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Existence of an Optimal Portfolio for Every

Investor in an Arrow-Debreu Economy

James Huang∗

September 27, 2002

Abstract

In this paper we discuss the existence of an optimal portfolio for every
investor in a two-period Arrow-Debreu economy in which risky assets are
contingent claims on aggregate consumption. Since we derive an optimal
portfolio for every investor, the pricing kernel is endogenously determined.
Hence the sufficient conditions for the existence of optimal portfolios given
in this paper do not involve the pricing kernel; instead they are directly
on investors� preferences and beliefs. We also present a new approach
to the equilibrium, which works with the space of investors� Þrst-period
consumption. The case where investors have background risk is also dis-
cussed.

Introduction

The existence of optimal portfolios given the equilibrium of the economy has
been thoroughly discussed (see for example, He and Pearson (1989), Cox and
Huang (1990), and Back and Dybvig (1993)). Since the equilibrium is exoge-
nously given, the main concern is under what conditions an investor�s expected
utility of consumption is bounded given the pricing kernel. For example, Back
and Dybvig (1993) have derived sufficient conditions for the boundedness of
investors� expected utilities of their optimal portfolios which involve the given
pricing kernel. In this paper we discuss the existence of an optimal portfolio for
every investor in an Arrow-Debreu economy where risky assets are contingent
claims on aggregate consumption. Note that there is a subtle difference between
our problem and Back and Dybvig�s problem. In our problem the equilibrium
of the economy is still to be derived, which implies that the pricing kernel is to
be derived. Because of this, it would be inappropriate for us to give conditions
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involving the to-be-derived pricing kernel; rather we have to derive the pricing
kernel Þrst.
In this paper we show how to derive the pricing kernel in the two-period

Arrow-Debreu economy. We give conditions directly on investors� preferences
and beliefs to guarantee the boundedness of the equilibrium present value of
aggregate consumption and investors� expected utilities of their optimal con-
sumption so that every investor�s optimal portfolio is well deÞned. We also
present a new approach to the equilibrium. Unlike the demand approach and
Negishi Method, which work with the space of assets and space of utility weights
respectively, our approach works with the space of investors� Þrst-period con-
sumption. The case where investors have background risk is also discussed in
this paper.
This paper is closely related to He and Pearson (1989) and Cox and Huang

(1990) who also derive conditions for the existence of optimal portfolios given
the equilibrium. It is also related to those on existence of equilibrium such as
Karatzas, Lehoczky and Shreve (1990) and Mas-Colell and Zame (1991).
The structure of this paper is as follows. In Section one, we introduce the

formulation of the problem. In Section two we show how to derive the pricing
kernel and give a new approach to the equilibrium. In Section three we discuss
the existence of an optimal portfolio for every investor when investors have
heterogeneous beliefs and preferences. In Section four we discuss the case where
investors also have background risk. The Þnal section concludes the paper.

1 A Two-Period Economy

In this section we introduce a two-period Arrow-Debreu economy, in which
there are N investors indexed by i = 1, 2, ..., N . Let X0 and X be the aggregate
consumption in the Þrst and second period respectively. We denote ui0(x) and
ui(x) as investor i�s Þrst period and second period utility functions respectively.
In this paper we assume that all utility functions have positive Þrst derivatives
and negative continuous second derivatives, i.e., investors are non-satiate and
risk averse. Let f(X) be the objective probability density function and fi(X)
investor i�s subjective probability density function respectively. We assume
that all these probability density functions are positive and differentiable in
X ∈ (0,+∞) almost surely. We assume that there exists a unique pricing
kernel, φ, with unspeciÞed form, which will be determined in equilibrium of the
economy.
Let wi0 be investor i�s initial endowment, expressed as the fraction of the

spot value of the total wealth in the economy. Let xi0 be investor i�s Þrst period
consumption and xi his/her second period consumption respectively. We assume
that there is a complete market for state-contingent claims onX. Every investor
can buy and sell state-contingent claims on X to form a desired portfolio whose
second-period payoff is a function of X, i.e., xi = xi(X), i = 1, 2, ..., N . Then
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the investor has the following utility maximization problem:

max
xi0,xi

ui0(xi0) +Ei[ui(xi)]. (1)

Subject to
xi0 +E(φxi) = wi0(X0 +E(Xφ)). (2)

where Ei(.) denotes the expectation operator under the subjective probability
measure with p.d.f. fi(X), X0 is the aggregate consumption in the Þrst period,
and E(.) denotes the expectation operator under the true probability measure
with p.d.f. f(X). In equilibrium, the market is cleared, thus we haveX

i

xi0(X0) = X0 and
X
i

xi(X) = X. (3)

Since negative consumption is not allowed we have

xi0 ≥ 0 and xi ≥ 0. (4)

We assume that all utility functions have inÞnite marginal utility of zero con-
sumption. This implies that there is no corner solutions and the Þrst order
condition is an equality as follows

u0i(xi) = λigi(X)φ, (5)

where gi(X) = f(X)/fi(X) and λi = 1/u0i0(xi0).
As is well known, given the pricing kernel φ, if investor i is non-satiate and

strictly risk averse, i.e., ui(x) is strictly increasing and concave and the marginal
utility of zero consumption is inÞnity, then a solution to the Þrst order condition
(5) subject to (2) will be the optimal solution the utility maximization problem
(1).
If given φ, we can solve (5) and obtain xi(X), then the Þrst-period con-

sumption can be obtained by solving

u0i0(xi0) = Ei(u
0
i(xi)).

But unfortunately, the pricing kernel cannot be given exogenously. Since the
Þrst order conditions for investors utility maximization problems are all equali-
ties, the pricing kernel is determined by these equalities. In the next section we
show how the pricing kernel is determined.

2 Deriving the Pricing Kernel

In this section we show how to derive the pricing kernel. Now for every in-
vestor i, we take his/her Þrst period consumption xi0 as given. Write x0 =
(x10, x20, ..., xN0). Since u0i(x) is monotonic in x, from (5), we obtain

xi = u
0−1
i (λigi(X)φ), (6)
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where λi = u0i0(xi0). Since
P
i xi = X, we obtainX
i

u0−1i (λigi(X)φ) = X. (7)

Assume for every i, u0i(0) = +∞ and u0i(∞) = 0. Then we have

{u0i(x)|x ∈ (0,+∞)} = (0,∞). (8)

From (8), it is clear that given anyX > 0 there is a solution of φ to Equation
(7). Since for every i, u0i(x) is monotonic, this solution is unique. We write the
solution as

φ = φ(X;x0). (9)

Substituting φ into (6), we obtain

xi = xi(X;x0). (10)

Now it remains to be shown that there exists x0 such that the obtained
φ(X;x0) and xi(X;x0) satisfy the wealth constraint (2) for every i.
Given ui0(x) and ui(x), investor i�s Þrst period and second period utility

function, let Ri(x) = −u00i (x)/u0i(x) and γi(x) = xRi(x) which are investor i�s
absolute risk aversion and relative risk aversion in the second period respectively.
We deÞne two subsets of the N -dimension real space:

C = {y = (y1, y2, ..., yN) :
NX
i

yi = X0 and, ∀i, yi ≥ 0} (11)

and
C+ = {y = (y1, y2, ..., yN) : y ∈ C and, ∀i, yi > 0}. (12)

We have the following lemma.

Proposition 1 (i) Assume for every i, ui0(x) is strictly increasing and differ-
entiable and limx→0 u

0
i0(x) = +∞. (ii) Assume for every i, ui(x) is strictly

increasing and differentiable, limx→0 u
0
i(x) = +∞ and limx→∞ u0i(x) = 0. (iii)

Assume that for any x0 ∈ C, we have E(Xφ(X;x0)) < +∞. (iv) Assume that
for any x0 ∈ C+ and every i, −∞ < Ei(ui(xi(X;x0))) < +∞. Then there
exists a pricing kernel under which every investor has an optimal portfolio, i.e.,
there exists equilibrium. Furthermore, if for every i, ui(x) is n+1 (n > 1) times
differentiable and gi(X) is n times differentiable, then xi(X) and φ(X) are n
times differentiable in X.

Conditions (i) and (ii) are to guarantee that we have interior solutions. Con-
dition (ii) is to guarantee that given x0 ∈ C, for any X > 0, there is a solution
of φ = (X;x0) to Equation (7), i.e., φ(X;x0) is well deÞned. Condition (iii) is
to guarantee that E(Xφ) in (2) is well deÞned, so is E(xiφ), for every i. And
Condition (iv) is to guarantee that given x0 ∈ C+, for every i, E(ui(xi)) in (1)
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is well deÞned.

Proof: Existence: Since limx→0 u0i(x) = +∞ and limx→∞ u0i(x) = 0, follow-
ing the argument proceeding this lemma, for given x0, we obtain (9) and (10).
It is clear that if for every i, u0i(x) and gi(X) are n times differentiable, then
xi(X;x0) and φ(X;x0) are n times differentiable in X. So far we have not used
conditions (iii) and (iv).
Substitute φ and xi into (2). Now we only need to show there is a solution

of x0. Consider the set C deÞned in (11), which is obviously closed and convex.
Since it is bounded, it is in fact compact. We deÞne h : C → RN by the relation

(h(y))i = wi0(X0 +E(Xφ(X; y))−E(xi(X; y)φ(X; y)),

which is obviously continuous. Although C is not necessarily an invariant set,
we can show as follows that for each y0 ∈ C there exists a real number t such
that |t| < 1 and ty0 + (1− t)h(y0) ∈ C.
Suppose yi0 = 0. Since limx→0 u0i(x) = +∞ and limx→0 u

0
i0(x) = +∞,

from (5), we have xi0(X; y0) = 0, which implies (h(y0))i > 0. Thus there
exists 0 < t < 1 such that tyi0 + (1 − t)(h(y0))i > 0. Suppose yi0 > 0.
Since E(xi(X; y)φ(X; y)) < +∞ and E(Xφ(X; y0)) < +∞, we have −∞ <
(h(y0))i < +∞. Thus there obviously exists small enough t > 0 such that

tyi0 + (1− t)(h(y0))i > 0. Noting that
PN
i (h(y))i = X0, we obtain the conclu-

sion immediately.
Now we can apply a generalization of Schauder�s Þxed point theorem and

conclude that there exists a Þxed point x∗0 ∈ C.1 It is clear that it must hold
that x∗0 ∈ C+. Otherwise, if for some i, xi0 = 0, then xi(X;x0) = 0. Thus
for investor i, (2) cannot hold. Hence there exists x∗0 ∈ C such that xi(X;x∗0)
and φ(X;x∗0) satisfy (2) and (3). From condition (iv), we have for every i,
−∞ < Ei(ui(xi(X;x

∗
0))) < +∞. Thus we conclude that there exists a pricing

kernel φ = φ(X;x∗0) under which there is a solution to problem (1) subject to
(2), (3) and (4) for every investor i, i.e., every investor has an optimal portfolio
and there exists equilibrium. Q.E.D.

3 Existence of an Optimal Portfolio for Every
Investor

Assume that for every i, ui(x) is strictly increasing and strictly concave and has
continuous second derivative. Assume for every i, gi has continuous Þrst deriva-
tive. From Proposition 1, for any given x0 = (x10, x20, ..., xN0), xi = xi(X;x0)

1A generalization of Schauder�s Þxed point theorem states as follows: Let H be a locally
convex topological space and let C be a compact convex nonempty subset of H. Suppose that
h : C → H is a continuous mapping satisfying property:
for each y0 ∈ C there exists a (real or complex) number z such that |z| < 1 and zy0 + (1−

z)h(y0) ∈ C.
Then h has a Þxed point in C. See Theorem 5.4.16 in V. I. Istratescu (1981).
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and φ = φ(X;x0), which is given by (9), have continuous Þrst derivatives w.r.t
X. Before we proceed, we remind the readers that for brevity we sometimes
suppress the notation x0 in relevant functions whenever it does not lead to
confusion. For example we write φ(X;x0) as φ(X) and xi(X;x0) as xi(X).
Differentiating both sides of (5), we have

x0i(X) = R
−1
i (xi)(Re − g

0
i

gi
), (13)

where Re(X) = −φ0(X)/φ(X) is the representative investor�s absolute risk aver-
sion.2

Applying (3) we obtain

XRe(X) =
X
i

si(xiRi(xi) +X
g0i
gi
), (14)

where si = R
−1
i (xi)/(

P
iR

−1
i (xi)).

Equation (14) can be written as

γe(X) =
X
i

si(γi(xi)− ²i), (15)

where ²i = −Xgi(X)0/gi(X) and γe(X) = XRe(X) is the representative in-
vestor�s relative risk aversion.
In the following context, we will see that it is helpful to understand the

characteristics of the pricing kernel in the extremely bad states and extremely
good states. When X approaches zero, xi approaches zero. From (14), this
implies that the value of γe(X) near X = 0 is determined by the values of γi(x)
and ²i(x) near x = 0.
Now consider the situation when X approaches inÞnity. Assume for every

i, limx→∞Ri(x) = 0. When X approaches inÞnity, if xi is bounded, then
si = R−1i (xi)/(

P
iR

−1
i (xi)) will approach zero. From (14), this implies that

the value of γe(X) when X approaches inÞnity is determined by the values of
γi(x) and ²i(x) when x approaches inÞnity.
Let γi(0) = lim infx→0 γi(x), γi(0) = lim supx→0 γi(x), γi(∞) = lim infx→∞ γi(x),

δi(0) = γi(0)− ²i(0), δ(0) = maxi{δi(0)} , δi(∞) = γi(∞)− ²i(∞) and δ(∞) =
mini{δi(∞)}. We have the following lemma.

2Since investors have heterogeneous beliefs and preferences, we usually do not have an
aggregation investor in Rubinstein�s sense. It is shown by Rubinstein (1974) and Brennan and
Kraus (1978) that there exists an aggregate investor in Rubinstein�s sense if and only if either
all investors have identical cautiousness and beliefs or all investors have exponential utility
functions. But we still have a representative investor who was called a �pricing representative�
investor by Benninga and Mayshar (1997). He/she was so called because if the economy had
only one investor, namely the �pricing representative� investor with the total endowment of
the economy, then the equilibrium state prices in the economy would remain unchanged. We
still call him/her the representative investor.
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Lemma 1 (i) Assume for every i, ui0(x) is strictly increasing and differentiable
and limx→0 u0i0(x) = +∞. (ii) Assume for every i, ui(x) is strictly increasing
and strictly concave and has continuous second derivative, γi(0) > 0, γi(0) <
+∞, and γi(∞) > 0. (iii) Assume for every i, fi(X) and f(X) are positive and
differentiable in X ∈ (0,+∞) almost surely and there exist ν > 0, M > 0 and

ε0 > 0 such that E(X<ν)(X
1−(δ(0)+ε0)) < +∞ and E(X>M)(X

1−(δ(∞)−ε0)) <
+∞. Then given any x0 ∈ C, E(Xφ(X;x0)) < ∞ and given any x0 ∈ C+ for
every i, −∞ < Ei(ui(xi(X;x0))) < +∞.

Proof: (A) First we show that E(Xφ(X)) < +∞.

When X → 0, we have xi → 0, for every i. From Equation ( 15) given
arbitrarily small ε > 0, we have for sufficiently small X

lim sup
X→0

γe(X) < δ(0) + ε, (16)

which implies

φ(X) < A0X
−(δ(0)+ε), (17)

where A01 is a positive constant.
From the above equation and Condition (iii), we conclude that for sufficiently

small ν
E(X<ν)(Xφ) < +∞ (18)

On the other hand from (15) we conclude that given small ε > 0, for
sufficiently large X

γe(X) > δ(∞)− ε,
where δ(∞) = mini{δi(∞)}. This implies that for sufficiently large X

φ(X) < A0X
−(δ(∞)−ε) (19)

From the above equation and Condition (iii), we conclude that for sufficiently
large M

E(X>M)(Xφ) < +∞ (20)

Since φ(X) is continuous inX, from (18) and (20) we obtainE(Xφ(X)) < +∞.

(B) Secondly we show that Ei(ui(xi)) is bounded above.

(Ba) Suppose γi(∞) > 1.
We can show that ui(x) is naturally bounded above. Since γi(∞) > 1, for

sufficiently large x, we have
γi(x) > 1 + ε,

where 0 < ε < γi(∞)− 1. It follows that
u0i(x) < Ax

−(1+ε)
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where A is a positive constant. Hence for sufficiently large x◦ and x > x◦,

ui(x) = ui(x
◦) +

Z x

x◦
u0i(x)dx

≤ ui(x
◦) +

Z x

x◦
Ax−(1+ε)dx

= ui(x
◦)− A

ε
(x−ε − x◦−ε)

< ui(x
◦) +

A

ε
x◦ε

(Bb) Suppose γi(∞) ≤ 1.
Given small ε > 0, for sufficiently large x, we have

γi(x) > γi(∞)− ε,
Using a similar argument as in (Ba), we obtain that given small ε > 0, for
sufficiently large x,

ui(x) < A1x
1−(γi(∞)−ε), (21)

where A1 is a positive constant.

Since limX→∞X
g0i(X)
gi(X)

= ²(∞), given small ε > 0 for sufficiently large X we

have
A2X

−(²i(∞)+ε) < gi(X) < A2X−(²i(∞)−ε). (22)

where A2 is a positive constant.
Equations (21) and (22) imply that given small ε > 0 for sufficiently large

X
ui(xi(X))

gi(X)
<
ui(X)

gi(X)
< AX1−(δ(∞)−ε), (23)

where A is a positive constant.
The above equation and Condition imply that there exists sufficiently large

M > 0 such that
Ei(X>M)(ui(xi)) < +∞. (24)

Since xi approaches zero when X approaches zero, ui(xi) will be bounded
above when X approaches zero. Thus there exists ν > 0 such that

Ei(X<ν)(ui(xi)) < +∞. (25)

Since ui(xi) is continuous in X, from (24) and (25) we conclude that Ei(ui(xi))
is bounded above.

(C) Thirdly we show that for any x0 ∈ C+, Ei(ui(xi(X;x0))) is bounded
below. This is proved in Appendix A. Q.E.D.
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Apparently if δ(0) < 1, then it naturally holds that for sufficiently small

ε0 > 0, E(X<ν)(X
1−(δ(0)+ε0)) < +∞. A special example is for every i, ²i(0) =

+∞ while γi(0) < +∞. In this case, δ(0) = −∞ < 1. We can also see
that if δ(∞) > 1, then it naturally holds that for sufficiently small ε0 > 0,
E(X>M)(X

1−(δ(∞)−ε0)) < +∞. A special example is for every i, ²i(∞) = −∞
while γi(∞) > −∞. In this cases δ(∞) = +∞ > 1.
The conditions that γi(0) > 0 and γi(∞) > 0 imply that limx→0 u0i(x) = +∞

and limx→∞ u0i(x) = 0 respectively. The condition that ui(x) is strictly increas-
ing and strictly concave and has continuous second derivative together with the
conditions that γi(0) > 0 and γi(∞) > 0 guarantees that γi = infx{γi(x)} > 0,
a result used when we prove that for any x0 ∈ C+, Ei(ui(xi(X;x0))) is bounded
below in Appendix A.

Now we are ready to present an important result.

Proposition 2 (i) Assume for every i, ui0(x) is strictly increasing and differ-
entiable and limx→0 u0i0(x) = +∞. (ii) Assume for every i, ui(x) is strictly
increasing and strictly concave and has continuous second derivative, γi(0) > 0,
γi(0) < +∞, and γi(∞) > 0. (iii) Assume for every i, fi(X) and f(X)
are positive and differentiable in X ∈ (0,+∞) almost surely and there ex-
ist ν > 0, M > 0 and ε0 > 0 such that E(X<ν)(X

1−(δ(0)+ε0)) < +∞ and

E(X>M)(X
1−(δ(∞)−ε0)) < +∞. Then there exists a pricing kernel under which

every investor has an optimal portfolio, i.e., there is equilibrium. Furthermore,
if for every i, ui(x) is n+ 1 (n > 1) times differentiable and gi(X) is n times
differentiable, then xi(X) and φ(X) are n times differentiable in X.

Proof: Since all the conditions in Lemma 1 are satisÞed, applying this lemma,
we conclude that given any x0 = (x10, x20, ..., xN0) ∈ C, it holds thatE(φ(X;x0))
< +∞ and given any x0 ∈ C+, for every i, E(xi(X;x0)φ(X;x0)) < +∞ and
−∞ < Ei(ui(xi(X;x0))) < +∞. These results together with limx→0 u

0
i0(x) =

+∞, and equations limx→0 u0i(x) = +∞ and limx→∞ u0i(x) = 0, which are
implied by γi(0) > 0 and γi(∞) > 0, meet the conditions in Proposition 1. Ap-
plying this lemma, we conclude that there exists a pricing kernel under which
there is a solution to problem (1) subject to (2), (3) and (4) for every investor
i, i.e., there is an optimal portfolio for every investor. Furthermore, if for every
i, ui(x) is n+1 (n > 1) times differentiable and gi(X) is n times differentiable,
then xi(X) and φ(X) are n times differentiable in X. Q.E.D.

We give the following remarks on the above result.
Remark 1, we stress that it is necessary to show Ei(ui(xi)) is bounded both

from above and from below. Back and Dybvig (1993) ignored the fact that
Ei(ui(xi)) can be minus inÞnity when they showed the existence of an opti-
mal solution to the maximization problem for an individual investor with an
exogenously given pricing kernel. But it is apparent that if for all x0 ∈ C+,
Ei(ui(xi(X;x0))) = −∞, there will be no optimal solution to the maximization
problem.
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Remark 2, the condition that for every i, limx→0 u0i(x) = +∞, which is
implied by the assumption that for every i, +∞ > γi(0) > 0, is very im-
portant. Now assume investors have homogeneous beliefs, i.e., for every i,
gi = 1. We show that it is necessary for the Þrst order condition to be an
equality if there exists equilibrium with interior solutions except that the in-
vestors are homogeneous. Suppose for some i, limx→0 u0i(x) < +∞ and for
some j, limx→0 u0j(x) = +∞. When X → 0, from (5) we can see that it cannot
hold that xi → 0 and xj → 0 simultaneously. This implies that equilibrium
with interior solutions cannot exist. Assume for every i, limx→0 u0i(x) < +∞.
Suppose the Þrst order conditions are equalities. Let xi → 0 for every i. From
(5), we obtain u0i0(xi0) = φ(0)u

0
i(0), for i = 1, 2, ..., N . Since

PN
i=1 xi0 = X0, we

solve the equations and obtain x0. Apparently the obtained xi0 has nothing to
do with wi0. Assume there is equilibrium. Given x0, the pricing kernel can be
obtained from (7) which has nothing to do with wi0. Now xi0 and φ are both
independent of wi0, which is inconsistent with (2).
Remark 3, the proposition can be generalized to the case where investor i�s

utility function has a positive threshold parameter,3 ai > 0, i.e.,

lim
x→ai

u0i(x) = +∞.

In this case, the threshold parameter of the distribution of X will be
P
i ai, i.e.,

we must have X >
P
i ai. Then we have to change the deÞnition of relative

risk aversion and ² to �γi(x) = −(x − ai)u
00
i (x)
u0
i
(x) and �²(X) = −(X −Pi ai)

g0i(X)
gi(X)

respectively. The proposition will hold in this case if we use �γi and �² to replace
γi and ² respectively.
Let γ(0) = maxi{γi(0)}. In a special case when investors have homogeneous

beliefs, we have the following result implied by the above proposition:

Corollary 1 (i) Assume for every i, ui0(x) is strictly increasing and differ-
entiable and limx→0 u0i0(x) = +∞. (ii) Assume for every i, ui(x) is strictly
increasing and strictly concave and has continuous second derivative, γi(0) >
0, γi(0) < +∞, and γi(∞) > 0. (iii) Assume that investors have homoge-
neous beliefs. (iv) Assume there exists ν > 0, M > 0 and ε0 > 0 such that

E(X<ν)(X
1−(γ(0)+ε0)) < +∞ and E(X>M)(X

1−(γ(∞)−ε0)) < +∞. Then there
exists a pricing kernel under which every investor has an optimal portfolio, i.e.,
there is equilibrium. Furthermore, if for every i, ui(x) is n + 1 (n > 1) times
differentiable, then xi(X) and φ(X) are n times differentiable in X.

Proof: Since investors have homogeneous beliefs, for every i, ²i(X) = 0. Thus
the conclusion immediately follows Proposition 2.

4 The Case with Background Risk

In this section we discuss conditions for the existence of an optimal portfolio
for every investor in an exchange economy when investors are exposed to back-

3See footnote 4.
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ground risk. Assume investor i has a non-insurable background risk zi. Assume
the values of zi are in domain (zi,+∞) or [zi,+∞), where zi < 0. Now assume
that the investor�s utility function in the second period is ui(xi+zi−zi), where
we have added a threshold parameter −zi to the utility function. This threshold
parameter will be explained in the end of this section. Let ei = zi − zi. With
other things unchanged as in problem (1), the ith investor�s utility maximiza-
tion problem becomes

max
xi0,xi

ui0(xi0) +Ei[�ui(xi)], (26)

where �ui(x) = Eei(ui(xi + ei)) is investor i�s indirect utility function.
Apparently the only difference between this maximization problem and prob-

lem (1) is that the direct utility function ui(xi) in the later is replaced by the
indirect utility function �ui(xi) in the former. Since we assume that for every
i, ui(x) is strictly increasing and strictly concave and has continuous second
derivative, it is apparent that for every i, �ui(x) is also strictly increasing and
strictly concave and has continuous second derivative. Before we proceed, we
Þrst clarify notation. To reduce unnecessary complexity, we will use the nota-
tion already introduced and just add an ∼ to the heads of all notation related
with the indirect utility function �ui(xi). According to Proposition 2, to check
the existence of equilibrium, we need Þrst to check if it holds that for every i,
�γi(0) > 0, �γi(0) < +∞ and �γi(∞) > 0. Secondly we need to check if there

exists ν > 0, M > 0 and ε0 > 0 such that E(X<ν)(X
1−(�δ(0)+ε0)) < +∞ and

E((X>M))(X
1−(�δ(∞)−ε0)) < +∞. Apparently this is not an easy task; However,

we have the following result.

Proposition 3 (i) Assume for every i, ui0(x) is strictly increasing and dif-
ferentiable and limx→0 u0i0(x) = +∞. (ii) Assume for every i, ui(x) is strictly
increasing and strictly concave and has continuous second derivative, γi(∞) > 0,
limx→0 u0i(x) = +∞, and there exists ωi > 1 such that 0 < limx→0

u00i (x)
x−ωi < +∞.

(iii) Assume for every i, fi(X) and f(X) are positive and differentiable in
X ∈ (0,+∞) almost surely and there exists ν > 0, M > 0 and ε0 > 0

such that E(X<ν)(X
1−(θ+ε0)) < +∞ and E(X>M)(X

1−(δ(∞)−ε0)) < +∞, where
θ = maxi{ωi − 1 − ²i(0)}. (iv) Assume that there exist ν > 0 and M > 0
such that for 0 < x < ν, E(ei>M)(−u00i (x + ei)) < A0, where A0 is a posi-
tive constant. (v) Assume that either of the following conditions is satisÞed:
(v(a)) The background risk is discretely distributed at ei = 0 with probability
Pi = Prob(ei = 0) > 0; (v(b))) The background risk is continuously distributed
at ei = 0 with probability density function hi(x) and there exists βi ∈ (−1,ωi−2)
such that lim infx→0

hi(x)
xβi

> 0 and lim supx→0
hi(x)
xβi

< +∞. Then there exists
a pricing kernel under which every investor has an optimal portfolio, i.e., there
is equilibrium. Furthermore, if for every i, ui(x) is n+ 1 (n > 1) times differ-
entiable and gi(X) is n times differentiable, then xi(X) and φ(X) are n times
differentiable in X.
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Proof:
(A) We Þrst show that

�γi(∞) ≥ γi(∞) (27)

We have

�γi(x) = −xEei(u
00
i (x+ ei))

Eei(u
0
i(x+ ei))

=
Eei(

x
x+ei

γi(x+ ei)u0i(x+ ei))
Eei(u

0
i(x+ ei))

(28)

Given arbitrarily small ε > 0, for sufficiently large M > 0 we have

�γi(x) ≥ (γi(∞)− ε)Eei>M(u
0
i(x+ ei))

Eei(u
0
i(x+ ei))

≥ γi(∞)− ε.
Let x→ +∞. We obtain

�γi(∞) ≥ γi(∞)− ε.
Let ε→ 0. We obtain (27).

(B) Now we show that limx→0 γi(x) exists and

γi(0) = ωi − 1 (29)

Since limx→0 u0i(x) = +∞ and there exists ωi > 1 such that 0 < limx→0
u00i (x)
x−ωi

< +∞, we conclude that limx→0 u0i(x)
x1−ωi exists and

lim
x→0

u0i(x)
x1−ωi

=
1

1− ωi limx→0
u00i (x)
x−ωi

.

From this we immediately obtain that

lim
x→0

−xu
00
i (x)

u0i(x)
= ω − 1.

(C) We show that
�γi(0) < γi(0). (30)

From (28), given arbitrarily small ε > 0, for sufficiently small ν > 0 when
x < ν

�γi(x) <
E(ei<ν−x)(γi(x+ ei)u

0
i(x+ ei))− xE(ei≥ν−x)(u00i (x+ ei))
Eei(u

0
i(x+ ei))

<
(γi(0) + ε)E(ei<ν−x)(u

0
i(x+ ei))− xE(ei≥ν−x)(u00i (x+ ei))
Eei(u

0
i(x+ ei))

.
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According to Condition iv), there exists M > 0 such that −E(ei≥ν−x)(u00i (x +
ei)) < A0, where A0 is a positive constant. Now let x→ 0. We obtain

�γi(0) ≤ γi(0) + ε.
Let ε→ 0. We immediately obtain (30).

(D) We show that if the background risk is discretely distributed at ei = 0
with probability Pi = Prob(ei = 0) > 0 then

�γi(0) ≥ Piγi(0). (31)

We have

�γi(x) = −xEei(u
00
i (x+ ei))

Eei(u
0
i(x+ ei))

≥ −Prob(ei = 0)xu
00
i (x)

u0i(x)
= Piγi(x).

This implies (31).

(E) We show that if investor i�s background risk is continuously distributed
and satisÞes condition (v(b)), then

�γi(0) ≥ Aiγi(0), (32)

where Ai =
biΓ(βi,−ωi)

biΓ(βi,−(ωi−1)) , bi = lim infx→0
hi(x)
xβi

, bi = lim supx→0
hi(x)
xβi

and

Γ(p, q) =
R +∞
0

yp(1 + y)qdy, for −1 < p < −q − 1. This is proved in Appendix
B.

(F) From (27) in (A) and condition (ii), we obtain for every i, �γi(∞) > 0.
From (29) in (B) and (30) in (C), we obtain that for every i, �γi(0) < +∞.
From (31) in (D) and (32) in (E) we obtain that for every i, �γi(0) > 0. From
(27) in (A) we obtain for every i

�δi(∞) ≥ δi(∞),
which implies

�δ(∞) ≥ δ(∞). (33)

From (29) in (B) and (30) in (C), we obtain for every i

�δi(0) ≤ ωi − 1− ²i(0), (34)

which implies
�δ(0) ≤ θ,

13



where θ = maxi{ωi − 1− ²i(0)}. The above results together with assumptions
(i) and (iii) made in the proposition, meet the conditions in Proposition 2.
Applying this proposition, we conclude that there exists equilibrium. Q.E.D

We give the following remarks on the conditions. First any linear combina-
tion of risk-averse power utility functions will satisfy Condition (ii). Secondly,
Condition (iv) is to guarantee that �γi(0) ≤ γi(0). It is apparent that if there
existsM > 0 such that the probability Prob(ei > M) = 0, then (iv) is satisÞed.
Or if for every i, −u00i (x) is bounded above for sufficiently large x > 0, then (iv)
is also satisÞed. For example, if u000 ≥ 0, then (iv) is satisÞed. Or if γi(∞) > 0
and there exist M > 0 and a0 < γi(∞) such that γ(x)

x1+a0
is bounded for x > M ,

then (iv) is satisÞed.4

Thirdly, Condition (v) is to guarantee that �γi(0) > 0. In fact if Condition (v)
is not met, for example, if the background risk is discretely distributed at ei = 0
with probability Pi = Prob(ei = 0) = 0, then we have limx→0 �u

0
i(x) < +∞.

If the background risk is continuously distributed and βi and ωi exist, but
βi > ωi− 2, we can also show that limx→0 �u0i(x) < +∞.5 According to Remark
2 on Proposition 2, if limx→0 �u0i(x) < +∞, we will not have equilibrium with
interior solutions (except that investors are homogeneous).

Now we explain why we should add a threshold parameter to the utility
function and why it should be the lower bound of the domain in which the

4Since γi(∞) > 0, given arbitrary small ε > 0, for sufficiently large x > 0, we have

u0i(x) < Ax
−γi(∞)+ε

,

where A is a positive constant. It follows that given arbitrary small ε > 0, for sufficiently
large x > 0,

−u00i (x) =
γi(x)

x
u0i(x) < Ax

a0−γi(∞)+ε
.

This together with the assumption that u00(x) is continuous implies that for ei ≥ ν − x > 0,
−u00i (x+ ei) < A0, where A0 is a positive constant. Thus −E(ei≥ν−x)(u00i (x+ ei)) < A0.

5From (43) and (45) in Appendix B, given arbitrarily small ε > 0, there exists ν > 0 such
that for 0 < x < ν

Eei(u
0
i(x+ ei)) =

Z +∞

0

h(ei)u
0
i(x+ ei)dei

< A0

Z ν−x

0

e
βi
i (xi + ei)

−(ωi−1)dei

= A0

Z ν
x
−1

0

xβi−ωi+2yβi(1 + y)−(ωi−1)dy

< A0

Z ν
x

0

xβi−ωi+2yβi−ωi+1dy

=
A0ν

βi − ωi + 2
,

where A0 is a positive constant independent of x.
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background risk is distributed. We have assumed that the marginal (direct)
utility is inÞnity when consumption approaches zero, i.e., u0i(0) = +∞. This
implies that for utility function ui(x), it is naturally required that x ≥ 0. Now
given background risk zi distributed in (zi,+∞), since zi < 0, we have to
add a threshold parameter to the utility function; otherwise the indirect utility
function will be �ui(xi) = Ezi(ui(xi + zi)). Then the indirect utility function is
not well deÞned for 0 < xi < −zi. In order to keep the indirect utility function
well deÞned for any xi > 0, the threshold parameter ai should be no less than
−zi. But if ai > −zi, we will have �u0i(0) = Ezi(u0i(ai+ zi)) < u0i(ai+ zi) < +∞.
According to remark 2 on Proposition 2, there will be no equilibrium with
interior solutions (except that investors are homogeneous). Thus the threshold
parameter has to be −zi.

5 Conclusion

When the Þrst order conditions for investors� utility maximization problems are
all equalities, the pricing kernel is determined in equilibrium of the economy. In
this case it would be inappropriate for us to give conditions for the existence of
optimal portfolios involving the to-be-derived pricing kernel. In this paper we
give conditions directly on investors� preferences, their beliefs about the market
portfolio and the distributions of their background risk which guarantee that
there is a pricing kernel under which every investor has an optimal portfolio i.e.,
there exists equilibrium.
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Appendix A Proof of (C) in Lemma 1

We show that under the conditions given in Lemma 1, E(ui(xi)) is bounded
below.
(Ca) Suppose γi(0) < 1.
We can show that ui(x) is naturally bounded below. Since γi(0) < 1, for

sufficiently small x, we have
γi(x) < 1− ε,

where 0 < ε < 1− γi(0). It follows that
u0i(x) < Ax

−(1−ε)

where A is a positive constant. Hence for sufficiently small x◦ and x < x◦

ui(x) = ui(x
◦)−

Z x◦

x

u0i(x)dx

≥ ui(x
◦)−

Z x◦

x

Ax−(1−ε)dx

= ui(x
◦)− A

ε
(x◦ε − x²)

> ui(x
◦)− A

ε
x◦ε

Since for any x0 ∈ C+, xi(X;x0) > 0, we have xi(X◦;x0) > 0. From the above
equation we conclude that ui(xi) is bounded below.

(Cb) Suppose γi(0) ≥ 1.
From (5) and (13), we have

u0i(xi)x
0
i(X) = λigiφ

xi
X

γe(X) + ²i(X)

γi(xi)
(35)

Given arbitrarily small ε > 0, for sufficiently small X > 0, we have

γe(X) + ²i(X)

γi(xi)
<
δ(0) + ²i(0)

γi
+ ε, (36)

where δ(0) + ²i(0) ≥ 0 and γi = infx{γi(x)} > 0.
On the other hand, given arbitrarily small ε > 0 for sufficiently small X > 0

we have
A0X

−(²i(0)−ε) < gi(X) < A0X−(²i(0)+ε), (37)

where A0 is a positive constant.
From (17), (35), (36) and (37), we conclude that given arbitrarily small

ε > 0, for sufficiently small X > 0,

u0(xi)x0i(X) < A1X
−(²i(0)+δ(0)+ε)
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where A1 = −A20λi( δ(0)+²i(0)γi
+ ε) is a positive constant. It follows that for

sufficiently small X◦ > 0, when X < X◦,

ui(xi(X)) = ui(xi(X
◦))−

Z X◦

X

u0i(xi(X))x
0
i(X)dX

> ui(xi(X
◦))−

Z X◦

X

A1X
−(²i(0)+δ(0)+ε)dX

= ui(xi(X
◦))− A1

α
(X◦α −Xα),

where α = 1− (²i(0) + δ(0) + ε). Since ²i(0) + δ(0) ≥ γi(0) ≥ 1 and ε > 0, we
must have α < 0. Since for any x0 ∈ C+, xi(X;x0) > 0, we have xi(X

◦) =
xi(X

◦, x0) > 0. Thus ui(xi(X◦)) > −∞. It follows that given arbitrarily small
ε for sufficiently small X > 0

ui(xi(X)) > −A3X1−(²i(0)+δ(0)+ε).

where A3 is a positive constant. Combining the above equation and (37), we
obtain that given arbitrarily small ε for sufficiently small X > 0

ui(xi(X))

gi(X)
> −AX1−(δ(0)+ε), (38)

where A is a positive constant. Now applying Condition (iv) we conclude that
there exists sufficiently small ν > 0 such that

Ei(X<ν)(ui(xi)) > −∞. (39)

We now show that there exists M > 0 such that

Ei(X>M)(ui(xi)) > −∞. (40)

From (15) given arbitrarily small ε > 0, we have for sufficiently large X,

γe(X) > δ(∞)− ε. (41)

If δ(∞) + ²i(∞) > 0, from (13) and (41), we conclude that xi(X) will be
increasing in X when X approaches inÞnity. This implies that for sufficiently
large X, ui(xi) is bounded below, thus (40) immediately follows. Otherwise,
suppose δ(∞) + ²i(∞) ≤ 0.
For sufficiently large X, we must have

γe(X) + ²i(X)

γi(xi)
>
δ(∞) + ²i(∞)

γi
− ε, (42)

where δ(∞) + ²i(∞) ≤ 0 and γi = infx{γi(x)} > 0.
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From (19), (22), (35), and (42) we conclude that given small ε > 0, for
sufficiently large X,

u0(xi)x0i(X) > −A1X−(²i(∞)+δ(∞)−ε)

where A1 is a positive constant. It follows that for sufficiently large X◦ > 0,
when X > X◦,

ui(xi(X)) = ui(xi(X
◦)) +

Z X

X◦
u0i(xi(X))x

0
i(X)dX

> ui(xi(X
◦))−

Z X

X◦
A1X

−(²i(∞)+δ(∞)−ε)dX

= ui(xi(X
◦))− A1

α
(Xα −X◦α),

where α = 1−(²i(∞)+δ(∞)−ε) > 0. Since for any x0 ∈ C+, xi(X;x0) > 0, we
have xi(X◦) = xi(X◦, x0) > 0. Thus ui(xi(X◦)) > −∞. It follows that there
exists a positive constant A2 such that for sufficiently large X

ui(xi(X)) > −A2X1−(²i(∞)+δ(∞)−ε)

From (22) and the above equation we obtain for sufficiently large X

ui(xi(X))

gi
> −A3X1−(δ(∞)−ε),

where A3 is a positive constant. Now applying Condition (iv), we obtain (40).
Since ui(xi) is continuous in X, from (39) and (40) we conclude that

Ei(ui(xi)) is bounded below. Q.E.D.
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Appendix B Proof of (E) in Proposition 3

Now assume ei is continuously distributed at ei = 0. From (B), we know

that γi(0) = ωi − 1 and limx→0 u0i(x)
x−γi(0) exists. Let αi = limx→0

u0i(x)
x−γi(0) . Given

arbitrarily small ε > 0, for sufficiently small ν > 0 when x < ν

(αi − ε)x−γi(0) < u0i(x) < (αi + ε)x−γi(0). (43)

From (28) and the above equation given arbitrarily small ε > 0, for sufficiently
small ν > 0 when x < ν

�γi(x) >
Eei<ν−x(

x
x+ei

(γi(0)− ε)u0i(x+ ei))
Eei(u

0
i(x+ ei))

> (γi(0)− ε) αi − ε
αi + ε

Eei<ν−x(
x

x+ei
(x+ ei)

−γi(0))

Eei<ν−x((x+ ei)−γi(0)) +
u0
i
(ν)

αi+ε

. (44)

Let bi = lim infx→0
hi(x)
xβi

and bi = lim supx→0
hi(x)
xβi

, where hi(x) denotes the

probability density function of ei. Since 0 < bi ≤ bi < +∞, given arbitrarily
small ε > 0, we have for sufficiently small ν > 0 when x < ν, for ei < ν − x

(bi − ε)eβii < hi(ei) < (bi + ε)e
βi
i . (45)

Substituting this equation into (44), given arbitrarily small ε > 0, we have for
sufficiently small ν > 0 when x < ν

�γi(x) > Aε

R ν−x
0

x
x+ei

eβii (x+ ei)
−γi(0)deiR ν−x

0
eβii (x+ ei)

−γi(0)dei +
u0
i
(ν)

(αi+ε)(bi+ε)

= Aε

R ν
x−1
0 yβi(1 + y)−γi(0)−1dyR ν

x−1
0 yβi(1 + y)−γi(0)dy + x(γi(0)−βi−1) u0i(ν)

(αi+ε)(bi+ε)

(46)

where Aε = (γi(0)− ε) αi−εαi+ε

bi−ε
bi+ε

. Since −1 < βi < γi(0)− 1 the integrals are
well deÞned. Now let x→ 0. We obtain

lim inf
x→0 �γi(x) ≥ AεΓ(βi,−(γi(0) + 1))

Γ(βi,−γi(0)) ,

where Γ(p, q) =
R+∞
0 yp(1 + y)qdy, for −1 < p < −q − 1, and γi(0) = ωi − 1.

Let ε→ 0. We obtain (32). Q.E.D.
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