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Abstract

This paper gives an overview of the current state of research into neighbourhood search metaheuristics for combinatorial optimization problems.  The main variations are described and some pointers for future research briefly discussed.  Throughout there is extensive referencing to some of the most important publications in the area.
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Heuristics and Metaheuristics

A Heuristic has been defined as a procedure for solving problems by an intuitive approach in which the structure of the problem can be interpreted and exploited intelligently to obtain a reasonable solution1.

At the time of that paper's publication, most heuristics were very problem-dependent.  Until the 1980s, this was essential because of the limited computing power available at that time.  It was only by taking very careful account of the problem structure that good solutions could be produced in the time available.

However, with the increase of computing power came the use of more general approaches, which could be successfully applied to a wide variety of problems.  Such approaches came to be known as Metaheuristics.  These approaches have largely taken over from the more traditional forms of heuristics.

One definition is: A metaheuristic is an iterative generation process which guides a subordinate heuristic by combining intelligently different concepts for exploring and exploiting the search spaces using learning strategies to structure information in order to find efficiently near-optimal solutions2.  This definition may be rather more precise and restrictive than some would consider necessary, but it does encapsulate the general principles involved in all well-known metaheuristics developed to date.

Neighbourhood Search, described below, encompasses a variety of successful metaheuristic approaches.  This paper will concentrate on Neighbourhood Search methods.  However, other metaheuristics, such as Genetic Algorithms3, Ant Systems4 and Neural Networks5 are in many ways similar and their study may present a useful cross-fertilization of ideas and possibilities for hybridisation of approaches with Neighbourhood Search approaches.

Neighbourhood Search

Neighbourhood search methods involve the guiding of progress through search space, where at each stage a current point in search space is progressively replaced by a similar one, with the effect that possibly a very poor initial position is eventually transformed into a good final position.

The following stages are required before a neighbourhood search technique can be used:

· Problem definition: the problem must be expressed quantitatively in terms of one or more objectives and a set of constraints.

· Search Space definition: the method will involve moving between points (which may or may not simply be solutions themselves) in search space.  The set of these points must be defined.

· Neighbourhood definition: the points in search space must be linked in some way, such that the search process will move along links.  This involves the definition of the neighbourhood of any given point in search space.

· Generation of an initial solution: an initial point in search space, from which the search procedure will begin, must be generated.

· Neighbour generation: a method must be specified for determining which neighbour(s) of a current point in search space are to be considered.

· Acceptance criterion: a decision criterion must be specified as to which, if any, of the generated neighbours should be accepted.  An accepted point in search space becomes the current point from which a new neighbour or set of neighbours is generated.

· Stopping criterion: a rule must be specified for deciding when the search will end.

Problem definition

The problems we are considering here are combinatorial optimization problems, for which some objective function needs to be near-optimised under a given set of constraints.  In this supporting paper it shall be assumed throughout that the objective function value is a cost (which may or may not be wholly or partly financial) to be minimised, or near-minimised.

However, it is not necessarily the case that the objective function needs to be absolutely fixed before an implementation of neighbourhood search can start.  For example, Wright6 found that it can be very effective in some circumstances to modify the objective function itself, by changing the weights of different elements of this function and/or adding extra elements to it.  Indeed, for many practical cases, the objective function is to a large extent a subjective approximation anyway.

It can also prove effective to transform some constraints into elements of the objective function by means of penalty costs for the infringement of these constraints, with the intention that the neighbourhood search technique will ensure that all penalty costs are removed before the final solution is reached.  Again, in many practical cases, some constraints may be soft rather than hard, i.e. they may represent preferences rather than absolute rules.

Search space

Even after a problem has been precisely specified (which may in itself be difficult for many ill-defined types of problem) this does not of itself define the search space.  Although it may frequently be convenient to define the search space as being the same as either the total solution space (i.e. the set of all solutions) or the feasible solution space (i.e. the set of all feasible solutions), there may be occasions where it is better to define the search space somewhat differently.  

For example, Wright7, when approaching a locomotive scheduling problem, defined the solution space as the set of all locomotive schedules, but the search space as the set of all the ways that types of locomotive can be allocated to the trains.  There is a mapping from search space to solution space using an exact algorithm.  James and Buchanan8 proposed a similar approach, but with a heuristic mapping, for a production scheduling problem, while Tsubakatani and Evans9 suggested a way of collapsing the search space for a Travelling Salesman Problem into a two-dimensional search space.

Neighbourhood definition
The way in which neighbourhoods are defined will often play a great part in determining the success or failure of a neighbourhood search method.  A neighbourhood is defined by first defining a set of allowable perturbations, i.e. means of amending one solution to form another.  In most implementations there are several plausible ways of defining these perturbations.  Neighbouring solutions to a given solution are those which can be reached by means of a single perturbation.  Since the search progresses by successive moves between neighbouring solutions, the definition of allowable perturbations is thus critical to the effectiveness of the search procedure.

Often it can help to extend the definition of neighbourhood beyond the obvious formulation.  This can include the incorporation of Ejection Chains10,11, Kempe Chains12, etc., in which multiple moves can be regarded as a single perturbation.  However, this can be very difficult to do effectively, since there is a danger that the neighbourhood may be so large as to render the search process very slow indeed.

In some approaches, the definition of neighbourhood is dynamic, i.e. it changes as the search progresses.  This is the principle behind Variable Neighbourhood Search13,14.  Di Gaspero and Schaerf15 have taken this a stage further by proposing the systematic use of combinations of neighbourhood functions.  Mautor16 proposes the use of special neighbourhood structures or meta-neighbourhoods.

Initial solution

The construction of an initial solution is usually either at least partly random or highly problem-dependent.  The quality of the initial solution is clearly important when very little time is available for the search; otherwise most of the time may be wasted in moving from a very poor solution to a reasonably good one, with insufficient time remaining to produce a very good one.

Otherwise it is unclear whether in general a higher-quality initial solution is more likely to lead to a high-quality final solution than a lower-quality initial solution, though in some cases it has been found that a good initial solution, constructed in a way taking account of specific problem characteristics, can help ensure a high-quality final solution.

For example, this was found by Perttunen17 for Travelling Salesman problems and by Emden-Weinert and Proksch18 in their study of the use of Simulated Annealing for airline crew scheduling problems.

When several runs of a method are being undertaken, each starting from a new initial solution, it may be sensible to make intelligent use of the progress of the search to date when constructing the next initial solution.  This is the principle behind GRASP19,20. 

Neighbour generation
In some techniques, at each iteration, a single neighbouring solution is generated by means of an allowable perturbation.  The decision that then needs to be made is whether this solution should replace the current solution.  If it does, the search continues from the new solution; otherwise it continues with a different perturbation to the existing current solution.

The two main variants of this type of search are First-accept Local Improvement21 and Simulated Annealing22,23,24. 

In any method of this overall type, the neighbouring solution may be generated either randomly or systematically.  It is usual for neighbours in First-accept Local Improvement to be generated systematically, so that a guaranteed local optimum is reached after a given number of iterations since the last acceptance of a new solution.  Most early Simulated Annealing applications used random neighbour generation; however, as Dowsland24 reports, subsequent researchers often found it preferable to use a systematic sampling method.  It is also possible to regard some neighbours as tabu.

The other main type of neighbourhood search technique generates at each iteration several alternative neighbouring solutions, each derived by means of a single perturbation to the current solution.  The decision to be made is which of these to accept.  The two main variants of this type of search are Best-accept Local Improvement21 and Tabu Search25,26.

In any technique of this type, all possible neighbours may be generated at each iteration; but, especially for Tabu Search, and especially where neighbourhoods are large, it is more usual to generate a candidate list of admissible neighbours, and the choice of which to accept is restricted to that list.  A mechanism for changing this list at each iteration must be included in order that all possible perturbations are tried from time to time.

Acceptance criteria

For First-accept Local Improvement, the acceptance criterion is simple – the new solution is accepted if and only if its cost (objective function value) is lower than that of the current solution.  In Best-accept Local Improvement, we have to choose one neighbour from several on the candidate list – the criterion is again simple – accept the neighbour whose cost is lowest, as long as this cost is lower than that of the current solution.  If there is no such neighbour, the algorithm terminates.

The decision criterion for Simulated Annealing is rather more complex, involving a random number and a dynamic parameter known as the temperature.  At the start of Simulated Annealing, the temperature is usually high (though not always – for example, see Connolly27, who proposes the use of a constant low temperature).  This has the effect that a very large proportion of generated neighbours are accepted.  This temperature gradually decreases until, near the end of the search, very few neighbours which increase costs are accepted.  However, there are many different ways in which this gradual decrease in temperature can be achieved – moreover, some applications effectively use occasional reheating, where the temperature is suddenly increased, within the overall pattern of gradual decrease.  For an example of this, see Dowsland28.

Other methods known as Threshold methods29, including the Great Deluge method30, have been proposed which are very similar to Simulated Annealing, but without the random factor in the acceptance criterion.  Again, many neighbours are accepted early in the search, but few at the end.  This ensures that the final solution is very likely to be a local optimum.

In Tabu Search, the decision is more complex.  In the simplest of implementations, the neighbour on the candidate list whose cost is lowest (whether better or worse than that of the current solution) is chosen, subject to tabu status (defining which neighbours can be considered) and aspiration criteria (defining exceptions to these tabu rules).  However, many implementations are more complex than this – see later.

Implementations of Tabu Search thus have to define the way in which tabu status is handled.  Often there are a fixed number of tabu perturbations (on a tabu list), though membership of this tabu list (and sometimes the length of the list also) varies dynamically as the search progresses.  The tabu moves will often (though not always) consist of reversals of recently accepted perturbations, so as to avoid cycling.  The aspiration criterion is usually included in order to ensure that any perturbation leading to a better solution than any found previously is accepted regardless of tabu status.

Stopping criteria

Some Neighbourhood Search methods have a natural stopping point.  Best-accept Local Improvement and First-accept Local Improvement terminate when it is clear that the current point in search space is a local optimum, though there is then the option of restarting (see below) or redefining neighbourhoods via Variable Neighbourhood Search13 or other methods.  For two-phase methods (see later), the reaching of a local optimum is the trigger for switching between phases of the search.

Other methods such as Simulated Annealing and Tabu Search have no natural stopping point, so this must be specified in some way.  Sometimes the search may stop after a prespecified number of iterations or length of elapsed time.  For Simulated Annealing, the trigger could perhaps be the reaching of a prespecified ending temperature.  In other cases, the decision to stop may depend on the progress of the search; for example, when a prespecified number of iterations have occurred since the best solution found to date by the search was encountered.

Main variants of Neighbourhood Search
Numerous variations on these basic ideas have been proposed and many have been found to be effective.  The acceptance decision and/or the neighbour generation mechanism may be influenced by memory considerations, where the history of the search – e.g. which perturbations have been tried before, how often and how recently, and/or details of previous solutions such as the values of specific variables, etc. – is taken into account.  Glover and Laguna26 review some of the more common methods for doing this for implementations of Tabu Search.

Alternatively, as in Subcost-Guided Search31,32,33, the increase in overall cost may be modified according to specific rules before being used in the acceptance criterion.

For any method, there is always the option of multiple restarts.  Often this will simply mean restarting from a new randomly (or part-randomly) generated initial solution.  In particular, this is often done for Local Improvement, where the search comes to a natural end at a local optimum.  In methods such as GRASP (Greedy Randomized Adaptive Search Procedure)19,20, the construction of the next initial solution is influenced by the progress of the search to that point.  Multiple restarts have the great advantage that all the computer time available can be used.

All successful methods involve some element of intensification (trying to find the best nearby solution) and diversification (moving to new areas of search space).  For example, Simulated Annealing normally starts with diversification being dominant, since the high temperature means that the random influence is very high, but then the influence of intensification gradually increases as the temperature parameter lowers until it is the dominant facet.

However, in some methods, intensification and diversification are explicitly separated into two separate alternating phases of the solution procedure.  Often the first phase is some form of local improvement, with the second phase consisting of a small number of random or partly random perturbations, as in Tabu Thresholding34,35 and Iterated Local Search36,37.  Alternatively, as in Strategic Oscillation38,39, some constraints may be relaxed in the second phase, allowing infeasible solutions to be accepted.  These infeasibilities are then removed at the start of the subsequent intensifying phase.

It can often prove fruitful to combine Neighbourhood Search approaches with each other and/or with other techniques.  Recent examples of the effective implementation of such hybrids can be found in numerous publications.  For example, Simulated Annealing has been hybridised with Tabu Search40,41, with Genetic Algorithms42,43,44, and with Neural Networks45,46, while Tabu Search has been hybridised with Genetic Algorithms47,48,49, with Strategic Oscillation50, with Memetic Algorithms51 and with exact optimization approaches52,53,54.

For detailed reviews of neighbourhood search methods, see Reeves55, Osman and Kelly2 and Ahuja et al.56.

Which is the best form of Neighbourhood Search?
This is a very difficult issue.  Any Neighbourhood Search approach (indeed, any metaheuristic approach) can be implemented in a variety of ways.  For example, the choices of neighbourhood and parameters are usually of crucial importance.  Every method has numerous variations – indeed, it is likely that every single researcher in the field implements Neighbourhood Search in a slightly different way.  

Moreover, when comparing solution times,  the running time strongly depends on the programming style, on the compiler, on the compiling options etc. 57, as well as the type of computer.  Data structures and clever schemes for the avoidance of repetition of calculations may be more important than the precise choice of technique.

Worse still, a method that works best on one set of data will not necessarily work best on another.  Moreover, since most methods involve random numbers, often a very large number of experimental runs need to be carried out before statistically significant results can be achieved.

Some researchers have tried to compare methods, but without any kind of consistency in their conclusions.  For example, Cordreau et al. 58, say: "Tabu Search clearly stands out as the best metaheuristic for the Vehicle Routing Problem".  This in fact turns out to mean that the implementations reported of Tabu Search have so far proved more successful than the implementations reported of other metaheuristics – not the same thing, though it may be suggestive.

As another example, "Threshold Accepting: a general purpose optimization algorithm appearing superior to Simulated Annealing" is the title of a paper29.  Unfortunately, this conclusion is far from conclusively backed up by the results reported in the paper.

Sinclair59 compared several methods, though his paper does not give a full description of how the parameters and other implementation details were chosen, making it difficult to comment on his final assertions, for example that: Tabu Search provides the best solutions, but at the cost of long solution times.

Glass and Potts60, by contrast, claim that for some flow shop problems: "Based on the results of extensive computational tests, simulated annealing is found to generate better quality solutions than the other neighbourhood search methods".

Marett and Wright's61 tentative conclusions include: "Simulated Annealing is sometimes better, sometimes worse, than … Tabu Search; the relative superiority of Simulated Annealing increases as the complexity of the combinatorial problem increases and as the number of perturbations allowed decreases."  However, the authors stress that this conclusion is proposed tentatively for the reasons listed above.

Even when authors go to great lengths to be fair in their comparisons, it is difficult for them to reach robust conclusions.  Rossi-Doria et al.62 have very clearly attempted to be as fair as possible in their comparisons for timetabling problems, yet still their conclusions, for example that: "On the small instances ILS (Iterated Local Search) generally performs best, followed closely by SA (Simulated Annealing) and ACO (Ant Colony Optimization).  GA (Genetic Algorithms) is definitely worse, but TS (Tabu Search) shows the worst overall performance", must be treated with considerable caution.

One problem with published comparisons is that authors tend to be much more au fait with the best and most up-to-date implementation details of their own preferred method than of other approaches.  For example, Glover and Laguna63, when comparing Tabu Search and Simulated Annealing refer to " … the focus on exploiting memory in Tabu Search that is absent from Simulated Annealing", " … the Simulated Annealing approach of randomly sampling … " and "the Simulated Annealing philosophy of adhering to a temperature that only changes monotonically".  As Dowsland24 explains in the previous chapter of the very same volume, these features were true of the earliest applications of Simulated Annealing, but not of many more recent implementations.  Moreover, since the publication of that book in 1995, both Tabu Search and Simulated Annealing (and other methods) have continued to develop, making sweeping comparisons even more invalid.

While we have to accept that a clear comparison between general approaches is nigh on impossible, it is clear that using intelligence in the implementation of any approach can make an enormous difference to its effectiveness.  For example, one very important issue is the balance between intensification and diversification.  If the first facet is underemphasized, excellent solutions may be missed because the search space is not probed to sufficient depth.  On the other hand, if the second facet is not given enough scope, the search may be confined to mediocre areas of search space, never touching upon any of the high-quality areas that may exist.

The holy grail of heuristics research is the provision of a technique which determines for itself how best to solve any specific problem (rather than trying to find a technique that is best in all circumstances).  Some kind of preliminary analysis would determine the overall approach and any necessary parameters.  Such a method is known as a hyperheuristic.  Preliminary work towards this end has been reported64,65,66.  However, much more research is required before such a proposition becomes realistic.

Applying Neighbourhood Search to problems with many objectives
Many real problems involve more than one type of objective.  There are three main approaches to solving such problems.

One such approach is a phased approach, where the objectives are considered in turn.  In the first phase, a solution is produced for the most important objective; then, in the second phase, it is modified with regard to the next most important objective while ensuring that the solution is not made worse with regard to the first objective, etc.  For an example, see Lotfi and Cerveny67.  

However, for many problems, such an ordering of objectives may not be appropriate.  There may simply be too many objectives, or the priorities may not be clear.  For example, a high value of one objective may be catastrophic, a middling value of the same objective may be important but not overriding, and a low value of the same objective may be relatively trivial compared to other considerations.

Another approach has become known as multi-objective optimization, where all objectives are considered together, but not combined in any way.  This gives rise to the notions of Dominance and Pareto-optimality.  See Hansen68 and Viana and de Sousa69 for discussions of multi-objective metaheuristics.  However, the techniques so far developed have, to date, been used only on small, simple, artificial problems.  Very considerable progress is required if this approach is ever to have value for large, complex, practical problems.

A third approach is the approach known as Subcost-guided Search31,32.  The objectives are combined, usually by means of linear weightings, into a single all-subsuming compound objective.  Any neighbourhood search method can then be used in the same way as for a genuinely single-objective problem.  However, when designing and selecting a neighbourhood search approach for solving such a problem, it is still possible to take account of the way in which the single objective has been formed out of all the subobjectives, in a way that can greatly improve the quality of final outcomes, despite the fact that inevitably the relative weightings of the subobjectives have to be determined to some extent subjectively.

Some directions for future research

This work can be developed in very many ways.  In this section we concentrate on three linked contexts:

· the manipulation of objective functions so as to increase the effectiveness of neighbourhood search;

· the development and application of more intelligent diversification approaches for complex problems;

· the investigation of the nature of search space and its effect on the efficacy of heuristic search methods.

Manipulation of objective functions

It can often be beneficial to manipulate the objective function in order to aid the progress of a heuristic search method.  Manipulation of the objective function can also be perceived as manipulation of the search space.  It is accepted that certain types of search space are spiky, making it difficult for good solutions to be obtained, whereas others are smooth, making it easier.

One possible type of manipulation involves the adjustment of cost weightings in a counterintuitive way, i.e. deliberately distorting the objective function away from an accurate representation of costs.  Plumb et al.70 have shown the value of this approach for an interesting pharmaceutical problem.  Another type of adjustment involves the addition of new elements of cost which are wholly unimportant in themselves, but without which it may be very unlikely that other real elements of cost can be reduced to a satisfactory level.  Wright6 termed such elements "catalytic" in an analogy with chemical processes.

Dynamic adjustment of subcost weights, which would be varied according to the progress of the search to date, is another area which could prove very fruitful.  Rochat and Semet71 proposed a method which dynamically updates penalties for infeasibilities within a solution, in order to aid the search for a feasible solution; Storer et al.72 added random numbers to some of their data; while Voudouris and Tsang73 suggested adding penalty functions to local optima.  However, these approaches are somewhat limited in scope, though still useful and of interest.

Slightly more complex is the approach of Herault74, who has proposed a method called Rescaled Simulated Annealing, where the value of the objective function is rescaled dynamically, depending on the temperature.  The principles behind Noising75 are very similar to this, but with the objective function adjusted randomly.

There is great scope for extending the application of all these ideas.  The first idea (modifying weightings) has been systematically examined76 in three contexts - flow-shop, travelling salesman and layout problems with many objectives.  This work showed that such cost distortion can be very useful if carried out intelligently (though it can of course be very damaging if done inappropriately).  This work is as yet unpublished beyond a PhD thesis77, and further work is required in order to provide robust guidance as to when and how objective functions should be distorted.

In vehicle routeing, it is notoriously difficult to reduce the number of vehicles using heuristic search.  Progress towards this goal can be made by systematically reducing the number of customers served by a particular vehicle, yet until the last customer is removed no cost will have been saved.  One way of encouraging a heuristic search method to move towards this goal would be to add one or more catalytic cost elements to the objective function, perhaps relating to the smallest number of customers served by the same vehicle.  This would encourage the unbalancing of the vehicles' workloads, which is not desirable in itself but could lead to an extremely desirable outcome, i.e. a reduction in the number of vehicles required.

A similar position pertains to some types of personnel scheduling problem, for example train driver scheduling.  To reduce the total number of schedules requires that work be removed from one driver's schedule until it disappears entirely.  Without some kind of catalytic cost element encouraging this process, it may be very difficult for any form of heuristic search to achieve this goal.

Influential diversification (e.g. Subcost-Guided Search)

There may be great value in using the progress of the subcosts to guide the search.  The value of subcost guidance is that it provides a focused, or influential form of diversification, which other methods have, to date, been unable to provide effectively.  Not only is the search moved away from well-visited areas of search space, but it is also influenced to move to new areas that appear likely to produce good solutions. There is very wide scope for such experimentation.  

Hübscher and Glover78 described a simple way of achieving this aim to a limited extent.  Their work has been followed up by Armentano and Yamashita79.  More complex and highly successful is the Subcost-Guided Search approach, which grew out of two successful real-life applications80,81 and was backed up by experimentation31,32.  There is wide scope for investigating further ways of incorporating the overall idea of subcost guidance.

The nature of search space
Some of the ideas described earlier concern the manipulation of the nature of the search space, yet this nature has not yet been properly defined or described.  Researchers will often characterise search space as being smooth, spiky, etc., without being precise about the meanings of such terms.  Since it is also generally accepted that the nature of search space can have a very important effect on the efficacy of heuristic search techniques, it would be very valuable to know more about the nature of search spaces.

Some research has been carried out in this area82,83,84,85,86.  Most of this work has concentrated on the solution landscapes near local optima.  However, much more research is needed and other features could also be usefully examined: the steepness of slopes, the existence of plateaux, etc.  There is a need for some generally accepted measures of search space which will be of value when determining how effective particular search techniques will prove to be and will help in the setting of parameters for these techniques.

Summary
Neighbourhood Search metaheuristics have come a very long way in quite a short time.  Implementations and applications are diverse and new approaches and variations are appearing all the time.  This paper has attempted to give an overview of the current position, though before long it will itself inevitably become out of date. 
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