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Abstract

In this paper we first present a geometric approach to option bounds.

We show that if two risk neutral probability density functions intersect for

certain number of times, then comparing the fatness of their tails we can

tell which of them gives higher option prices. Thus we can derive option

bounds by identifying the risk neutral probability density function which

intersects all admissible ones for certain number of times. Applying this

approach we tighten the first order stochastic dominance option bounds

from concurrently expiring options when the maximum value of the risk

neutral density are known.

Keywords: Option bounds, option pricing, risk neutral density, first order s-

tochastic dominance.

JEL Classification Numbers: G13.
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Introduction

There are some excellent techniques which are used to derive option bounds.

A natural one is the arbitrage approach. Merton (1973), Garman (1976), and

Levy (1985) use this approach to derive the first and second order stochastic

dominance option bounds. Grundy (1991) uses it to explore the relation between

option prices and the true distributions. The intuition of this approach is to

compare different portfolio strategies involving the underlying stock and options

and work out the option bounds by excluding the existence of any dominant

strategies.

Ritchken (1985) introduce the linear programming approach to this area.

Ritchken and Kuo (1989), Basso and Pianca (1997), Mathur and Ritchken

(2000), and Ryan (2003) use it to derive important results on option bound-

s. The key of this approach is to model the option bound problem in a discrete

state space as a linear programming problem and work out the solution. The

advantage of this technique is that there are many reliable techniques of han-

dling linear programming problems. The disadvantage is that it often brings

much complexity to calculations.

Others such as Boyle and Lin (1997) and Bertsimas and Popescu (2002) use

convex and, in particular semidefinite optimization approach to derive option

bounds while Cochrane and Saa-Requejo (2000) derive option bounds with re-

strictions on the volatility of the pricing kernel using information from other
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assets.

In this paper we present a new approach. To derive the option bounds under

certain conditions, the question we have to answer is what risk neutral proba-

bilities that satisfy specified conditions give higher option prices. In this paper

we show that if the number of intersections between risk neutral probability

density functions (hereafter P.D.F) is restricted then the fatness of the P.D.Fs’

tails holds the key to the answer and this can be worked out using a geometric

approach.

More specifically, we show that assuming two risk neutral P.D.Fs give the

same prices of the underlying stock and n options on the stock, if they intersect

n+2 times, then comparing the fatness of their tails we can tell which one gives

higher prices of what options. Thus the key of the technique is to identify the

risk neutral P.D.F which intersect all admissible risk neutral P.D.Fs for certain

number of times.

Applying the new approach we tighten Bertsimas and Popescu’s (2002) first

order stochastic dominance option bounds from concurrently expiring options

by using the only additional information of the maximum value of the risk

neutral densities. Note we can always put reasonable bounds on the risk neutral

densities. Thus to assume the knowledge of the maximum value of the risk

neutral densities is hardly a strong condition.

Although this approach to option bounds takes the advantage of the dis-

tinctive feature of options, as a convenient and useful optimization technique it

must have broader implications for similar problems in other areas.
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The structure of the paper is as follows: In Section 1 we present a geometry

of risk neutral probabilities. In Section 2 we derive the first order stochastic

dominance option bounds knowing the maximum and minimum values of the

risk neutral probabilities of individual states. Section 3 concludes the paper.

1 A Geometry of Risk Neutral Probabilities

We assume that there is a stock in an economy on which option contracts are

written. The price of the stock at time t is denoted by St. We assume that the

prices of options as well as other contingent claims on the stock are given by a

risk neutral probability measure or an equivalent martingale measure.1 Thus if

we denote the time t price of a contingent by c(St), its payoff at time t, we have

c0 = B0E
Q(c(St)), where B0 is the time 0 price of a unit zero-coupon bond

and EQ(.) denotes the expectation operator under the risk neutral measure Q.

This probability measure Q may or may not be unique depending on the market

completeness.

We assume that the risk neutral measure Q is represented by a probability

density function (hereafter p.d.f) q(St). We assume that the support of the p.d.f

is a subset of (0, +∞) although the analysis in this paper is valid for cases where

support of the p.d.f is a subset of (−∞, +∞) (for example when the underlying

asset is some cash flow). It follows that

c0 = B0

∫ ∞

0

c(St)q(St)dSt. (1)

1We refer readers to Harris and Kreps (1979) and Harris and Pliska (1981) for the theory

of equivalent martingale measures and to Cox and Ross (1976) for risk neutral measures.
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If we know exactly what is q(St), we would be able to calculate the exact

price of options. However, in many cases, we do not know what q(St) exactly is

although we have some information about what q(St) looks like. In these cases,

since we cannot work out the exact option prices we are interested in the upper

and lower bounds for the option prices. In this paper we present a geometry

of risk neutral probabilities which will help to derive option bounds. Before we

proceed first clarify a concept.

In this paper we talk about intersections of risk neutral probability density

functions. When we say that q1(x) and q2(x) intersect n times we mean there

exists s1, s2, ..., sn, where 0 = s0 < s1 < s2 < ... < sn < sn+1 = +∞ such

that (q1(x1) − q2(x1))(q1(x2) − q2(x2)) < 0 for any si−1 < x1 < si and any

si < x2 < si+1, i = 1, 2, ..., n. In that case, we also say q1(x) and q2(x) intersect

at s1, s2, ..., and sn.

1.1 Risk Neutral P.D.Fs Intersect Twice

As usual, we assume that the prices of a unit zero-coupon bond and the stock,

B0 and S0, are known. Jagannathan (1984) shows that the more “risky” the

risk neutral distribution of the underlying stock in the Rothschild-Stiglitz sense

is, the more valuable an option on the stock. We have the following result.

Proposition 1 Assume two risk neutral P.D.Fs give the same bond price and

stock price. If they intersect twice, then the one with fatter tails give higher

option prices.
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Proof: Assume two risk neutral P.D.Fs q1(x) and q2(x) give the same stock

price. Assume they intersect twice and q2(x) has fatter tails than q1(x).

Without loss of generality, assume the two P.D.Fs intersect at x1 and x2,

where x1 < x2. Then we have

q1(x) − q2(x) ≤ 0, x < x1

q1(x) − q2(x) ≥ 0, x1 < x < x2

q1(x) − q2(x) ≤ 0, x > x2

(2)

Now construct an arbitrage portfolio of the bond and the stock such that it

has the same payoffs as the derivative at x1 and x2. Denote its payoff by L(x).

Then L(xi) = c(xi), i = 1, 2. Since L(x) is linear while c(x) is convex we must

have

cX(x) − L(x) ≥ 0, x < x1

cX(x) − L(x) ≤ 0, x1 < x < x2

cX(x) − L(x) ≥ 0, x > x2

(3)

From (2) and (3), we conclude that (c(x) − L(x)) and (q1(x) − q2(x)) always

have opposite signs. It follows that

∫
c(x)q1(x)dx −

∫
c(x)q2(x)dx =

∫
(c(x) − L(x))(q1(x) − q2(x))dx ≤ 0.

Q.E.D.

The essential idea of the above proposition is present in Franke, Stapleton,

and Subrahmanyam (1999). In their Theorem 1 they state that assuming two

pricing kernels give the same prices of a unit bond and the underlying stock,

then the one with declining elasticity gives higher prices to derivatives with

convex payoffs than the one with constant elasticity.
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1.2 Risk Neutral P.D.Fs Intersect Three Times

Now we deal with the case where two risk neutral P.D.Fs intersect three times.

We have the following result.

Proposition 2 Assume two risk neutral P.D.Fs give the same prices of the

bond, the stock, and an option with strike price K. If they intersect three times,

then the one with fatter left tail give higher (lower) prices to options with strike

prices below (above) K .

Proof: Assume the two P.D.Fs q1(x) and q2(x) intersect at s1 < s2 < s3

such that

q∗∗(x) − q2(x) > 0, x < s1

q∗∗(x) − q2(x) < 0, s1 < x < s2

q∗∗(x) − q2(x) > 0, s2 < x < s3

q∗∗(x) − q2(x) < 0, x > s3.

(4)

Obviously given an option with strike price X , if X ≤ s1 or X ≥ s3, the

proposition holds. Thus we need only prove it for s1 < X < s3.

Note since q∗∗(x) and q2(x) give the same price of the observed option with

strike price K, we must have s1 < K < s3.

Denote the option with strike price X by cX . Construct a portfolio of the

unit bond, the underlying stock, and the observed option such that the payoff

of the portfolio is equal to the payoff of cX at x = s1, s2, s3. Denote the payoff

of the portfolio by L(x). Then we have L(si) = cX(si), i = 1, 2, 3.

Since q1(x) and q2(x) give the same prices of the unit bond, underlying

stock, and observed option, we have
∫
(q1(x) − q2(x))cX (x)dx =

∫
((q1(x) −
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q2(x))(cX (x)−L(x))dx. Because of (7), to prove
∫
(q1(x)− q2(x))cX (x)dx ≥ 0,

we need only show for s1 < X < K,

cX(x) − L(x) ≥ 0, x < s1

cX(x) − L(x) ≤ 0, s1 < x < s2

cX(x) − L(x) ≥ 0, s2 < x < s3

cX(x) − L(x) ≤ 0, x > s3;

(5)

and for s3 > x > K

cX(x) − L(x) ≤ 0, x < s1

cX(x) − L(x) ≥ 0, s1 < x < s2

cX(x) − L(x) ≤ 0, s2 < x < s3

cX(x) − L(x) ≥ 0, x > s3;

(6)

Consider the space in which the horizontal axis is x and the vertical axis is

the payoff of a derivative. Suppose s1 < K ≤ s2. Assume s1 < X < K. In the

space L(x) is two-segmented and piecewise linear. From the right to the left

its first linear segment passes through (s3, cX(s3)) and (s2, cX(s2)) and stops at

(K, L(K)), where L(K) > 0; its second linear segment starts from (K, L(K))

and passes through (s1, 0). Obviously (9) holds.

Assume s3 > X > K. In the space L(x) is two-segmented and piecewise lin-

ear. From the right to the left its first linear segment passes through (s3, cX(s3))

and (s2, cX(s2)) and stops at (K, L(K)), where L(K) < 0; its second linear seg-

ment starts from (K, L(K)) and passes through (s1, cX(s1)). Obviously (8)

holds. Q.E.D.
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1.3 Risk Neutral P.D.Fs Intersect Four Times

Now we deal with the case where two risk neutral P.D.Fs intersect four times.

We have the following result.

Proposition 3 Assume two risk neutral P.D.Fs give the same prices of the

bond, the stock, and two options with strike price K1 and K2, where K1 < K2.

If they intersect four times, then the one with fatter left tail give lower (higher)

prices to options with strike prices (not) in (K1, K2) .

Proof: Assume the two P.D.Fs q1(x) and q2(x) intersect at s1 < s2 < s3 < s4.

Then we have

q1(x) − q2(x) > 0, x < s1

q1(x) − q2(x) < 0, s1 < x < s2

q1(x) − q2(x) > 0, s2 < x < s3

q1(x) − q2(x) < 0, s3 < x < s4.

q1(x) − q2(x) > 0, x > s4

(7)

Note since q1(x) and q2(x) give the same price of the observed option with strike

price K, we must have s1 < K1 < K2 < s4. First assume K1 and K2 are not

separated by either s2 or s3. Then we must have Ki ∈ [s2, s3]; otherwise using

the method of constructing arbitrage portfolios as in the proof of Proposition

2, we can show that q1(x) = q2(x), when K1 < x < K2.

Given an option with strike price X , assume K1 < X < K2. Now we

again construct a portfolio of the unit bond, the underlying stock, and the two

observed options such that the payoff of the portfolio is equal to the payoff of cX

at x = s1, s2, s3, s4. Denote the payoff of the portfolio by L(x). Then we have
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L(si) = cX(si), i = 1, 2, 3, 4. Because of (7), if we can show for K1 < X < K2

cX(x) − L(x) ≤ 0, x < s1

cX(x) − L(x) ≥ 0, s1 < x < s2

cX(x) − L(x) ≤ 0, s2 < x < s3

cX(x) − L(x) ≥ 0, s3 < x < s4

cX(x) − L(x) ≤ 0, x > s4,

(8)

then the proof is done.

In the space L(x) is three-segmented and piecewise linear. From the right

to the left its first linear segment passes through (s4, cX(s4)) and (s3, cX(s3))

and stops at (K2, cX(K2)), where cX(K2) > 0; its second linear segment starts

from (K2, cX(K2)) and stops at (K1, L(K1)), where L(K1) = 0; its third linear

segment starts from (K1, 0) and passes through origin. Obviously (8) holds.

For X < K1 or X > K2 we similarly construct portfolio L(x) and show that

cX(x) − L(x) ≥ 0, x < s1

cX(x) − L(x) ≤ 0, s1 < x < s2

cX(x) − L(x) ≥ 0, s2 < x < s3

cX(x) − L(x) ≤ 0, s3 < x < s4

cX(x) − L(x) ≥ 0, x > s4;

(9)

thus the proof is done for the case where K1 and K2 are not separated by s2 or

s3.

For the case where K1 and K2 are separated by s2 or s3, the proof is similar.

Q.E.D.
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1.4 The General Case

Now we deal with the case where two risk neutral P.D.Fs intersect n + 2 times.

We have the following result.

Proposition 4 Assume two risk neutral P.D.Fs give the same prices of the

bond, the stock, and n options with strike price K1, ..., Kn, where 0 = K0 <

K1 < ... < Kn < Kn+1 = +∞. If they intersect n + 2 times, then the one with

fatter left tail gives higher (lower) prices to options with strike prices (not) in

(K2i, K2i+1), i = 0, 1, ....

Proof: Assume the two P.D.Fs intersect at s1, ..., sn+2. Now we only consider

ki, i = 1, ..., n and sj , j = 1, ..., n + 2 unless stated otherwise. Without loss of

generality assume there is no Ki = sj .2 We call an interval (si, si+1) a zero if

there is no kj in this interval. We call it a single if there is just one kj . Similarly,

we define a double and a triple. Before we proceed, we need the following lemma,

which is proved in Appendix 1.

Lemma 1 The following patterns are impossible.

1. A triple.

2. Adjacent doubles.

3. Two doubles linked by singles.

4. A double without a zero to its right (left).
2Suppose for some i, Ki = sj . If (sj−1, sj) has more Kq ’s than (sj , sj+1), treat it as if it

is in (sj−1, sj). Otherwise treat it as if it is (sj , sj+1). Then the rest of the proof will be the

same.
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5. Adjacent zeros.

6. Two zeros linked by singles.

With the help of the above lemma we now prove the proposition. Applying

Lemma 1, we conclude that every chain of singles must be sandwiched by a zero

and a double. That is, the general pattern of the intervals is as follows

Single, ..., single, zero, single,..., single, double, single,..., single, zero,

single,..., single, double, ..., single, ..., single, zero, single, ..., single,

where the chains of singles can have zero length.

Now given any option, using the technique which we apply in the previous

propositions, i.e., construct arbitrage portfolios, we can directly verify that the

proposition holds.

We prove it for every interval from the left to right by induction.

For the first chain of singles (if there are), it is easy to verify that the result

holds.

Given any zero, if for all intervals to its left side the result holds, then the

result must also hold for this zero; otherwise either the zero will become a single

or one of its adjacent singles will become a double, which Lemma 1 forbids.

Given any single, assume for all intervals to its left side the result holds.

Then with the help with the nearest double, we can construct an arbitrage

portfolio to show that the result must also hold for this single.

Given any double, assume for all intervals to its left side the result holds.

Then with the help of itself, we can construct an arbitrage portfolio to show
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that the result must also hold for this double. Q.E.D.

1.5 Two Extensions

1.5.1 Pricing Kernels

Now assume correspoding to the risk neutral probability measure Q, the true

probability measure is P . Assume the risk neutral measure is represented by

probability density function q(St) while the true measure is represented by the

true probability density function p(St). Let φ(St) = q(St)/p(St). φ(St) is often

called the pricing kernel.

All propositions derived in this section will hold if we replace risk neutral

densities with pricing kernels and replace integration operators with expectation

operators under the true probability measure P . The proofs are virtually the

same.

1.5.2 The Discrete Case

If the state space is discrete, we can show that the results obtained previously

in this section still hold. When the state space is continuous we use risk neutral

probability density functions; when it is discrete, we have to use risk neutral

probabilities.

Given two sets of risk neutral probabilities, {Qi(Sj); j = 1, 2, ...}, i = 1, 2,

assume Sj , j = 1, 2..., are in ascending order. When we say that the two sets

intersect n times we mean there exists i1, i2, ..., in, where 0 = i0 < i1 < i2 <

... < in < in+1 = +∞ such that (Q1(Si) − Q2(Si))(Q1(Sj) − Q2(Sj)) < 0 for
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any it−1 < i < it and any it < j < st+1, t = 1, 2, ..., n. In that case, we also say

Q1(x) and Q2(x) intersect at S1, S2, ..., and Sn.

With the above explanantion, all propositions derived in this section will

hold in a discrete state space if we replace risk neutral densities with risk neutral

probabilities. The proofs are virtually the same.

2 Risk Neutral Probability and Option Bounds

There are arguments against using log-normal risk neutral probabilities to price

options. The reason is that the actual risk neutral probabilities can be very

abnormal. In this section we propose a method to derive option bounds when

we have such a problem.

In this section we will use integrals very often, for brevity when no confusion

is caused we will write
∫ b

a f(St)dSt simply as
∫ b

a f(St).

2.1 With No Observed Option

Proposition 5 Assume the risk neutral probability density is bounded above by

q and below by 0. Assume the prices of a unit bond and the underlying stock are

B0 and S0 respectively.

• The upper bound for all options is given by the risk neutral probability

density q∗∗(St) = q, St < s1; q∗∗(St) = 0, s1 < St < s2; q∗∗(St) = q,

St > s2, where s1 and s2 are to be decided such that

q(s1 − s2 + sN ) = 1
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B0q(
∫ s1

s0

St +
∫ sN

s2

St) = S0

• The lower bound for all options is given by the risk neutral probability

density q∗(St) = 0, St < s1; q∗(St) = q, s1 < St < s2; q∗(St) = 0,

St > s2, where s1 and s2 are to be decided such that

q(−s1 + s2) = 1

B0q

∫ s2

s1

St = S0

Proof: Construct the following set of risk neutral probability density: q∗∗(St) =

q, St < s1; q∗∗(St) = 0, s1 < St < s2; q∗∗(St) = q, St > s2, where s1 and s2 are

to be decided such that

∫ sN

s0

q∗∗(St) = 1

B0

∫ sN

s0

Stq
∗∗(St) = S0

B0

∫ sN

s0

q∗∗(St)cK(St) = cK0

Note this set of risk neutral probability density can be regarded as three-

segmented and piecewise constant, where at the odd segments, their values are

equal to q while at the even segments, their values are equal to 0. It is clear that

this set of risk neutral probability density intersects all admissible sets of risk

neutral probabilities at most twice. But because it gives the same price of the

stock, it must intersect all the admissible ones at least twice. Thus it intersects

all the admissible ones exactly twice. Applying Proposition 2, we conclude that

it gives the upper bounds for all options. From the above three equations we
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obtain the three equations in the proposition. Hence the first result is proved.

The other result can be similarly proved. Q.E.D.

2.2 With One Observed Option

Proposition 6 Assume the risk neutral probability density are bounded above

by q and below by 0. Assume the prices of a unit bond, the underlying stock,

and an option with strike price K are B0, S0, and cK0 respectively.

• The upper bound for an option with strike price below K is given by the risk

neutral probability density q∗∗1 (St) = q, St < s1; q∗∗1 (St) = 0, s1 < St < s2;

q∗∗1 (St) = q, s2 < St < s3; q∗∗1 (St) = 0, St > s3, where si, i = 1, 2, 3, are

to be decided such that

q(s1 − s2 + s3) = 1

q(
∫ s1

s0

+
∫ s3

s2

)St =
S0

B0

q(
∫ s1

s0

+
∫ s3

s2

)cK(St) =
cK0

B0

• The lower bound for an option with strike price below K is given by the risk

neutral probability density q∗1(St) = 0, St < s1; q∗1(St) = q, s1 < St < s2;

q∗1(St) = 0, s2 < St < s3; q∗1(St) = q, St > s3, where si, i = 1, 2, 3, are to

be decided such that

(−q)(s1 − s2 + s3) + qsN = 1

q(
∫ s2

s1

+
∫ sN

s3

)St =
S0

B0

q(
∫ s2

s1

+
∫ sN

s3

)cK(St) =
cK0

B0
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• The upper (lower) bound for an option with strike price above K is given

by the risk neutral probability density q∗1(St) (q∗∗1 (St)).

Proof: Construct the following set of risk neutral probability density: q∗∗1 (St) =

q, St < s1; q∗∗1 (St) = 0, s1 < St < s2; q∗∗1 (St) = q, s2 < St < s3; q∗∗1 (St) = 0,

St > s3, where si, i = 1, 2, 3, are to be decided such that

∫ sN

s0

q∗∗1 (St) = 1

B0

∫ sN

s0

Stq
∗∗
1 (St) = S0

B0

∫ sN

s0

q∗∗1 (St)cK(St) = cK0

Note this set of risk neutral probability density can be regarded as four-segmented

and piecewise constant, where at the odd segments, their values are equal to q

while at the even segments, their values are equal to 0. It is clear that this set

of risk neutral probability density intersects all admissible sets of risk neutral

probabilities at most three times. But because it gives the same prices of the

stock and option, from Proposition 1, it must intersect all the admissible ones

at least three times. Thus it intersects all the admissible ones exactly three

times. Applying Proposition 2, we conclude that it gives the upper bounds on

the prices of options with strike prices below K. The above three equations can

be rewritten as the three in the proposition. Hence the first result is proved.

The other two results can be similarly proved. Q.E.D.
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2.3 With Two Observed Options

Proposition 7 Assume the risk neutral probability density are bounded above

by q and below by 0. Assume the prices of a unit bond, the underlying stock, and

two options with strike prices K1 and K2 are B0, S0, c10, and c20 respectively.

• The upper bound for an option with strike price below K1 or above K2 is

given by the risk neutral probability density q∗∗2 (St) = q, St < s1; q∗∗2 (St) =

0, s1 < St < s2; q∗∗2 (St) = q, s2 < St < s3; q∗∗2 (St) = 0, s3 < St < s4;

q∗∗2 (St) = q, St > s4, where si, i = 1, 2, 3, 4, are to be decided such that

q(s1 − s2 + s3 − s4 + sN ) = 1

q(
∫ s1

s0

+
∫ s3

s2

+
∫ sN

s4

)St =
S0

B0

q(
∫ s1

s0

+
∫ s3

s2

+
∫ sN

s4

)cj(St) =
cj0

B0

where j = 1, 2.

• The lower bound for an option with strike price below K1 or above K2 is

given by the risk neutral probability density q∗2(St) = 0, St < s1; q∗2(St) =

q, s1 < St < s2; q∗2(Su2) = q2; q∗2(St) = 0, s2 < St < s3; q∗2(Su3) = q3;

q∗2(St) = q, St > s3, where si, i = 1, 2, 3, are to be decided such that

q(−s1 + s2 − s3 + s4) = 1

q(
∫ s2

s1

+
∫ s4

s3

)St =
S0

B0

q(
∫ s2

s1

+
∫ s4

s3

)cj(St) =
cj0

B0

where j = 1, 2.
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• The upper (lower) bound for an option with strike price between K1 and

K2 is given by the risk neutral probability density q∗2(St) (q∗∗2 (St)).

Proof: We just prove the first result. The other results can be similarly proved.

Construct the following set of risk neutral probability density: q∗∗2 (St) = q,

St < s1; q∗∗2 (St) = 0, s1 < St < s2; q∗∗2 (St) = q, s2 < St < s3; q∗∗2 (St) = 0,

s3 < St < s4; q∗∗2 (St) = q, St > s4, where si, i = 1, 2, 3, 4, are to be decided

such that

∫ sN

s0

q∗∗2 (St) = 1

B0

∫ sN

s0

Stq
∗∗
2 (St) = S0

B0

∫ sN

s0

cj(St)q∗∗2 (St) = cj0

where j = 1, 2. Note this set of risk neutral probability density can be regarded

as five-segmented and piecewise constant, where at the odd segments, their

values are equal to q while at the even segments, their values are equal to 0. It

is clear that this set of risk neutral probability density intersects all admissible

sets of risk neutral probabilities at most four times. But because it gives the

same prices of the stock and option, from Proposition 2, it must intersect all

the admissible ones at least four times. Thus it intersects all the admissible

ones exactly four times. Applying Proposition 3, we conclude that it gives the

upper bounds on the prices of options with strike prices below K. With some

calculations from the above three equations, we conclude that si, i = 1, 2, 3, 4,

are to be decided by the three equations specified in the proposition. This proves

the first result. The other two results can be similarly proved. Q.E.D.
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2.4 The General Case

Proposition 8 Assume the risk neutral probability density are bounded above

by q and below by 0. Assume the prices of a unit bond, the underlying stock, and

n options with strike price K1, ..., Kn are B0, S0, and c10, ..., cn0 respectively.

• Assume n is odd. Let m = (n + 1)/2.

– The upper bound for an option with strike price between K2i and

K2i+1, i = 0, ..., m − 1, (where k0 = 0) is given by the risk neutral

probability density q∗∗n (St) = q, for s2i < St < s2i+1, i = 0, ..., m;

q∗∗n (St) = 0, for s2i−1 < St < s2i, i = 1, ..., m + 1, where 0 = s0 <

s1 < ... < sn+3 = sN , and si, i = 1, ..., n + 2, are to be decided such

that

q
n+2∑

1

(−1)i+1si = 1

q

m∑

0

∫ s2i+1

s2i

St =
S0

B0

q
m∑

0

∫ s2i+1

s2i

cj(St) =
cj0

B0

where j = 1, ..., n.

– The lower bound for an option with strike price between K2i and

K2i+1, i = 0, ..., m − 1, (where k0 = 0) is given by the risk neutral

probability density q∗n(St) = 0, for s2i < St < s2i+1, i = 0, ..., m;

q∗∗n (St) = q, for s2i−1 < St < s2i, i = 1, ..., m + 1, where 0 = s0 <

s1 < ... < sn+3 = sN , and si, i = 1, ..., n + 2, are to be decided such
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that

q
n+3∑

1

(−1)isi = 1

q
m+1∑

1

∫ s2i

s2i−1

St =
S0

B0

q
m+1∑

1

∫ s2i

s2i−1

cj(St) =
cj0

B0

where j = 1, ..., n.

• The upper (lower) bound for an option with strike price between K2i−1

and K2i, i = 1, ..., m, (where Kn+1 = +∞) is given by the risk neutral

probability density q∗n(St) (q∗∗n (St)).

• Assume n is even. Let m = n/2.

– The upper bound for an option with strike price between K2i and

K2i+1, i = 0, ..., m, (where k0 = 0 and Kn+1 = +∞) is given by

the risk neutral probability density q∗∗n (St) = q, for s2i < St < s2i+1,

i = 0, ..., m + 1; q∗∗n (Sui) = qi, i = 1, ..., n + 2; q∗∗n (St) = 0, for

s2i−1 < St < s2i, i = 1, ..., m + 1, where 0 = s0 < s1 < ... < sn+3 =

sN and si, i = 1, ..., n + 2, are to be decided such that

q

n+3∑

1

(−1)i+1si = 1

q

∫ m+1

0

∫ s2i+1

s2i

St =
S0

B0

q
m∑

0

∫ s2i+1

s2i

cj(St) =
cj0

B0

where j = 1, ..., n.
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– The lower bound for an option with strike price between K2i and

K2i+1, i = 0, ..., m, (where k0 = 0 and Kn+1 = +∞) is given by

the risk neutral probability density q∗2(St) = 0, for s2i < St < s2i+1,

i = 0, ..., m + 1; q∗∗n (Sui) = qi, i = 1, ..., n + 2; q∗∗n (St) = q, for

s2i−1 < St < s2i, i = 1, ..., m + 1, where 0 = s0 < s1 < ... < sn+3 =

sN and si, i = 1, ..., n + 2, are to be decided such that

q

n+2∑

1

(−1)isi = 1

q

m+1∑

1

∫ s2i

s2i−1

St =
S0

B0

q

m+1∑

1

∫ s2i

s2i−1

cj(St) =
cj0

B0

where j = 1, ..., n.

– The upper (lower) bound for an option with strike price between

K2i−1 and K2i, i = 1, ..., m, is given by the risk neutral probabili-

ty density q∗2(St) (q∗∗2 (St)).

Proof: For odd n, the proof is similar to the case where n = 1 while for even n,

the proof is similar to the case where n = 2. Thus the proof is omitted.

2.5 Relation to Bertsimas and Popescu’s (2002) Work

Bertsimas and Popescu find that assuming risk neutral probability density is

positive the option bounds are given by the convexity of option prices in exercise

prices. This result is implied by the results just obtained in this section.
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Corollary 1 (Bertsimas and Popescu (2002)) The risk neutral probability

density is positive if and only if option prices are convex in exercise prices.

Proof: If we let q → +∞, then the work of Bertsimas and Popescu (2002)

becomes our limit case. Thus their result can be obtained from our result. For

detailed proof, see Appendix 2.

Note as we let q be larger, according to the results in the first section, the

option bounds will be loosened. Thus Bertsimas and Popescu’s option bounds

as a limit case of ours when q → +∞ must be looser than ours.

3 Conclusions

In this paper we have presented to a geometric approach to option bounds.

By identifying the very set of risk neutral probability density that intersect all

admissible ones for the right number of times, we can derive option bounds.

The advantage of this method is that it is transparent and simple.

We have used this method to derive the option bounds when we know the

bounds of the risk neutral probability density. Unlike higher order stochas-

tic dominance bounds, these bounds do not require the knowledge of the true

probability density.

There are concerns about using the log-normal risk neutral probabilities to

price options; the reason is that the actual risk neutral probabilities are not

that normal. Our result gives a solution to this problem. Assuming only the

bounds of the risk neutral probability densities allows potentially very abnormal
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probability densities.

Note otherwise if we do not impose conditions, then as shown by Bertsimas

and Popescu’s (2002) excellent work, option prices are only bounded by their

convexity in exercise prices, which means we can hardly get useful option bounds

from observed option prices.

The method present in this paper works in both discrete and continuous

state spaces. As a useful technique to option optimization problems, it must

have broader implications for similar problems in other areas.
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Appendix 1 Proof of Lemma 1

First we show a triple is impossible. Otherwise suppose Ki, Ki+1, and Ki+2

are in one interval, one can show by constructing an arbitrage portfolio that the

two P.D.Fs are equal at x ∈ [Ki, Ki+2]. Similarly we can show that adjacent

doubles, doubles linked by singles, and a double without a zero to its right (left)

are all impossible.

Now we show adjacent zeros are impossible. Suppose (si−1, si) and (si, si+1)

are both zeroes, then the n−2 strike prices must be in the other n−3 intervals.

Note to the left of si−1 if there is a double, there must be a zero to the left of the

double (ignoring the singles between them) while to the right of si+1 if there is a

double, there must follow a zero (ignoring the singles between them); otherwise

the impossible scenarios we have just checked will appear. Thus in average, one

interval has (at most) one strike price. This implies that there cannot be n − 2

strike prices in the other n-3 intervals.

Finally we show zeroes linked by singles are impossible. Without loss of

generality, suppose (si−1, si) and (si+1, si+2) are both zeroes while (si, si+1) is

single, then the rest n − 3 strike prices must be in the rest n − 4 intervals. As

we have just argued for adjacent zeroes, this is impossible. Q.E.D.

Appendix 2 Proof of Corollary 1

The sufficiency is easy to prove; thus we need only show the necessity. We first

examine the case where n = 2. From Proposition 7, when q → +∞, the upper
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bound for an option with strike price between K1 and K2 is given by the pricing

kernel φ∗
2(St) = a1δ(St − s1) + a2δ(St − s2), where δ(St) is the Dirac function,

a1, a2, s1, and s2 are to be determined such that

a1 + a2 = 1, B0(a1s1 + a2s2) = S0, B0(a1ci(s1) + a2ci(s2)) = ci0, i = 1, 2.

With some calculation we obtain the upper bound for the option as follows

c10 − c20

(K2 − K1)
(
K2 − K1

c10 − c20
c20 + K2 − X),

where K1 < X < K2. This is equivalent to

c20 − cX0

(K2 − X)
≥

cX0 − c10

X − K1
, (10)

where the inequality is strict unless the actual risk neutral probability is equal

to φ∗
2(St).

Now we examine the general case. Assume n is odd. Let m = (n+1)/2. Let

K0 = 0, Kn+1 = sN , c00 = S0, and c(n+1)0 = 0. That is, the underlying stock is

viewed as a call option with zero strike price, and, of course, a call option with

trike price sN always has zero value.

Let q → +∞ in Proposition 8; then we conclude that the upper bound for

an option with strike price between K2i−2 and K2i−1, i = 1, 2, ..., is given by

the pricing kernel

q∗∗(St) = a0δ(St − s1) + a1δ(St − s1) + ... + amδ(St − sm),

where δ(St) is the Dirac function, a0, ..., am, s1, ..., and sm are to be determined

such that

a0 + ... + am = 1
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B0(a0s1 + a1s1 + ... + amsm) = S0

B0(a0ci(s1) + a1ci(s1) + ... + amci(sm)) = ci0,

i = 1, ..., n.

Note we must have Kn < sm. Moreover, in any interval (si, si+1) there are

at most two observed exercise prices Kj and Kj+1; otherwise suppose there are

three observed option prices Kj−1, Kj , and Kj+1 in (si, si+1). Thus we have

B0(ai+1(si+1 − Kj−1) + ... + am(sm − Kj−1)) = c(j−1)0

B0(ai+1(si+1 − Kj) + ... + am(sm − Kj)) = cj0

B0(ai+1(si+1 − Kj+1) + ... + am(sm − Kj+1)) = c(j+1)0

It follows that

B0(ai+1 + ... + am)(Kj − Kj−1)) = c(j−1)0 − cj0

B0(ai+1 + ... + am)(Kj+1 − Kj)) = cj0 − c(j+1)0

This implies c(j−1)0−cj0

Kj−Kj−1
= cj0−c(j+1)0

Kj+1−Kj
.

When we derive (10) we have concluded that this happens only if the actual

risk neutral probability has the same form as φ∗∗
2 , which has infinite values.

This is, of course, excluded.

Thus we conclude that K1 ∈ (0, s1), K2i, K2i+1 ∈ (si, si+1), i = 1, ..., m− 1.

Hence we obtain

ai(si − K2i−2) + ... + am(sm − K2i−2) = c(2i−2)0/B0,

ai(si − K2i−1) + ... + am(sm − K2i−1) = c(2i−1)0/B0, (11)
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where i = 1, ..., m.

It follows that

B0(ai + ... + am)(K2i−1 − K2i−2) = c(2i−2)0 − c(2i−1)0.

It follows that

ai + ... + am =
c(2i−2)0 − c(2i−1)0

B0(K2i−1 − K2i−2)
. (12)

On the other hand we have from (11) that

aisi + ... + amsm =
c(2i−1)0

B0
+ (ai + ... + am)K2i−1.

Hence we have

aisi + ... + amsm =
c(2i−1)0

B0
+ K2i−1

c(2i−2)0 − c(2i−1)0

B0(K2i−1 − K2i−2)
. (13)

Recall that for an option with strike price X ∈ (K2i−2, K2i−1), the upper

bound on its price is given by

B0(a0cX(s1) + a1cX(s2) + ... + amcX(sm)).

Note we have K2i−2, K2i−1 ∈ (si−1, si); this implies X ∈ (si−1, si). Thus the

upper bound is given by

B0(ai(si − X) + ... + am(sm − X)).

This together with (12) and (13) implies that the upper bound is give by

c(2i−2)0 − c(2i−1)0

(K2i−1 − K2i−2)
(

K2i−1 − K2i−2

c(2i−2)0 − c(2i−1)0
c(2i−1)0 + K2i−1 − X).

That is, the bound is given by the convexity of option prices in exercise prices.

For other cases, the proof is similar. Q.E.D.
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