ∗∗
ni(x) = φ∗∗

n(i+2)(s
∗∗
i+1) + δ∗∗i−1

(s∗∗i − x)N−2

(N − 2)!

+δ∗∗i

N−2∑

1

(s∗∗i+1 − s∗∗i )j

j!
(s∗∗i − x)(N−2−j)

(N − 2 − j)!
,

where δ∗∗0 = δ while b, s∗∗1 , ..., s∗∗m+1, δ∗∗1 , ..., and δ∗∗m are to be decided

such that E(φ∗∗
n (St)) = 1, E(Stφ

∗∗
n (St))/B0 = S0, and E(ci(St)φ∗∗

n

(St))/B0 = ci0, i = 1, 2, ..., n.

– The lower bound for options with strike prices between (K2i−2, K2i−1),

i = 1, 2, ..., is given by a pricing kernel (φ∗
en(x)) that has a (m+2)-

segmented and piecewise constant (N-2)th derivative, where the ab-

solute of value of its (N-2)th derivative is equal to δ∗1 for x < s∗1, ...,

δ∗m+1 for x ∈ (s∗m, s∗m+1), and zero for x > s∗m+1. More precisely,

φ∗
en(x) = φ∗

ni(x), for x ∈ (s∗i−1, s
∗
i ), i = 1, ..., m + 2, where s∗0 = 0,

s∗m+2 = +∞, φ∗
n(m+2)(x) = 0, φ∗

n(m+1)(x) = δ∗
m+1

(N−2)! (s
∗
m+1 − x)N−2,
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and for i = 1, ..., m,

φ∗
ni(x) = φ∗

n(i+2)(s
∗
i+1) + δ∗i

(s∗i − x)N−2

(N − 2)!

+δ∗i+1

N−2∑

1

(s∗i+1 − s∗i )
j

j!
(s∗i − x)(N−2−j)

(N − 2 − j)!
,

where s∗1, ..., s∗m+1, δ∗1 , ..., and δ∗m+1 are to be decided such that

E(φ∗
en(St)) = 1, E(Stφ

∗
en(St))/B0 = S0, and E(ci(St)φ∗

en(St))/B0 =

ci0, i = 1, 2, ..., n.

Proof: From Lemma 6 we need only prove that the true pricing kernel intersects

the pricing kernels that give the option bounds exactly (n + 2) times and then

examine which one has a fatter left tail.

We first examine φ∗∗
n . Assume n is odd. Note it has a (m+2)-segmented and

piecewise constant (N − 2)th derivative, where m = (n + 1)/2. More precisely

its (N − 2)th derivative is equal to −δ for x < s∗∗1 , −δ∗∗1 for x ∈ (s∗∗1 , s∗∗2 ), ...,

−δ∗∗m for x ∈ (s∗∗m , s∗∗m+1), and zero for x > s∗∗m+1, and its value at its right tail

is 0.

Obviously we must have δ > δ∗∗1 > ...δ∗∗m > 0. Otherwise the true pricing

kernel will intersect φ∗∗
n at most n+1 times. In this case, applying Lemma 6, we

find that the two pricing kernels cannot give the same n observed option prices.

From this, we can immediately conclude that the true pricing kernel intersects

φ∗∗
n exactly n + 2 times. It is not difficult to verify that φ∗∗

n has fatter left tail.

Assume n is even. Note it has a (m+2)-segmented and piecewise constant

(N − 2)th derivative, where m = n/2. More precisely, the absolute value of its

(N − 2)th derivative is equal to δ for x < s∗∗1 , δ∗∗1 for x ∈ (s∗∗1 , s∗∗2 ), ..., δ∗∗m
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for x ∈ (s∗∗m , s∗∗m+1), and zero for x > s∗∗m+1, and its value at its right tail is a

positive constant b.

Obviously we must have δ > δ∗∗1 > ...δ∗∗m > 0 and b > infx φ(x), where

φ(x) is the true pricing kernel. Otherwise the true pricing kernel will intersect

φ∗∗
n at most n + 1 times. In this case, applying Lemma 6, we find that the

two pricing kernels cannot give the same n observed option prices. From this,

we can immediately conclude that the true pricing kernel intersects φ∗∗
n exactly

n + 2 times. It is not difficult to verify that φ∗∗
n has fatter left tail.

For φ∗
n the proof is similar. Q.E.D.

Proposition 6 Assume the pricing kernel φ(x) satisfies the Nth order stochas-

tic dominance rule, i.e., φ(i)(x) ≥ 0, for even i < N , φ(i)(x) ≤ 0, for odd i < N ,

and |φ(N−1)(x)| is increasing in x. Assume |φ(N−2)(x)| is bounded above by δ.

Assume the current price of a unit bond is B0, the current price of the under-

lying stock is S0, and the current prices of n options with strike prices K1, ...,

and Kn are c10, ..., and cn0 respectively. Let K0 = 0 and Kn+1 = +∞.

1. Assume n is odd. Let m = (n + 1)/2.

(a) Then the upper bound for options with strike prices between (K2i−2,

K2i−1), i = 1, 2, ..., is given by the pricing kernel ϕ∗∗
n (St) = a0

δ(St)
p(St)

+

f∗∗
n (St), where p(St) is the true probability density function, δ(St) is

the Dirac function, and f∗∗
n (x) has a (m+1)-segmented and piecewise

constant (N-2)th derivative, where the absolute of value of its (N-2)th

derivative is equal to δ∗∗1 for x < s∗∗1 , ..., δ∗∗m for x ∈ (s∗∗m−1, s
∗∗
m ), and
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zero for x > s∗∗m . More precisely, f∗∗
n (x) = f∗∗

ni (x), for x ∈ (s∗∗i−1, s
∗∗
i ),

i = 1, ..., m + 1, where s∗∗0 = 0, s∗∗m+1 = +∞, f∗∗
n(m+1)(x) = 0,

f∗∗
nm(x) = δ∗∗

m

(N−2)! (s
∗∗
m − x)N−2, and for i = 1, ..., m − 1,

f∗∗
ni (x) = f∗∗

n(i+2)(s
∗∗
i+1) + δ∗∗i

(s∗∗i − x)N−2

(N − 2)!

+δ∗∗i+1

N−2∑

1

(s∗∗i+1 − s∗∗i )j

j!
(s∗∗i − x)(N−2−j)

(N − 2 − j)!
,

where a0, s∗∗1 , ..., s∗∗m , δ∗∗1 , ..., and δ∗∗m are to be decided such that

E(φ∗∗
n (St)) = 1, E(Stφ

∗∗
n (St))/B0 = S0, and E(ci(St)φ∗∗

n (St))/B0 =

ci0, i = 1, 2, ..., n.

(b) The lower bound for options with strike prices between (K2i−2, K2i−1),

i = 1, 2, ..., is given by the pricing kernel ϕ∗
n(x) = φ∗

on(x), which is

derived in the above proposition.

2. Assume n is even. Let m = n/2.

(a) Then the upper bound for options with strike prices between (K2i−2,

K2i−1), i = 1, 2, ..., is given by a pricing kernel ϕ∗∗
n (St) = a0

δ(St)
p(St)

+

f∗∗
n (St), where p(St) is the true probability density function, δ(St) is

the Dirac function, and f∗∗
n (x) has a (m+1)-segmented and piecewise

constant (N-2)th derivative, where the absolute of value of its (N-2)th

derivative is equal to δ∗∗1 for x < s∗∗1 , ..., δ∗∗m for x ∈ (s∗∗m−1, s
∗∗
m ), and

zero for x > s∗∗m . More precisely, f∗∗
n (x) = f∗∗

ni (x), for x ∈ (s∗∗i−1, s
∗∗
i ),

i = 1, ..., m + 1, where s∗∗0 = 0, s∗∗m+1 = +∞, f∗∗
n(m+1)(x) = b,
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f∗∗
nm(x) = b + δ∗∗

m

(N−2)! (s
∗∗
m − x)N−2, and for i = 1, ..., m − 1,

f∗∗
ni (x) = f∗∗

n(i+2)(s
∗∗
i+1) + δ∗∗i

(s∗∗i − x)N−2

(N − 2)!

+δ∗∗i+1

N−2∑

1

(s∗∗i+1 − s∗∗i )j

j!
(s∗∗i − x)(N−2−j)

(N − 2 − j)!
,

where a0, b, s∗∗1 , ..., s∗∗m , δ∗∗1 , ..., and δ∗∗m are to be decided such that

E(φ∗∗
n (St)) = 1, E(Stφ

∗∗
n (St))/B0 = S0, and E(ci(St)φ∗∗

n (St))/B0 =

ci0, i = 1, 2, ..., n.

(b) The lower bound for options with strike prices between (K2i−2, K2i−1),

i = 1, 2, ..., is given by a pricing kernel ϕ∗
n(x) = φ∗

en, which is derived

in the above proposition.

3 The Arbitrage Portfolios

Using a method similar to the one use by Huang (2000b) we can derive the

arbitrage portfolios when the Nth order stochastic dominance option bounds

are violated. We first introduce the following notation: Let k = N − 3. We use

s̄
(N)
j to denote

∫ sj

0

∫ xk

0
...

∫ x1

0
E(St|St < x0)Pr(St < x0)dx0...dxk∫ sj

0

∫ xk

0 ...
∫ x1

0 Pr(St < x0)dx0...dxk

Given a function f(x), we use f̄
(N)
lj

to denote the following

∫ sj

0

∫ xk

0
...

∫ x1

0
E(f(St)|St < x0)Pr(St < x0)dx0...dxk∫ sj

0

∫ xk

0
...

∫ x1

0
Pr(St < x0)dx0...dxk

We also use (c̄(N)X
lj

)′ to denote

d

dy

∫ y

0

∫ xk

0 ...
∫ x1

0 E(cX
lj

(St)|St < x0)Pr(St < x0)dx0...dxk∫ y

0

∫ xk

0
...

∫ x1

0
Pr(St < x0)dx0...dxk

|y=sj .
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We have the following result.

Proposition 7 Assume the pricing kernel is decreasing in St. Assume the price

of a unit bond is B0, the underlying stock price is S0, and the prices of n options

with strike prices K1, K2, ..., Kn are c1
0, c2

0, ..., and cn
0 respectively.

• Assume n is odd. Let m = (n + 1)/2.

– For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

when its lower bound is violated the arbitrage portfolio is given by

αi = (−1)i[
m∑

1

((c̄(N)X
lv

)′A2v,i − c̄
(N)X
lv

A2v−1,i) − c̄
(N)X
Λ An+2,i]/|A|,

(2)

i=1, ..., n+2, where sl1 , ..., slm , are determined by 1(b) in Proposition

6 and A is given by




1 s̄
(N)
l1

c̄1
l1

... c̄
(N)n
l1

0 (s̄(N)
l1

)′ (c̄(N)1
l1

)′ ... (c̄(N)n
l1

)′

...
...

...
...

...

1 s̄
(N)
lm

c̄
(N)1
lm

... c̄
(N)n
lm

0 (s̄(N)
lm

)′ (c̄(N)1
lm

)′ ... (c̄(N)n
lm

)′

1 s̄
(N)
Λ c̄

(N)1
Λ ... c̄

(N)n
Λ





(3)

– For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

when its upper bound is violated the arbitrage portfolio is given by

αi = (−1)i[−c̄
(N)X
1 B1i+

m∑

1

(c̄(N)X
lv

B2v,i−(c̄(N)X
lv

)′B2v+1,i)]/|B|, (4)
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i=1, ..., n+2, where sl1 , ..., slm are determined by 1(a) in Proposition

6 and B is given by




1 s̄
(N)
1 c̄

(N)1
1 ... c̄

(N)n
1

1 s̄
(N)
l1

c̄
(N)1
l1

... c̄
(N)n
l1

0 (s̄(N)
l1

)′ (c̄(N)1
l1

)′ ... (c̄(N)n
l1

)′

...
...

...
...

...

1 s̄
(N)
lm

c̄
(N)1
lm

... c̄
(N)n
lm

0 (s̄(N)
lm

)′ (c̄(N)1
lm

)′ ... (c̄(N)n
lm

)′





(5)

– For options with strike prices X between (K2i−1, K2i), i = 1, 2, ...,

when its lower bound is violated the arbitrage portfolio is given by

(4); when its upper bound is violated the arbitrage portfolio is given

by (2)

• Assume n is even. Let m = n/2.

– For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

when its lower bound is violated the arbitrage portfolio is given by

αi = (−1)i
m+1∑

1

((c̄(N)X
lv

)′U2v,i − c̄
(N)X
lv

U2v−1,i)/|U |, (6)

i=1, ..., n+2, where sl1 , ..., slm , are determined by 2(b) in Proposition
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6 and U is given by




1 s̄
(N)
l1

c̄
(N)1
l1

... c̄
(N)n
l1

0 (s̄(N)
l1

)′ (c̄(N)1
l1

)′ ... (c̄(N)n
l1

)′

...
...

...
...

...

1 s̄
(N)
lm+1

c̄
(N)1
lm+1

... c̄
(N)n
lm+1

0 (s̄(N)
lm+1

)′ (c̄(N)1
lm+1

)′ ... (c̄(N)n
lm+1

)′





(7)

– For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

when its upper bound is violated the arbitrage portfolio is given by

αi = (−1)i[−c̄
(N)X
1 V1i+

m∑

1

(c̄(N)X
lv

V2v,i−(c̄(N)X
lv

)′V2v+1,i)+c̄
(N)X
Λ Vn+2,i]/|V |,

(8)

i=1, ..., n+2, where sl1 , ..., slm , are determined by 2(a) in Proposition

6 and V is given by




1 s̄
(N)
1 c̄

(N)1
1 ... c̄

(N)n
1

1 s̄
(N)
l1

c̄
(N)1
l1

... c̄
(N)n
l1

0 (s̄(N)
l1

)′ (c̄(N)1
l1

)′ ... (c̄(N)n
l1

)′

...
...

...
...

...

1 s̄
(N)
lm

c̄
(N)1
lm

... c̄
(N)n
lm

0 (s̄(N)
lm

)′ (c̄(N)1
lm

)′ ... (c̄(N)n
lm

)′

1 s̄
(N)
Λ c̄

(N)1
Λ ... c̄

(N)n
Λ





(9)

– For options with strike prices X between (K2i−1, K2i), i = 1, 2, ...,

when its lower bound is violated the arbitrage portfolio is given by

(8); when its upper bound is violated the arbitrage portfolio is given

by (6).
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Proof: The proof is very similar to the case of second stochastic dominance. For

brevity, it is omitted. For details, see Huang (2004b).

4 Conclusions

In this paper we derive Nth order stochastic dominance option bounds from

concurrently expiring options. We show that given the prices of a unit bond,

underlying stock, and n option prices, the kth order stochastic dominance op-

tion bounds are given by a pricing kernel the (N − 2)th derivative of which is

(n/2)-segmented and piecewise constant if n is even or ((n+1)/2)-segmented and

piecewise constant if n is odd. Since stochastic dominance rules are generally

accepted, the derived option bounds in this paper are practically meaningful.

The results have important implications for arbitrage opportunities in the

markets of concurrently expiring options. When the option bounds are violated

we can construct arbitrage portfolios to take the advantage.
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