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Extensions to emergency vehicle location models 

 

 
Othman Ibraheem Alsalloum (King Saud University, Riyadh, Saudi Arabia) 

and Graham K. Rand (Lancaster University, UK) 

 

 

Abstract 
This paper is concerned with extending models for the Maximal Covering Location Problem in two 
ways. First, the usual 0-1 coverage definition is replaced by the probability of covering a demand 
within the target time.  Second, once the locations are determined, the minimum number of 
vehicles at each location that satisfies the required performance levels is determined.  Thus, the 
problem of identifying the optimal locations of a pre-specified number of emergency medical 
service stations is addressed by goal programming.  The first goal is to locate these stations so the 
maximum expected demand can be reached within a pre-specified target time. Then, the second 
goal is to ensure that any demand arising located within the service area of the station will find at 
least one vehicle, such as an ambulance, available. Erlang’s loss formula is used to identify the 
arrival rates when it is necessary to add an ambulance in order to maintain the performance level 
for the availability of ambulances.  The model developed has been used to evaluate locations for 
the Saudi Arabian Red Crescent Society, Riyadh City, Saudi Arabia.   
 
Keywords:Location, Emergency Medical Services 
 

 

1. Introduction 

 

This paper describes a model that has been developed and applied to the EMS of Riyadh, 

the capital city of Saudi Arabia.  The application is described more fully in Alsalloum and Rand 

(2003).  The aim of the emergency medical service (EMS) of Saudi Arabia is to reduce mortality 

and health deterioration caused by emergency incidents or illness.  This goal can be achieved if 

suitable care arrives on time at the location of the incidents.  Therefore, rapid response to an 

incident is one important measurement of an EMS system success.  However, an EMS is provided 

within a tight public sector budget.   Therefore, a rational and optimal way of locating EMS 

stations and allocating EMS ambulances to these stations is required.   
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The model developed here is an extension to the Maximal Covering Location Problem 

(MCLP), which was presented by Church and Revelle (1974). The purpose is to identify the 

optimal locations of a specified number of EMS stations.  The first goal is to locate these stations 

so the maximum expected demand may be reached within a pre-specified target time. The 

traditional definition used in the set covering problem models is that the demand node is covered if 

it is within the target time or distance, otherwise it will not be covered.  Here, the usual 0-1 

coverage definition is replaced by the probability of covering a demand within the target time.  The 

second goal is to ensure that any demand arising located within the target time will find at least one 

ambulance available.  Erlang’s loss formula is used to identify the demand (i.e. the arrival rates) 

which makes it necessary to add an ambulance in order to maintain the required performance level 

for the availability of ambulances. The problem is formulated as a goal programming problem to 

optimise the locations, and then to find the minimum number of vehicles satisfying the 

performance levels. 

 

2. Emergency Medical Service models 

 

EMS models typically fall into two categories: deterministic or stochastic.  Deterministic 

mathematical programming models are attractive since they recommend a “best” decision given a 

set of constraints and quantifiable performance measures.  However, their weakness lies in the fact 

that they often fail to take into consideration the probabilistic nature of the EMS environment. In 

contrast, stochastic models better address this issue of the probabilistic nature of the EMS 

environment.  They take into account the probabilities of servers being busy, and/or the stochastic 

nature of ambulances arriving to the demand points. Each of the above categories falls into two 

subcategories: either to find the number of servers required so as to cover the whole region, or to 

optimise the number of servers available to serve the greatest demand.   Marianov and ReVelle 

(1995) present an excellent survey of these models.  Here a brief background to some of these 

models is given in order to motivate the developments of the model described in this paper.   

 

The p-median model, first introduced by Hakimi (1964), looks for a set of p points that yield 

the smallest possible weighted distance: the optimal p-facility solution set. The p-median solution 

finds the locations in such a way that the total travel time from all demand areas to these locations 

is minimised. Toregas and ReVelle (1972) reduced the complexity associated with the p-median 
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problem by introducing a new model for the Location Set Covering Problem (LSCP).  The LSCP 

imposes a maximum distance (or time or cost) on a p-median problem so as to include only those 

demand nodes within the maximum pre-specified distance.  The solution to the LSCP obtains the 

minimum number of facilities to be opened to 'cover' all the area within a pre-specified distance.  

 

Although developments were made in these p-median and LSCP models, some important 

issues were ignored.  First, what if the available resources (facilities) are less than the minimum 

required? Second, will locating only one facility within a neighbourhood be enough?  To rectify 

these weaknesses, researchers investigated two issues in particular: covering all nodes within a 

specific distance and ensuring the availability of an ambulance when a call is received.   The 

requirement to cover all nodes or demands (as the LSCP states) within a pre-specified limited 

distance or time is often costly.  Furthermore, some of these required facilities will be used to cover 

only a few nodes that may have very small demands.  Therefore, Church and ReVelle (1974) 

developed a model for the Maximal Covering Location Problem (MCLP).  The MCLP model finds 

the location of a pre-specified number of facilities n so as to maximise the demand covered by at 

least one facility.  Since the available resources are often less than the required number of facilities 

to cover all demand, n is equal to or less than the minimum number of facilities required by the 

previous LSCP model. 

  

 All MCLP algorithms assume that vehicles located at a base will be available to serve a call 

from zones they have been assigned to cover, and will never be busy.  However, this may not be 

the case in practice, and the most desirable ambulance to dispatch to a call in zone i may be busy 

when a call from zone i is received.  Therefore, the probability of a server being busy should be 

considered.  When an emergency call in a region occurs while the designated ambulance is 

engaged in service, locating a single ambulance within a specific time or distance will not be 

enough, and it is necessary to have at least one ambulance available with some probability within 

the time or distance standard.    

 

To ensure the availability of an ambulance when a new call is received, extensions of the 

LSCP model have been developed.  A hierarchical objective set covering model (HOSC) by Daskin 

and Stern (1981) and multiple coverage or backup, as it is called by Hogan and ReVelle (1986), 

have been created.  Backup coverage is used as a basis by which coverage may be protected from 
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varying demand intensities during different times.  By multiple coverage one can increase the 

probability of the presence of at least one vehicle within the distance or time standard, even when 

there is congestion. Narasimhan et al. (1992), extended single service to multiple levels of backup 

services.  In addition, the uncovered demands are forced to be assigned to a facility even if they are 

beyond the pre-specified target time.  Since the problem is NP hard, a Lagrangian relaxation 

approach is used to develop a heuristic solution procedure.  This approach solves the problem 

effectively.  However, these models do not determine the number of ambulances to be placed at 

any open base.  Nor do these levels of coverage take into account that population or call frequency 

varies from one demand node to another.  

 

The Maximum Expected Covering Location Problem (MEXCLP) developed by Daskin 

(1983), seeks to maximise the expected value of coverage within a time standard, using a heuristic 

approach.  Daskin assumed that the busy probability is the same for all servers in the system.  

ReVelle and Hogan (1988, 1989) extended the notion of MEXCLP by introducing the probabilistic 

location set covering problem (PLSCP) model to utilise a region specific busy fraction instead of a 

system wide busy fraction.  PLSCP is similar to the LSCP model, but includes a set of constraints 

on the reliability of a server being available.  Since PLSCP will usually lead to a potentially large 

number of servers being assigned or required, ReVelle and Hogan extended PLSCP to a more 

realistic model. The Maximum Availability Location Problem (MALP) model seeks to locate 

servers in such a way as to maximise the population covered with a stated reliability. The 

difference between MEXCLP, PLSCP, and MALP lies in the way they include the busy fraction in 

the formulation.  MEXCLP includes the probabilities in the objective function, while PLSCP and 

MALP include the busy fraction in the constraints.  In addition, MEXCLP uses the busy fraction to 

maximise the expected demands covered, while PLSCP and MALP use it to meet the reliability 

constraints.  However, PLSCP and MALP do not assign demand nodes to open centres, so they 

assume that any node within the target time will be included in the total demand rate.  In other 

words, some demand nodes are counted more than once, especially if these nodes are within the 

target time from more than one opened centre.    

  

Ball and Lin (1993) formulated a new version of PLSCP, in which an upper bound of the 

"uncovered probability" of each demand is constrained to be less than an upper bound value.  This 

model is called Rel-P and it is an extension of PLSCP in two ways.  First, it assigns demands to the 
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opened centres.  Second, because it assigns each demand to an open centre, it takes into 

consideration the exact demands assigned to any open station.  This helps when deciding the 

minimum number of facilities located in any opened station.  Various proposed pre-processing 

techniques reduced the computation time required by branch and bound solution algorithms.  As a 

result, the branch and bound codes used solved the problem efficiently.  

 

Marianov and ReVelle (1994) relaxed the assumption in the PLSCP of independence 

between the probabilities of different servers being busy.  They modelled the behaviour in each 

region as an M/M/S-loss queueing system.  The use of an acceptable probabilistic structure inside 

an optimisation model for facility siting is the distinctive contribution of this model.  This model is 

called the queueing probabilistic location set covering problem (Q-PLSCP).  In addition, to find the 

maximum availability level α, which gives the desired number of servers when applied to Q-

PLSCP, a procedure, MASH, is devised, which maximises the minimum system-wide reliability 

level obtainable with the desired number of servers. Marianov and ReVelle (1996) further 

developed the MALP.  Their new model is called Queueing Maximal Availability Location 

Problem (Q-MALP).  The main difference between MALP and Q-MALP resides in the 

methodology for the calculation of the smallest integer that satisfies the required reliability.  In 

addition, in this model they treated the distances/times as random.  The smallest integer satisfying 

the required reliability is calculated using the M/G/S-loss queueing system.  Therefore, the 

independence assumption for servers' busy fractions in the original MALP model is avoided in Q-

MALP. 

 

Here a realistic and a practicable model is developed, which takes into account not only the 

probabilistic nature of the problem, but also the fact that the available resources are often limited.  

The model is an extension to the MCLP models that locate the EMS facilities and utilises the work 

of Charnes and Storbeck (1980), Ball and Lin (1993), and Marianov and ReVelle (1996) to allocate 

the exact numbers of ambulances required in each open base.  The MCLP models were developed 

as a result of unrealistic assumptions associated with the LSCP models, since the LSCP models 

ignore the case when the numbers of available resources or facilities are less than the minimum 

number required. 

 

A review of real-world applications can be found in Alsalloum and Rand (2003).  
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3. Defining coverage 

 

In set covering location problems, demands that need to be covered are often grouped in 

areas due to the impossibility of dealing with each single demand separately.  The aggregated 

demands of each area are usually located at the centre of the area.  So, when trying to determine the 

demands covered within the target distance, the distances to and from the centres of areas that 

represent these demands are used. While this approach is necessary to allow the problem to be 

solved, there are some potential disadvantages.  

 

The most important issue in this context is the way that the coverage is defined by the 

traditional set covering location models.  The traditional definition used in the set covering problem 

models is that the demand node is covered if it is within the target time or distance, otherwise it will 

not be covered.  In other words, the probability of covering a demand node within the target distance 

is 100%, and the probability of covering a demand node beyond the target distance is zero. 

However, this definition is unrealistic, because it does not differentiate between the demand nodes 

within the target time or distance, while it differentiates completely between the demand nodes 

within the target time and demand nodes which are slightly beyond the target time or distance.   

 

The following example (Figure 1) illustrates this major problem with the traditional definition 

of coverage.  The total area to be covered by the service is divided into smaller administrative areas 

or districts, for which suitable demand data is available.  Assume that a station is placed at the centre 

of area A, and the centres of the areas A, B, C, D, E, F, G, and I are within the target time, while the 

other areas are beyond it.  (The “centre” of the area takes into account the weighted demand, so 

these points are not necessarily at a geographical centre.) Assume also that the total area is a plain, 

and that coverage is based on the distance separating the station-area pairs.  Since the traditional 

definition of coverage is a zero-one variable (e.g. 1 if it covered, 0 otherwise), then all demands 

located at these quarters within the target time are definitely covered, while demands located beyond 

these quarters are definitely not covered.  In other words, the probability of covering A1 is the same 

as the probability of covering F1, and the same as the probability of covering E1 which is equal to 1, 

while the probability of covering L1 or K1 is zero.  However, the distance separating E1 and L1 is 
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very small compared to the distance or time separating A1 and E1. Therefore, if the probability of 

covering L1 is zero, then the probability of covering E1 is at least very small. In addition, if you 

look at L1 and F1 then you may notice that L1 is not covered while F1 is covered, even though L1 is 

closer than F1.  

 

 

Figure 1 (about here) 

Illustrating the traditional definition of coverage 

 

 

A second source of error is that caused by aggregated demands. In the approaches used for 

the LSCP and the MCLP, demand aggregation together with the definition of coverage may give a 

misleading solution, Daskin et al. (1989), and Current and Schilling (1990). The binary coverage 

definition used in LSCP and MCLP may include or exclude demands that are on the boundary of 

the threshold. The errors due to demand data aggregation in the LSCP and the MCLP approaches 

are potentially more significant than in the p-median problem, not because of the problem size, but 

because of the definition of the coverage. However, the model that follows redefines coverage and 

is robust to the errors due to demand data aggregation.  

 

In Figure 1 the demand areas located around the boundary of the area covered by station A 

are the main cause of the problem of aggregation.  Some locations around the boundary are 

considered to be covered, while in fact they are not, location F1 is an example.  On the other hand, 

demand located at K1 is located within the target time of the station A, but is theoretically not 

covered.  This is because the demand at F1 is aggregated to its centre F, which is within the target 

time, and the demand at K1 is aggregated to its centre K, which is beyond the target time.  

 

 Since demands are always aggregated to finite potential areas, aggregation always exists in 

covering problems.  However, in the model to be described the effect of aggregation is negligible, 

simply because demands located around the boundary of a station are giving a small weight in 

determining whether to locate at that station or not.  The objective function of this model consists 

of two parts multiplied together. It maximises the demands covered multiplied by the probabilities 

of reaching them. The demands located very close to a potential station have high probabilities of 
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being covered, while demands located around the boundaries of a potential station have lower 

probabilities of being covered. Therefore, the importance given to the demands around a potential 

station decreases the farther away they are.   By multiplying aggregated demands by probabilities, 

the objective function gives more emphasis to the demands located closer to a potential station than 

demands located farther away.  Therefore, the demands located very close will affect the choice of 

where to locate a station more than demands located at a greater distance or time. In other words, 

unlike the traditional covering problem where aggregation may affect the optimal locations, here 

the aggregation will not affect the optimal locations.  Assume that area A is a potential station, and 

location F1 has about 5% of the total demands, and assume that the probability of arriving within 

the target time for area F is only 10 %.  Using the set covering approaches, this location will add 

the whole 5% to the objective function.  However, using the model to be described, the 5% will 

become only 0.5%.  Therefore, though demands located within the target time from a potential 

station are high, their effect on the objective function depends on the distance or time separating 

these demands from that station.  

 

4. Proposed Goal Programming Model 

 

Input Variables 

 

Input variables related to the demand in the planning region are created. For example, the 

city of Riyadh is divided to 92 quarters.  The proportion of total demand (ai) originating at each 

quarter (i = 1 to n) is used in the model.  The travel times between each pair of quarters are used to 

determine the probability of reaching area i in the target time from station j, P
ij

.  

Decision Variables 

 

 The decision variables are the locations of the stations (j = 1 to m), the number of 

ambulances allocated to the stations, S, and the assignment of demand areas to their stations, Y
ij

.  

Therefore, the decision for each potential station will be whether to locate there or not. Once the 

decision related to the locations is made, then ambulances should be allocated to each selected 

station.  
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Objective function 

 

 The objective function of the model consists of two goals.  First, to maximise the expected 

demands covered, and second to reduce the spare capacities of located ambulances, while ensuring 

the minimum required performance.  This is achieved by minimising the underachievement of the 

first goal and the over-achievement of the second goal.  

 

 Thus the objective function is  

Min ∑
=

+− +
m

j
joo dPdP

1
1                                  

                                                                                   (1) 

where 

 

P
0
: First goal. 

P
1
: Second goal. 

−
0d  and  +

jd are deviations.   

m: the total potential locations. 

 

Expected demands covered are calculated by the multiplication of two parts: the 

probabilities of covering demand areas, and the proportions of total demands which originated at 

these demand areas.  Therefore, the first goal, P
0
, can be formulated as follows:  

 

Max.  
i

n

=
∑

1

  ∑
=

m

j 1
 a

i
 P

ij
 Y

ij

 

 

where: 

i:  the demand areas, i =1 to n. 

j:  the station areas,  j =1 to m .  

n: the total number of demand areas. 

m: the total number of the potential stations. 

P
ij

: the probability of reaching area i in the target time from station j.   P
ij

  = P
ij

  if  it is greater 

than a pre-specified probability p, otherwise it is zero. 
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a
i
: the proportion of demand originating in area i. 

Y
ij

: is 1 if P
ij

 ≥   p and station j is the nearest open station and can be reached within the target 

time; 0 otherwise.   The model multiplies demands within the target time for each potential station 

with the probabilities of arrival on time to the demands.  The highest result among the potential 

stations is the first chosen station, then next one is the next one chosen, and so on.   This process 

continues until the number of open stations is the number of stations required.  

 

This objective function can be expressed as a goal constraint in a goal programming 

formulation (P
0
) as follows: 

 

where  

−
0d  is the under-attainment deviation. It ranges from 0 to 1, zero if  ∑∑

= =

n

i

m

j1 1
a
i
 P

ij
 Y

ij
 =1, which 

happens only if all areas are covered with a 100% probability. However, this is unlikely, especially 

when the available resources are limited.  

 

Since −
0d

 
 will be minimised, this goal constraint maximises the summation of the 

aggregated demands multiplied by the probabilities (i.e. the expected demands covered).    In 

addition, since the maximum value of the expected demands covered is 1, this goal constraint is set 

to be equal to 1.  

 

 For the second goal, the maximum expected demands covered are fixed, and the nearest 

possible locations to cover these demands are known. Therefore, the first goal is now a constraint 

for the second objective (i.e., second goal) to determine the optimal number of ambulances that 

meet the performance levels. In other words, the goal is to place ambulances in each opened station 

in such a way that, for a pre-specified proportion of the time, any call arising within the service 

boundary of that station will find at least one ambulance available. This goal may be achieved by 

10
11

=+ −

==
∑∑ dYPa

m

j
ijiji

n

i     
 (2) 
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using the Erlang Loss Formula, which can be used to find the probability of having S ambulances 

busy in the system at the time of service request. 

 

Erlang’s Formula (M (λ) /G/S-blocking.) 

ΡS  = ∑
=

S

i

is iS
0

)!/(/)!/( ρρ   

where, 

λ: arrival rate. 

µ : service rate. 

ρ : traffic intensity; λ/µ. 

S: number of servers in the system. 

PS:  the probability of S servers being busy when an arrival occurs. 

 

Using this formula the probability of having all S ambulances busy in the system at the time 

of service request can be found.  Figure 2 shows the behaviour of the Erlang loss formula for one, 

two, three, and four ambulances located at a station, when the service rate is 1.67 calls per hour, as 

in Riyadh.  It shows the curve of the probabilities of ambulances being busy for different arrival 

rates.  

 

Using the Erlang loss formula, and using the expected service rate, boundary values in the 

arrival rates can be found.  The boundary values are the arrival rates when it is necessary to 

increase the number of ambulances by one in order to maintain the performance level for 

availability of ambulances.  Arrival rates are determined by the total demands assigned to a specific 

station.  Suppose, as was the case in Riyadh, that the EMS authority wants to impose 5% as a 

maximum limit of the busy probability for any open centre. Table 1 shows the boundary values at 

which the busy probability is equal to the target, when the arrival rate, as in Riyadh, is 1.67 calls 

per hour.  

 

Figure 2 (about here) 

The probability of no ambulance being free for different arrival rates 

assuming that the service rate is 1.67 calls per hour. 
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Table 1 Boundary values 

 

Ambulances (S) 1 2 3 4 

Arrival rates boundary values ( r
s  

) 0.0875 0.636 1.497 2.541 

 

These values may be determined by using the Newton-Raphson method of approximation 

and the Erlang loss formula.  If α is the maximum busy probability, as specified by the decision-

makers, then what is required are the values of λ which satisfy the Erlang equation, where ρ = λ / 

µ, for different values of S. 

 
 The EMS authority for Riyadh wanted to be sure that the probability of having a busy 

ambulance should be at most 5% (e.g. 95% reliability). Therefore, the boundary values can be 

imposed in the formulation not only to ensure the reliability level but also to reduce the excess of 

the workload above the performance level at any opened station.  The constraints set will be as 

follows: 

 rs xjs  - ∑
=

n

i
ijiY

1
λ  ≥ 0 

where 

r
s
 : the boundary value in the arrival rates from S to S+1. 

x
js 

: 1 if S vehicles are placed at location j, 0 otherwise. 

λ
ι 

:  the arrival rate for node i. 

∑
=

n

i
ijiY

1
λ  : the overall arrival rates for the nodes served by station j. 

 

By adding this constraint two things can be ensured:  

1) Only those stations that are selected will have to meet the reliability constraint.   If a station is 

not selected then the second term of the above inequality will be zero. 

2) To include the actual demand covered, not all areas within the specific target time will be 

counted, since some of the demands may shift to another closer open station. 
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 This approach allows the exact arrival rates and the exact numbers of ambulances to be 

found.  The arrival rate for each area (if a station is placed in that area) will depend on the total 

demand areas served by that station. Other techniques used in the literature pre-calculate the 

minimum number of ambulances required to meet the specific performance, and, therefore, over-

estimate the minimum number of ambulances required to meet the performance level(s), (Marianov 

and ReVelle, 1996).  

   

The second goal can be shown in a goal programming formulation as follows: 

∑∑
=

+

<<

=−−
n

i
jiji

cS
jSS dYxr

11
0λ              

where 
+
jd : over-attainment or spare capacity for station j.  

c: maximum number of ambulances that can be located at station j. 

  

5. Conclusions 

 

This paper extended models for the Maximal Covering Location Problem (MCLP) for 

emergency medical service in two ways. First, instead of the usual 0-1 coverage, the model has 

considered the more realistic situation when the probability of covering a demand within the target 

time varies between 0 and 1.  Second, once the locations are determined, the minimum number of 

vehicles at each location that satisfies a specified performance level is determined. Erlang’s loss 

formula is used to identify the arrival rates when it is necessary to add an ambulance in order to 

maintain the performance level for the availability of ambulances. Thus, the problem of identifying 

the optimal locations of a pre-specified number of emergency medical service (EMS) stations is 

addressed in two stages.  The first goal is to locate ambulance stations so the maximum expected 

demand can be reached within a pre-specified target time. Then, the second goal is to ensure that 

any demand arising located within the service boundary of the ambulance station will find at least 

one ambulance available. The model developed has been applied to the Saudi Arabian Red 

Crescent Society (SARCS), Riyadh City, Saudi Arabia.  A fuller description of that application 

may be found in Alsalloum and Rand (2003). 

 

 

(3) 
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Figure 1  

Illustrating the traditional definition of coverage 
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Figure 2  

The probability of no ambulance being free for different arrival rates 

assuming that the service rate is 1.67 calls per hour. 

 

Probability of no ambulance being free

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 6 12 18 24 30 36 42 48

Arrival rates

P
r
o
b
a
b
i
l
i
t
y

One Ambulance
Two Ambulances
Three Ambulances
Four ambulances

 
 


