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Abstract

The economic consequences of along memory assumption about volatility are
documented, by comparing implied volatilities for option prices obtained from short
and long memory volatility processes. Numerical results are given for options on the
S & P 100 index from 1984 to 1998, with lives up to two years. The long memory
assumption is found to have a significant impact upon the term structure of implied
volatilities and arelatively minor impact upon smile effects. These conclusions are
important because evidence for long memory in volatility has been found in the prices

of many assets.
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1. Introduction

Long memory effects in a stochastic process are effects that decay too slowly to be
explained by stationary processes defined by a finite number of autoregressive and
moving-average terms. Long memory is often represented by fractional integration of
shocks to the process, which produces autocorrelations that decrease at a hyperbolic
rate compared with the faster asymptotic rate of stationary ARMA processes.

Long memory in volatility occurs when the effects of volatility shocks decay
dlowly. This phenomenon can be identified from the autocorrelations of measures of
realised volatility. Two influential examples are the study of absolute daily returns from
stock indices by Ding, Granger and Engle (1993) and the recent investigation of daily
sums of sguared five-minutes returns from exchange rates by Andersen, Bollerslev,
Diebold and Labys (2000).

Stochastic volatility causes option prices to display both smile and term
structure effects. An implied volatility obtained from the Black-Scholes formulathen
depends on both the exercise price and the time until the option expires. Exact
calculation of smile and term effectsis only possible for special, short memory
volatility processes, with the results of Heston (1993) being a notable example. Monte
Carlo methods are necessary, however, when the volatility process has along memory.
These have been evaluated by Bollerslev and Mikkelsen (1996, 1999).

The objective of this paper isto document the economic consequences of along
memory assumption about volatility. Thisis achieved by comparing implied volatilities

for option prices obtained from short and long memory specifications. It is necessary to



use along history of asset prices when applying along memory model and this paper
uses levels of the S & P 100 index from 1984 to 1998. For thisdatait is found that a
long memory assumption has a significant economic impact upon the term structure of
implied volatilities and a relatively minor impact upon smile effects.

Market makers in options have to make assumptions about the volatility
process. The effects of some assumptions are revealed by the prices of options with
long lives. Bollerdev and Mikkelsen (1999) find that the market prices of exchange
traded options on the S & P 500 index, with lives between nine months and three years,
are described more accurately by along memory pricing model than by the short
memory alternatives. Thus some option prices already reflect the long memory
phenomenon in volatility, although Bollerslev and Mikkelsen (1999) find that
significant biases remain to be explained. The same LEAPS contracts are also
investigated by Bakshi, Cao and Chen (2000) who show that options with long lives
can differentiate between competing pricing models, but their analysisisrestricted to a
short memory context.

Three explanatory sections precede the illustrative option pricing resultsin
Section 5, so that this paper provides a self-contained description of how to price
options with along memory assumption. A genera introduction to the relevant
literature is provided by Granger (1980) and Baillie (1996) on long memory, Andersen,
Bollerdev, Diebold and Labys (2000) on evidence for long memory in volatility, Duan
(1995) on option pricing for ARCH processes, and Bollerdev and Mikkelsen (1999) on

applying these pricing methods with long memory specifications.



Section 2 defines and characterises long memory precisely. These
characteristics are illustrated theoretically for the fractionally integrated white noise
process and then the empirical evidence for these characteristicsin volatility is
surveyed. The empirical evidence for the world's major markets is compelling and
explanations for the source of long memory effectsin volatility are summarised.

Section 3 describes parsimonious volatility models that incorporate long
memory either within an ARCH or a stochastic volatility framework. The former
framework is easier to use and we focus on using the fractionally integrated extension
of the exponential GARCH model, that is known by the acronym FIEGARCH. An
important feature of applicationsis the unavoidable truncation of an autoregressive
component of infinite order. Empirical results are provided for ten years of S & P 100
returns.

Section 4 provides the necessary option pricing methodology. Contingent claim
prices are obtained by simulating terminal payoffs using an appropriate risk-neutral
measure. A risk-premium term then appears in the simulated process and has a non-
trivial effect upon the results that is typically seen in term structures that slope upwards
on average. Numerical methods that enhance the accuracy of the smulations are also
described.

Section 5 compares implied volatilities for European option prices obtained
from short and long memory volatility specifications, for hypothetical S & P 100
options whose lives range from one month to two years. Options are valued on ten
dates, one per annum from 1989 to 1998. The mgor impact of the long memory

assumption is seen to be the very slow convergence of implied volatilitiesto alimit as



the option life increases. This convergence is so slow that the limit can not be estimated

precisely. Section 6 contains conclusions.

2. Long memory

2.1. Definitions

There are several definitions that categorise stochastic processes as having either a
short memory or along memory; examples can be found in McLeod and Hipel (1978),
Brockwell and Davis (1991), Baillie (1996) and Granger and Ding (1996). The
fundamental characteristic of along-memory processis that dependence between
variables separated by t time units does not decrease rapidly ast increases.

Consider a covariance stationary stochastic process {x} that has variance

s 2 and autocorrelations r , spectral density f(w) and n-period variance-ratios V,

defined by
re = cor(xt  Xeat ) (1)
s? ¥
fw)=2— ar, cosltw), w>0, )
P t=vy
Vn - Var(Xt+1+...+Xt+n) :1+2né'.lurt . (3)
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Then a covariance stationary processis here said to have a short memory if 3 r,
t=1

convergesas Nn® ¥ , otherwiseit is said to have along memory. A short memory

process then has

n
ar, ® c;,, fWwW®C,, V,®C;, asn®¥ wo 0, (4)
t=1

for constants C;,C,,C5. Examples are provided by stationary ARMA processes. These

processes have geometrically bounded autocorrelations, so that |r ¢ | £Cf' for some

C>0and1>f >0, and hence (4) is applicable.

In contrast to the above results, all the limits given by (4) do not exist for a
typical covariance stationary long memory process. Instead, it istypical that the
autocorrelations have a hyperbolic decay, the spectral density is unbounded for low
frequencies and the variance-ratio increases without limit. Appropriate limits are then

provided for some positive d < 3 by

V

't _® p, L‘g’d)® D, —® D aN® ¥, we 0 5)
W n

t 2d-l

for positive constants Dy, D,, D5. The limits given by (5) characterise the stationary

long memory processes that are commonly used to represent long memory in volatility.

The fundamental parameter d can be estimated from data using a regression, either of
In(f(w)) onw or of Inwn) onnasin, for example, Andersen, Bollerslev, Diebold and

Ebens (2000).

2.2. Fractionally integrated white noise



An important example of along memory process is a stochastic process {yt} that

requires fractional differencing to obtain a set of independent and identically distributed

residuals {e,} . Following Granger and Joyeux (1980) and Hosking (1981), such a

process is defined using the filter

@-Qd:LdL+%%EQE-dm_gw_aL&h" (6)

where L isthe usual lag operator, so that Ly; = Y;.;. Then afractionally integrated

white noise (FIWN) process {y, } is defined by

(- L)y = ()
with the e; assumed to have zero mean and variance s e2 . Throughout this paper it is

assumed that the differencing parameter d isconstrained by O£ d <1.
The mathematical properties of FIWN are summarised in Baillie (1996) and

were first derived by Granger and Joyeux (1980) and Hosking (1981). The processis

covariance stationary if d <% and then the following results apply. First, the

autocorrelations are given by

;oo d o _ dd+y) _ d(d+1)d+2) ®
171-d" % @-d)2-d) " (@-d)2-d)B3-d)77

or, in terms of the Gamma function,
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Second, the spectral density is

S22 _s2é . awar
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Also,
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(13)

When d 3 % the FIWN process has infinite variance and thus the autocorrelations are

not defined, although the process has some stationarity properties for % £d<1.

2.3. Evidence for long memory in volatility

When returns r; can be represented as r, = m+s U, , with s, representing volatility

and independent of an i.i.d. standardised return u; , it is often possible to make

inferences about the autocorrelations of volatility from the autocorrelations of either

Irc - m or (r, - m)?, see Taylor (1986). In particular, evidence for long memory in

powers of daily absolute returnsis also evidence for long memory in volatility. Ding,

Granger and Engle (1993) observe hyperbolic decay in the autocorrel ations of powers



of daily absolute returns obtained from U.S. stock indices. Dacorogona, Muller, Nagler,
Olsen and Pictet (1993) observe asimilar hyperbolic decay in 20-minute absolute
exchange rate returns. Breidt, Crato and de Lima (1998) find that spectral densities
estimated from the logarithms of squared index returns have the shape expected from a
long memory process at low frequencies. Further evidence for long memory in
volatility has been obtained by fitting appropriate fractionally integrated ARCH models
and then testing the null hypothesis d =0 against the aternative d > 0. Bollerslev and
Mikkelsen (1996) use this methodology to confirm the existence of long memory in
U.S. stock index volatility.

The recent evidence for long memory in volatility uses high-frequency datato
construct accurate estimates of the volatility process. The quadratic variation s t2 of the

logarithm of the price process during a 24-hour period denoted by t can be estimated by

caculating intraday returns r; ; and then

rt?j . (14)
1

Qoz

02 _
St =

—
1

The estimates areillustrated by Taylor and Xu (1997) for ayear of DM/$ rates with

N =288 so that the r, ; are 5-minute returns. As emphasised by Andersen, Bollerslev,

Diebold and Labys (2000), the estimate s tz will be very closeto theintegral of the

unobservable volatility during the same 24-hour period providing N islarge but not so

large that the bid-ask spread introduces bias into the estimate. Using five-minute
returns provides conclusive evidence for long memory effectsin the estimates s tz in

four studies: Andersen, Bollersev, Diebold and Labys (2000) for ten years of DM/$



and Y en/$ rates, Andersen, Bollerslev, Diebold and Ebens (2000) for five years of
stock prices for the 30 components of the Dow-Jones index, Ebens (1999) for fifteen
years of the same index and Areal and Taylor (2000) for eight years of FTSE-100 stock

index futures prices. These papers provide striking evidence that time series of
estimates s“t2 display all three properties of along memory process. hyperbolic decay
in the autocorrelations, spectral densities at low frequencies that are proportional to

w29 and variance-ratios whose logarithms are very close to linear functions of the
aggregation period n. It is also seen from these papers that estimates of d are between

0.3 and 0.5, with most estimates close to 0.4.

2.4. Explanations of long memory in volatility

Granger (1980) shows that long memory can be a consequence of aggregating short
memory processes; specifically if AR(1) components are aggregated and if the AR(1)
parameters are drawn from a Beta distribution then the aggregated process converges to
along memory process as the number of components increases. Andersen and
Bollerslev (1997) develop Granger's theoretical resultsin more detail for the context of
aggregating volatility components and also provide supporting empirical evidence
obtained from only one year of 5-minute returns. It is plausible to assert that volatility
reflects several sources of news, that the persistence of shocks from these sources
depends on the source and hence that total volatility follows along memory process.
Scheduled macroeconomic news announcements are known to create additional

volatility that is very short-lived (Ederington and Lee, 1993), whilst other sources of
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news that have alonger impact on volatility are required to explain volatility clustering
effects that last several weeks.

Gallant, Hsu and Tauchen (1999) estimate a volatility process for daily IBM
returns that is the sum of only two short memory components yet the sum is ableto
mimic long memory. They aso show that the sum of a particular pair of AR(1)
processes has a spectral density function very close to that of fractionally integrated
white noise with d = 0.4 for frequencies w 3 0.01p . Consequently, evidence for long
memory may be consistent with a short memory process that is the sum of a small
number of components whose spectral density happens to resemble that of along
memory process except at extremely low frequencies. The long memory specification
may then provide a much more parsimonious model. Barndorff-Nielsen and Shephard
(2001) model volatility in continuous-time as the sum of afew short memory
components. Their analysis of ten years of 5-minute DM/$ returns, adjusted for
intraday volatility periodicity, shows that the sum of four volatility processesis able to
provide an excellent match to the autocorrelations of squared 5-minute returns, which

exhibit the long memory property of hyperbolic decay.

3. Long memory volatility models

A general set of long memory stochastic processes can be defined by first applying the

filter (1- L)? and then assuming that the filtered processis a stationary ARMA(p, q)

process. This defines the ARFIMA(p, d, g) models of Granger (1980), Granger and

Joyeux (1980) and Hosking (1981). This approach can be used to obtain long memory
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models for volatility, by extending various specifications of short memory volatility

processes. We consider both ARCH and stochastic volatility specifications.

3.1. ARCH specifications

The conditional distributions of returns r; are defined for ARCH models using
information sets I,_, that are here assumed to be previous returns {r,_;,i 3 1},
conditional mean functions m (1, ), conditional variance functions h (1,.;) anda

probability distribution D for standardised returns z; . Then the terms
z =t (15)

are independently and identically distributed with distribution D and have zero mean
and unit variance.

Baillie (1996) and Bollerslev and Mikkelsen (1996) both show how to define a
long memory process for h, by extending either the GARCH models of Bollerslev
(1986) or the exponential ARCH models of Nelson (1991). The GARCH extension can
not be recommended because the returns process then has infinite variance for all

positive values of d, which isincompatible with the stylized facts for asset returns. For
the exponentia extension, however, In(h[ ) is covariance stationary for d < % ; it may

then be conjectured that the returns process has finite variance for particular

specifications of h; .
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Like Bollerdev and Mikkelsen (1996, 1999), this paper applies the

FIEGARCH(1, d, 1) specification :

Infh)=a + (- fL) *(1- L) “(+yL)g(z.1) (16)

9(z)=0z +902t|' C), (17)
witha, f , d, y respectively denoting the location, autoregressive, differencing and
moving average parameters of In(h,). Thei.i.d. residuals g(z ) depend on a symmetric
response parameter g and an asymmetric response parameter q that enablesthe
conditional variances to depend on the signs of the terms z ; these residuals have zero
mean because C is defined to be the expectation of |z|. The EGARCH(1,1) model of
Nelson (1991) isgivenby d =0.1f f =y =0 and d >0, then In(h)- a isa
fractionally integrated white noise process. In general, In(h,) isan ARFIMA(Y, d, 1)

process.

Calculations using equation (16) require series expansions in the lag operator L.

We note here the results::

d o '
(- L)% =1- daLl, a =d, aj =
i=1 j

(- fL)a- L) =1- ;bij, by=d+f, b;=a;-fa;,, j°2 (19)

=1

(1-fL)a- L) @+yL)t=1- _?;if L,

=1

fo=d+f +y, fj:bj'('Y)j’fJéll('Y)j_kbk, 122 (20)
k=1
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and that the autoregressive weights in (20) can be denoted as f (d,f Y ) Also,

¥ .
(- fL) M- L) Y@+yL)=1+ &y L/,
j=1
yi=d+f +y, y;=-f;(-d-y-f). (21)
It is necessary to truncate the infinite summations when evaluating empirical

conditional variances. Truncation after N terms of the summationsin (21), (20) and

(29) respectively givethe MA(N), AR(N) and ARMA(N, 1) approximations :

In(h)=a +g(z.,)+ j%%/ jg(zt- 1-1)’ (22)
nn)=a + 41 ol ) al o) )
In(h)=a + _gbj ['”(ht- j ) a]+ 9(z.1)+y9(z.,) (24)

As | ® ¥, thecoefficients b; and f ; converge much more rapidly to zero than the
coefficientsy ;. Consequently it is best to use either the AR or the ARMA

approximation.

3.2. Estimates for the S& P 100 index

Representative parameters are required in Section 5 to illustrate the consequences of
long memory in volatility for pricing options. As ARCH specifications are preferred for
theseillustrations, a discussion is presented here of parameter values for the

FIEGARCH(1, d, 1) specification. These parameters are estimated from daily returns
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r; for the S & P 100 index, excluding dividends, calculated from index levels p; as

re =In(py/pr.1)-

Evaluation of the conditional variances requires truncation of the infinite series
defined by the fractional differencing filter. Here the variances are evaluated for t 3 1
by setting N =1000 in equation (24), with In(h[_ j) replaced by a and g(zt_ j)
replaced by zero whenever t - j £ 0. Thelog-likelihood function is calculated for the
2,528 trading days during the ten-year estimation period from 3 January 1989 to 31
December 1998, which corresponds to the times 1,221 £ t £ 3,748 for our dataset; thus
the first 1,220 returns are reserved for the calculation of conditional variances before
1989 which are needed to evaluate the subsequent conditional variances.

Results are first discussed and are tabulated when returns have a constant
conditional mean which is estimated by the sample mean. The conditional variances are
obtained recursively from equations (15), (17), (19) and (24). The conditional
distributions are assumed to be Normal when defining the likelihood function. This
assumption is known to be false but it is made to obtain consistent parameter estimates

(Bollerslev and Wooldridge, 1992). Preliminary maximisations of the likelihood
showed that a suitable valuefor C = E[[zt |] is0.737, compared with ,/2/p @0.798 for

the standard Normal distribution. They also showed that an appropriate value of the

location parameter a of In(h, ) is-9.56; the log-likelihood is not sensitive to minor

N
deviations from thislevel because a ismultiplied by aterm 1- & b; in equation (24)

j=1

that is small for large N. Consequently, the results summarised in Table 1 are given by
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maximising the log-likelihood function over some or all of the parameters
q,9,fy.d.

The estimates of g and g provide the usual result for a series of U.S. stock
index returns that changesin volatility are far more sensitive to the values of negative
returns than those of positive returns, asfirst reported by Nelson (1991). When z is
negative, 9(z)=(g- q)(- z)- oC, otherwise g(z)=(g +q)z - oC. Theratio %
isat least 4 and hence is substantial for the estimates presented in Table 1.

Thefirst two rows of Table 1 report estimates for short memory specifications
of the conditional variance. The AR(1) specification has a persistence of 0.982 that is
typical for thisvolatility model. The ARMA(1,1) specification has an additional
parameter and increases the log-likelihood by 3.0. The third row shows that the
fractional differencing filter done (d >0, f =y =0) provides abetter description of
the volatility process than the ARMA(1,1) specification; with d = 0.66 thelog-
likelihood increases by 10.9. A further increase of 7.8 is then possible by optimising
over al three volatility parameters, d, f andy , to give the parameter estimates' in the
fifth row of Table 1.

The estimates for the most general specification identify two issues of concern.

First, d equals 0.57 for our daily data which is more than the typical estimate of 0.4

! The log-likelihood function is maximised using a complete enumeration algorithm
and hence standard errors are not immediately available. A conservative robust
standard error for our estimate of d is0.12, using information provided by Bollerslev
and Mikkelsen (1996).
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produced by the studies of higher frequency data mentioned in Section 2.3. The same
issue arises in Bollerdlev and Mikkelsen (1996) with d estimated as 0.63 (standard error
0.06) from 9,559 daily returns of the S & P 500 index, from 1953 to 1990; there are
similar resultsin Bollerdev and Mikkelsen (1999). Second, thesum d +f +y equals

1.39. Asthissum equalsy ; in equations (21) and (22), more weight is then given to

the volatility shock at time t - 2 than to the shock at time t - 1 when calculating

In(h, ). Thisis counterintuitive. To avoid this outcome, the constraint d +f +y £1 is
applied and the results given in the penultimate row of Table 1 are obtained. The log-
likelihood is then reduced by 2.0. Findly, if disconstrained to be 0.4 then the log-
likelihood is reduced by an additional 8.3.

The estimates obtained herefor f andy , namely -0.27 and 0.68 for the most
general specification, are rather different to the 0.78 and -0.68 given by Bollerslev and
Mikkelsen (1999, Table 1), although the estimates of d are similar, namely 0.59 and
0.65. However, the moving-average representations obtained from these sets of
parameters estimates are qualitatively similar. Thisis shown on Figure 1 that compares
the moving-average coefficientsy ; defined by equation (21). The coefficients are
positive and monotonic decreasing for the four sets of parameter values used to produce
Figure 1. They show the expected hyperbolic decay when d >0 and a geometric decay
when d = 0. Thevalues of b; in equations (19) and (24) that are used to calculate the
conditional variances decay much faster. For each of the four curves shown on Figure

1,y 10 > 0.33 andy 4y > 0.07 whilst 0<byy <0.02 and 0 < by, < 0.0003.
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The results reported in Table 1 are for a constant conditional mean, m = m.
Alternative specificationssuch as m = m+ br,_;, m =m- %ht and m =m+| \/H
give similar values of the log-likelihood when the volatility parameters are set to the
valuesin the final row of Table 1. First, including the lagged return r,_4 is not

necessary because the first-lag autocorrelation of the S& P 100 returns equals -0.022

and is statistically insignificant. Second, including the adjustment - %ht makes the

conditional expectation of Pe= P constant when the conditional distributionis

Pr-1
Normal. The adjustment reduces the log-likelihood by an unimportant 0.3. Third,
incorporating the ARCH-M parameter | gives an optimal value of 0.10 and an
increase in the log-likelihood of 1.5. Thisincreaseis not significant using a non-robust

likelihood-ratio test at the 5% level.

3.3. Sochastic volatility specifications

Two shocks per unit time characterise stochastic volatility (SV) models, in contrast to

the single shock z, that appearsin ARCH models. A general framework for long
memory stochastic volatility modelsis given for returns r; by

ik =m+sS U (25)
with In(s ;) following an ARFIMA(p, d, q) process. For example, with p=q =1,

Ins,)=a +(1-fL) *{1- L) 4@+yL)v. (26)
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This framework has been investigated by Breidt, Crato and de Lima (1998), Harvey
(1998) and Bollersev and Wright (2000), al of whom provide results for the
simplifying assumption that the two i.i.d. processes {u,} and {v,} areindependent. This
assumption can be relaxed and has been for short memory applications (Taylor, 1994,
Shephard, 1996).

Parameter estimation is difficult for SV models, compared with ARCH models,
because SV models have twice as many random innovations as observable variables.
Breidt, Crato and de Lima (1998) describe a spectral-likelihood estimator and provide
results for a CRSP index from 1962 to 1989. For the ARFIMA(1, d, 0) specification
they estimate d =0.44 and f =0.93. Bollersdev and Wright (2000) provide detailed
simulation evidence about semiparametric estimates of d, related to the frequency of
the observations.

It is apparent that the ARCH specification (15)-(17) has asimilar structure to
the SV specification (25)-(26). Short memory special cases of these specifications,
givenby d =q =0, have similar moments (Taylor, 1994). Thisis a consequence of the
special cases having the same bivariate diffusion limit when appropriate parameter
values are defined for increasingly frequent observations (Nelson, 1990, Duan, 1997).

It seems reasonable to conjecture that the multivariate distributions for returns defined
by (15)-(17) and (25)-(26) are similar, with the special case of independent shocks {u, }

and {v,} corresponding to the symmetric ARCH model that has q = 0 in equation (17).
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4. Option pricing methodology

4.1. Areview of SV and ARCH methods

The pricing of options when volatility is stochastic and has a short memory has been
studied by several researchers using avariety of methods. The most popular methods
commence with separate diffusion specifications for the asset price and its volatility.
These are called stochastic volatility (SV) methods. Option prices then depend on
severa parametersincluding avolatility risk premium and the correlation between the
differentials of the Wiener processes in the separate diffusions. Hull and White (1987)
provide solutions that include a simple formulawhen volatility risk is not priced and
the correlation between the differentialsis zero. The closed form solution of Heston
(1993) assumes that volatility follows a square-root process and permits a general
correlation and a non-zero volatility risk premium; for applications see, for example,
Bakshi, Cao and Chen (1997, 2000) and for extensions see Duffie, Pan and Singleton
(2000).

Thereis much less research into option pricing for short memory ARCH
models. Duan (1995) provides avaluation framework and explicit results for the
GARCH(1,1) process that can be extended to other ARCH specifications. Ritchken and
Trevor (1999) provide an efficient lattice algorithm for GARCH(1,1) processes and
extensions for which the conditional variance depends on the previous value and the

latest return innovation.
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Methods for pricing options when volatility has along memory have been
described by Comte and Renault (1998) and Bollerslev and Mikkelsen (1996, 1999).
The former authors provide analysis within a bivariate diffusion framework. They
replace the usual Wiener process in the volatility equation by fractional Brownian
motion. However, their option pricing formula appears to require independence
between the Wiener process in the price equation and the volatility process. This
assumption is not consistent with the empirical evidence for stock returns. The
assumption is refuted, for example, by finding that q is not zero in the function g(z)
that appears in an exponential ARCH model.

The most practical way to price options with long memory in volatility is
probably based upon ARCH models, as demonstrated by Bollerslev and Mikkelsen
(1999). We follow the same strategy. From the asymptotic results in Duan (1997), also
discussed in Ritchken and Trevor (1999), it is anticipated that insights about options
priced from along memory ARCH model will be similar to the insights that can be

obtained from arelated long memory SV mode!.

4.2. The ARCH pricing framework

When pricing optionsit will be assumed that returns are calculated from prices (or
index levels) as r; = In( P;/ pt_l) and hence exclude dividends. A constant risk-free

interest rate and a constant dividend yield will aso be assumed and, to ssimplify the

notation and calculations, it will be assumed that interest and dividends are paid once



21

per trading period. Conditional expectations are defined with respect to current and
prior price information represented by 1, :{pt_i 03 O}.

To obtain fair option pricesin an ARCH framework it is necessary to make
additional assumptionsin order to obtain arisk-neutral measure Q. Duan (1995) and
Bollerdev and Mikkelsen (1999) provide sufficient conditions to apply arisk-neutral
valuation methodology. For example, it is sufficient that a representative agent has
constant relative risk aversion and that returns and aggregate growth ratesin
consumption have conditional normal distributions. Kallsen and Tagqu (1998) derive
the same solution as Duan (1995) without making assumptions about utility functions
and consumption. Instead, they assume that intraday prices are determined by
geometric Brownian motion with volatility determined once a day from a discrete-time
ARCH model.

At time t', measured in trading periods, the fair price of an European contingent

claim that hasvalue Yy, (py+) @ theterminal time t'+n is given by

Ve = E°L€ " "Ypun(Prsn) [14] (27)
with r therisk-freeinterest rate for one trading period. Our objective is now to specify
an appropriate way to simulate p;.,, under arisk-neutral measure Q and thereby to

evaluate the above conditional expectation using Monte Carlo methods.
Following Duan (1995), it is assumed that observed returns are obtained under a

probability measure P from

rt||t-1"P N(m. h), (28)

with
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M _Piid.N(01) (29)

Jhe

and that in arisk-neutral framework returns are obtained under measure Q from

4 =

rt||t-1"‘Q N( 'd'%ht’ht)’ (30)

with

~Qiid.N(01). (31)

Here d isthe dividend yield, that corresponds to a dividend payment of d, = (ed - 1)pt
per share at timet. Then EQ[pt|It_1] =" "9 p,.; and the expected value at time't of

one share and the dividend payment is EQ[pt +dt|lt_1] =e' p.,, asrequired in arisk-

neutral framework.

Note that the conditional means are different for measures P and Q but the

functions h,(p;.1, Py. 2.----) that define the conditional variances for the two measures

areidentical. Duan (1995) proves that thisis a consequence of the sufficient
assumptions that he states about risk preferences and distributions. The same

conclusion applies for the less restrictive assumptions of Kallsen and Tagqu (1998).
Option prices depend on the specificationsfor m and h, . We again follow
Duan (1995) and assume that
m=r-d-ih+lJh (32)

with | representing arisk-premium parameter. Then the conditional expectations of r,

for measures P and Q differ by | /b, and
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z-2 =-1. (33)

4.3. Long memory ARCH equations

Option prices are evaluated in this paper when the conditional variances are given by

the ARMA(N, 1) approximation to the FIEGARCH(1, d, 1) specification. From (17),

(24) and (33),

G- A, i) )= Loy Lo(eo)= Loy gl - 1) @)
and
9(z)=0z +902t| - C) (35)

with the autoregressive coefficients b; defined by (19) as functions of f and d; also

C =+/2/p for conditional normal distributions®. Suppose there are returns observed at
times1£t £t', whose distributions are given by measure P, and that we then want to

simulate returns for times t > t' using measure Q. Then In(h, ) is calculated for

1£t £ t'+1 using the observed returns, with In(h,) =a and g(z ) =0 for t <1,

followed by simulating z ~9 N(0,1) and hence obtaining r, and In(h,,;) for t >t".

2When z~ N(0J), Ez- 1{]=y2/p exp(— 1 2)+I (2F (1 )- 1) with F the cumulative

distribution function of z
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The expectation of In(h,) depends on the measure® when | 1 0. Itequals a for

measure P. It is different for measure Q because

z:-l‘]-\/m)@lq+% (36)

when | issmall, and this expectation isin general not zero. For afixed t',ast® ¥ ,

EQ[g(zf - )]:-| q +g(EQ

1

Ap 2 @y )EQlz - 1) (37)
i1 @

=)o a +-
The difference between the P and Q expectations of In(h, ) could be interpreted as a
volatility risk premium. This "premium"” is typically negative, because typically
| >0, q £0 and g > 0. Furthermore, when g is negative the magjor termin (36) is
- 1 g, because | isawayssmall, and then the "premium" reflects the degree of
asymmetry in the volatility shocks g(z ).

The magnitude of the volatility "risk premium" can be important and, indeed,
the quantity defined by the limit in (37) becomes infinite*as N ® ¥ whendis
positive. A redlistic valueof | for the S& P 100 index is 0.028, obtained by assuming

that the equity risk premium is 6% per annum®. For the short memory parameter values

in the first row of Table 1, when d =0 and N =1000, the limit of E?[In(h)|1,.]- a

% The dependence of moments of hy on the measure is shown by Duan (1995, p. 19) for

the GARCH(1,1) mode.

¥ ¥
“As (1- L)"1=0 for d >0, it follows from (18) and (19) that & a; =& b; =1.
S

® The conditional expectations of r, for measures P and Q differ by | \/E and atypical
average value of \/E is 0.00858. Assuming 253 trading days in one year gives the
stated value of | .
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equals 0.10. Thislimit increases to 0.20 for the parameter valuesin the final row of

Table 1, when d = 0.4 and N =1000. Thetypical effect of adding 0.2 to In(h,) isto

multiply standard deviations ,/h, by 1.1 so that far-horizon expected volatilities, under

Q, are dlightly higher than might be expected from historical standard deviations.

Conseguently, on average the term structure of implied volatilities will slope upwards.

4.4. Numerical methods

The preceding equations can be used to value an European contingent claim at time t'
by simulating prices under the risk-neutral measure Q, followed by estimating the
expected discounted terminal payoff at time t'+n as stated in equation (27). Two
variations on these equations are used when obtaining representative results in Section

5. First, the specification of m can be different for times on either side of t' to allow

for changes through time in risk-free interest rates and risk premia. Equation (32) is

then replaced by
m=m-in+Jh, tEt,
. (38)
=r-d-3in+lJn, t>t
Second, because the observed conditional distributions are not Normal whilst the
simulations assume that they are, it is necessary to define
c=C, tEt,
(39)

=2/p, t>t.
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for aconstant C' estimated from observed returns. An alternative method, described by
Bollerdev and Mikkelsen (1999), isto simulate from the sample distribution of
standardised observed returns.

Standard variance reduction techniques can be applied to increase the accuracy

of Monte Carlo estimates of contingent claim prices. A suggested antithetic method
uses one i.i.d. N(0) sequence {zt } to define the further i.i.d. N(0,1) sequences,
{- z } {zt'} and { A } with the terms z chosen so that there is negative correlation
between ‘zt‘ and ‘zt' ‘; this is achieved by defining F(zt' )+ F (z:):1+%sign(z:). The
four sequences provide claim prices whose average, y say, is much less variable than
the claim price from a single sequence. An overal average ¥ is then obtained from a
set of K values {y,,1£ k £ K}.
The control variate method makes use of an unbiased estimate Y, of aknown

parameter ycy , suchthat y ispositively correlated with yq, . A suitable parameter,
when pricing acall option in an ARCH framework, is the price of acall option when
volatility is deterministic. The deterministic volatility processis defined by replacing
al terms In(h, ), t > t'+1, by their expectations under P conditional on the history 1.
Then ycy isgiven by asimple modification of the Black-Scholes formula, whilst Yy,
is obtained by using the same 4K sequences of i.i.d. variables that define y . Finaly, a
more accurate estimate of the option priceisthen givenby ¥ = §- b(Jcy - Yoy ) With

b chosen to minimise the variance of .
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5. Illlustrative long memory option prices

5.1. Inputs

The Black-Scholes formula has six parameters, when an asset pays dividends at a
constant rate, namely the current asset price S, the time until the exercise decision T, the
exercise price X, therisk-freerate R, the dividend yield D and the volatility s . There
are many more parameters and additional inputs for the FIEGARCH option pricing
methodology described in Section 4. To apply that methodology to value European
optionsit is necessary to specify eighteen numbers, a price history and a random
number generator, as follows:

Contractual parameters - time until exercise T measured in years, the exercise price

X and whether acall or a put option.

The current asset price S = p, and a set of previous prices {p;,1£t <t}.

Trading periods per annum M, such that consecutive observed prices are separated

by 1/M yearsand likewise for simulated prices { p;,t'<t £ t+n} with n=MT.

Risk-free annual interest rate R, from which the trading period rate r = R/M is

obtained.

Annual dividend yield D giving a constant trading period payout rate of

d =D/M ; both Rand D are continuously compounded and applicable for the life

of the option contract.
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Therisk premium | for investment in the asset during the life of the option, such
that one-period conditional expected returnsare mp =r - d - %h[ +I \/H :
Parametersmand | ' that define conditional expected returns during the time period
of the observed pricesby m =m- 3h +1 "/, .

Eight parameters that define the one-period conditional variances h, . The
integration level d, the autoregressive parameter f and the truncation level N
determine the parameters b; (given by equation (19)) of the AR(N) filter in
eguation (34). The mean a and the moving-average parameter y complete the
ARMA(N, 1) specification for In(h, ) in equation (34). The values of the shocks to
the ARMA(N, 1) process depend on g and q, that respectively appear in the
symmetric function ngt| - C) and the asymmetric function gz, whose total

determines the shock term g(z ) ; the constant C is a parameter C' for observed

prices but equals /2/p when returns are simulated.
K, the number of independent simulations of the terminal asset price Sy = py4p -

A set of Kn pseudo-random numbers distributed uniformly between 0 and 1, from
which pseudo-random standard normal variates can be obtained. These numbers

typically depend on a seed value and a deterministic algorithm.

5.2. Parameter selections



29

Option values are tabulated for hypothetical European options on the S & P 100 index.
Options are valued for ten dates defined by the last trading days of the ten years from
1989 to 1998 inclusive. For valuation dates from 1992 onwards the size of the price
history isset at t'=2000; for previous years the price history commences on 6 March
1984 and t'< 2000. It is assumed that there are M = 252 trading days in one year and
hence exactly 21 trading days in one simulated month. Option values are tabulated
whenTis1, 2, 3, 6, 12, 18 and 24 months.

Table 2 lists the parameter values used to obtain the main results. The
annualised risk-free rate and dividend yield are set at 5% and 2% respectively. Therisk
parameter | isset at 0.028 to give an annual equity risk premium of 6% (see footnote
5). The mean return parameter mis set to the historic mean of the complete set of S& P
100 returns from March 1984 to December 1998 and | ' is set to zero.

There are two sets of values for the conditional variance process because the
primary objective hereisto compare option values when volatility is assumed to have
either ashort or along memory. The long memory parameter set takes the integration
level to be d =0.4 because thisis an appropriate level based upon the recent evidence
from high-frequency data, reviewed in Section 2.3. The remaining variance parameters
are then based on Table 1; as the moving-average parameter issmall it is set to zero and

the autoregressive parameter is adjusted to retain the unit total, d +f +y =1. The AR
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filter® is truncated at lag 1000, although the results obtained will nevertheless be
referred to as long memory results. The short memory parameters are similar to those
for the AR(1) estimates provided in Table 1. The parameters g and q are both 6% less
in Table 2 than in Table 1 to ensure that selected moments are matched for the short
and long memory specifications; the unconditional mean and variance’ of In(ht) are
then matched for the historic measure P, although the unconditional means differ by
approximately 0.10 for the risk-neutral measure Q as noted in Section 4.3.

Option prices are estimated from K =10,000 independent simulations of prices
{p;,t'<t £t+n} with n =504. Applying the antithetic and control variate methods
described in Section 4.4 then produces results for along memory process in about 50

minutes, using a PC running at 466 MHz. Most of the time is spent evaluating the high-

order AR filter; the computation time isless than 5 minutes for the short memory

® Thisfilter is
(1- 06L)1- L)% =1- (L- 0.12L% - 0.008L> +0.0032L* +0.0050L° +0.0050L° +)

¥ )
=1- ébjl_J

=1

Also, bg >b; >Dbj,; >0 for j >6, by =0.00017, byggg =7 10°°

1000
and &b; equals0.983.

j=1
"1 thank Granville Tunnicliffe-Wilson for calculating the variance of the AR(1000)
process.
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process. Separate seed values are used to commence the "random number" calculations®
for the ten valuation dates; these seed values are always the same for calculations that

have the same valuation date.

5.3. Comparisons of implied volatility term structures

The values of al options are reported using annualised implied volatilities rather than
prices. Each implied volatility (1V) is calculated from the Black-Scholes formula,
adjusted for continuous dividends. The complete set of IV outputs for one set of inputs
forms amatrix with rows labelled by the exercise prices X and columns labelled by the
timesto expiry T; examples are given in Tables 5 and 6 and are discussed | ater.

Initially we only consider at-the-money options, for which the exercise price

equals the forward price F = SelR-DJT

, with IV values obtained by linear interpolation
across two adjacent values of X. As T varies, the IV values represent the term structure
of implied volatility. Tables 3 and 4 respectively summarise these term structures for
the short and long memory specifications. The same information is plotted on Figures 2
and 3 respectively. The IV valuesfor T =0 are obtained from the conditional variances
on the valuation dates. The standard errors of the tabulated implied volatilities increase

with T. The maximum standard errors for at-the-money options are respectively 0.0003

and 0.0004 for the short and long memory specifications.

® The Excel VBA pseudo-random number generator was used. This generator has cycle
length 2%*. Useis made of 30% of the complete cycle when K =10,000 and
n=504.
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Theten IV term structures for the short memory specification commence
between 9.5% (1993) and 18.8% (1997) and converge towards the limiting value of
14.3%. Theinitial IV values are near the median level from 1989 to 1991, are low from
1992 to 1995 and are high from 1996 to 1998. Six of the term structures slope upwards,
two are amost flat and two slope downwards. The shapes of these term structures are
completely determined by the initial 1V values because the volatility processis
Markovian.

There are three clear differences between the term structures for the short and
long memory specifications that can be seen by comparing Figures 2 and 3. First, the
long memory term structures can and do intersect because the volatility processis not
Markovian. Second, some of the term structures have sharp kinks for the first month.
Thisis particularly noteworthy for 1990 and 1996 when the term structures are not
monotonic. For 1990, the initial value of 14.1% isfollowed by 15.6% at one month and
agradual riseto 16.2% at six months and a subsequent slow decline. For 1996, the term
structure commences at 15.6%, fallsto 13.6% after one month and reaches a minimum
of 12.8% after six months followed by a slow incline. The eight other term structures
are monotonic and only those for 1997 and 1998 slope downwards. Third, the term
structures approach their limiting value very slowly®. The two-year 1Vs range from

12.1% to 16.1% and it is not possible to deduce the limiting value, although 15.0% to

® The results support the conjecture that 1V (T) @ay +a,T 291 for large T with a,
determined by the history of observed returns.
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16.0% is a plausible range™®. It is notable that the dispersion between the ten 1V values
for each T decreases lowly as T increases, from 2.2% for one-month optionsto 1.4%
for two-year options.

There are substantial differences between the two IV values that are calculated
for each valuation date and each option lifetime. Figure 4 shows the differences
between the at-the-money 1Vs for the long memory specification minus the number for
the short memory specification. When T =0 these differences range from -1.9%
(1997) to 1.5% (1992), for three-month options from -1.5% (1995, 1996) to 2.1%
(1990) and for two-year options from -1.9% (1995) to 1.7% (1990). The standard
deviation of the ten differencesis between 1.1% and 1.4% for al valuesof T
considered so it is common for the short and long memory option pricesto have Vs

that differ by more than 1%.

5.4. Comparisons of smile effects

The columns of the IV matrix provide information about the strength of the so-called

smile effect for options prices. These effects seem to be remarkably robust to the choice

of valuation date and they are not very sensitive to the choice between the short and

19 An estimate of the constant & (defined in the previous footnote) is 16.0%. An
estimate of 15.0% follows by supposing the long memory limit is 105% of the short
memory limit, based on the limit of In(h[) being higher by 0.1 for the long memory
process as noted in Section 4.3. The difference in the limitsis a consequence of the risk
premium obtained by owning the asset; its magnitude is mainly determined by the
pronounced asymmetry in the volatility shock function g(z).
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long memory specifications. This can be seen by considering the ten values of

DIV =IV(T, X;) - IV(T, X,) obtained for the ten valuation dates, for various values
of T, various pairs of exercise prices X;, X, and achoice of volatility process. First,
for one-month optionswith S=100, X; =92 and X, =108, thevaluesof DIV range
from 3.0% to 3.3% for the short memory specification and from 3.7% to 4.0% for the
long memory specification. Second, for two-year optionswith X; =80 and X, =120,

thevalues of DIV range from 1.8% to 2.0% and from 1.8% to 1.9%, respectively for
the short and long memory specifications.

Figure 5 shows the smiles for three-month options valued using the short
memory model, separately for the ten valuation dates. As may be expected from the
above remarks the ten curves are approximately parallel to each other. They are amost
all monotonic decreasing for the range of exercise prices considered, so that a U-shaped
function (from which the idea of a smile is derived) can not be seen. The near
monotonic decline is a standard theoretical result when volatility shocks are negatively
correlated with price shocks (Hull, 2000). It is also astylized empirical fact for U.S.
equity index options, see, for example, Rubinstein (1994) and Dumas, Fleming and
Whaley (1998).

Figure 6 shows the three-month smiles for the long memory specification. The
shapes on Figures 5 and 6 are similar, as all the curves are for the same expiry time, but
they are more dispersed on Figure 6 because the long memory effect induces more
dispersion in at-the-money 1Vs. The minima of the smiles are generally near an

exercise price of 116. Figure 7 shows further long memory smiles, for two-year options
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when the forward priceis 106.2. The parallel shapes are clear; the two highest curves
are amost identical, and the third, fourth and fifth highest curves are ailmost the same.
Tables 5 and 6 provide matrices of implied volatilities for options valued on 31
December 1998. When either the call or the put option is deep out-of-the-money it is
difficult to estimate the option price accurately because the risk-neutral probability
g(X) of the out-of-the-money option expiring in-the-money is small. Consequently, the
IV information has not been presented when the corresponding standard errors exceed

0.2%; estimates of q(X) arelessthan 3%. The standard errors of the IVs are least for

options that are near to at-the-money and most of them are less than 0.05% for the IVs
listed in Tables 5 and 6. All the sections of the smiles summarised by Tables5 and 6
are monotonic decreasing functions of the exercise price. The IV decreases by

approximately 4% to 5% for each tabulated section.

5.5. Sengitivity analysis

The sensitivity of the IV matrices to three of the inputs has been assessed for options
valued on 31 December 1998. First, consider a change to the risk parameter | that
corresponds to an annual risk premium of 6% for the tabulated results. From Section
4.3, option prices should be lower for large T when | isreduced to zero. Changing |

to zero reduces the at-the-money IV for two-year options from 16.0% to 15.4% for the
long memory inputs, with a similar reduction for the short memory inputs. Second,
consider reducing the truncation level N in the AR(N) filter from 1000 to 100. Although

this has the advantage of a substantial reduction in the computational time it changes
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the IV numbers by appreciable amounts and can not be recommended; for example, the
two-year at-the-money |V then changes from 16.0% to 14.7%.

The smile shapes on Figures 5, 6 and 7 are heavily influenced by the negative
asymmetric shock parameter q , that is substantial relative to the symmetric shock

parameter g . The asymmetry in the smile shapes can be expected to disappear when g

iszero, which isrealistic for some assets including exchange rates. Figures 8 and 9
compare smile shapeswhen g is changed from the values used previously to zero, with

g scaled to ensure the variance of In(h[ ) is unchanged for measure P. Figure 8 shows

that the one-month smile shapes become U-shaped when q is zero, whilst Figure 9

shows that the IV are then almost constant for one-year options.

6. Conclusions

The empirical evidence for long memory in volatility is strong, for both equity
(Andersen, Bollerslev, Diebold and Ebens, 2000, Areal and Taylor, 2000) and foreign
exchange markets (Andersen, Bollerslev, Diebold and Labys, 2000). This evidence may
more precisely be interpreted as evidence for long memory effects, because there are
short memory processes that have similar autocorrelations and spectral densities, except
at very low frequencies (Gallant, Hsu and Tauchen, 1999, Barndorff-Nielsen and
Shephard, 2001). Thereis aso evidence that people trade at option prices that are more
compatible with along memory process for volatility than with a parsimonious short

memory process (Bollerslev and Mikkelsen, 1999).
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The theory of option pricing when volatility follows a discrete-time ARCH
process relies on weak assumptions about the continuous-time process followed by
prices (Kallsen and Tagqu, 1998) and the numerical implementation of the theory is
straightforward. Application of the theory when the volatility processis fractionally

integrated does, however, require pragmatic approximations because the fundamental

filter (1- L)Ol isan infinite order polynomial that must be truncated at some power N.

Option prices are sensitive to the truncation point N, so that large values and long price
histories from an assumed stationary process are required.

The term structure of implied volatility for at-the-money options can be notably
different for short and long memory ARCH specifications applied to the same price
history. Long memory term structures have more variety in their shapes. They may
have kinks for short maturity options and they may not have a monotonic shape. Also,
term structures on different valuation dates sometimes intersect each other. None of
these possibilities occurs for a Markovian short memory specification. Long memory
term structures do not converge rapidly to alimit as the lifetime of options increases. It
isdifficult to estimate the limit for the typical value d = 0.4.

Implied volatilities as functions of exercise prices have similar shapes for short
and long memory specifications. The differences in these shapes are minor in
comparison to the differences in the term structure shapes. It is common for the short
and long memory implied volatilities to differ by more than 1% for options on the
S & P 100 index, regardless of the option lifetime and the exercise price; if the short

memory implied is at its average level of 14% then the long memory implied is often
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below 13% or above 15%. Consequently, the economic consequences of along

memory assumption are important.
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Table 1. Parameter estimates for short and long memory ARCH models.

Parameters are estimated by maximising the log-likelihood of daily returns from the S& P 100 index, from 3 January 1989 to 31
December 1998. Returns are modelled as:

r =m+./h z,
In(hy)=a +(L- fL) - L) “ (L+y L)g(z-o),
o(z) =0z +9(z- )
The z areassumed to bei.i.d., standard Normal variables when defining the likelihood function. The values C = 0.737and a = - 9.56

are used for al likelihood calculations. The relative log-likelihood (LL) for amodel equals the maximum LL for that model minus the
maximum LL for the AR(1) model. The maximum log-likelihood for the AR(1) model is 8561.6.

Mode type Constraints q g f y d Relative
log- likelihood

AR(1) y =d=0 -0.06 0.10 0.982 0.0
ARMA(1,1) d=0 -0.09 0.15 0.988 -0.440 3.0

FI(d) f =y =0 -0.12 0.19 0.66 13.9

ARFI(1, d) y =0 -0.11 0.17 0.30 0.59 17.2
ARFIMA(1, d, 1) None -0.10 0.15 -0.16 0.98 0.57 21.7
ARFIMA(Z, d, 1) f+y +d£1 -0.12 0.18 -0.27 0.68 0.59 19.7

ARFIMA(Y, d, 1) d=04,f +y £06 -0.11 0.18 0.64 -0.04 0.4 11.4



42

Table 2. Parameter values for option price calculations.

Options are valued on the final trading day of ten consecutive years, from 1989 to 1998.
The returns history is drawn from the set of daily returns from the S & P 100 index from 6
March 1984 to 31 December 1998. A set of t'= 2000 historical returnsis used from 1992
onwards, and as many as possible before then. The current level of the index isreset to

S =100 when option values are determined.

Trading periods per annum M 252
Risk-free interest rate r 0.05/M

Conditional mean

Historic intercept m 0.161/M
Historic equity risk premiumterm | 'O

Dividend yield d 0.02/M
Future equity risk premium term | 0.028

Conditional variance

Short memory L ong memor
Integration level d 0 04
Truncation limit N 1000
Mean a of E"[In(h)] -9.56 -9.56
Autoregressive parameter f 0.982 0.6
Moving-average parameter y 0 0
Asymmetric shock parameter q -0.056 -0.11
Symmetric shock parameter g 0.094 0.18

Historic value of E” []zl] 0.737 0.737
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Table 3. At-the-money implied volatilities for a short memory volatility process.

The parameters of the EGARCH price process are listed in Table 2. The half-life of a

volatility shock is 1.8 months.

European option prices are estimated from 10,000 simulations of the asset prices on the
dates that the options expire. The implied volatilities are for options whose exercise prices
equal the forward rates for the expiry dates. The standard errors of the implied volatilities

are between 0.0001 and 0.0003.

Options are valued on the final trading day of ten consecutive years. The returns history is

drawn from the set of daily returns from the S & P 100 index from 6 March 1984 to 31

December 1998. A set of t'=2000 historical returnsis used from 1992 onwards, and as
many as possible before then. The column for T =0 provides the annualised volatilities on
the valuation dates.

Year
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998

Mean
St. dev.

0.1211
0.1378
0.1213
0.1085
0.0945
0.1165
0.1118
0.1462
0.1883
0.1694

0.1315
0.0291

Implied volatilities for at-the-money options that

expire after 1, 2, 3, 6, 12, 18 and 24 months

0.1238
0.1380
0.1240
0.1129
0.1008
0.1201
0.1158
0.1449
0.1791
0.1640

0.1323
0.0243

0.1267
0.1388
0.1271
0.1175
0.1069
0.1236
0.1200
0.1446
0.1730
0.1607

0.1339
0.0205

3

0.1291
0.1395
0.1296
0.1210
0.1119
0.1263
0.1234
0.1445
0.1683
0.1581

0.1352
0.0175

0.1340
0.1409
0.1339
0.1288
0.1226
0.1321
0.1304
0.1442
0.1599
0.1531

0.1380
0.0116

12

0.1384
0.1421
0.1383
0.1356
0.1321
0.1375
0.1367
0.1438
0.1526
0.1488

0.1406
0.0063

18

0.1404
0.1427
0.1403
0.1385
0.1363
0.1398
0.1391
0.1440
0.1500
0.1476

0.1419
0.0043

24

0.1414
0.1431
0.1413
0.1401
0.1382
0.1411
0.1405
0.1441
0.1486
0.1469

0.1425
0.0032



Table 4. At-the-money implied volatilities for along memory volatility process.

The parameters of the FIEGARCH price process are listed in Table 2 and include an
integration level of d =0.4.

European option prices are estimated from 10,000 simulations of the asset prices on the
dates that the options expire. The implied volatilities are for options whose exercise prices
equal the forward rates for the expiry dates. The standard errors of the implied volatilities
are all less than 0.0004.

Options are valued on the final trading day of ten consecutive years. The returns history is
drawn from the set of daily returns from the S & P 100 index from 6 March 1984 to 31
December 1998. A set of t'= 2000 historical returnsis used from 1992 onwards, and as
many as possible before then. The column for T =0 provides the annualised volatilities on
the valuation dates.

Implied volatilities for at-the-money options that
expire after 1, 2, 3, 6, 12, 18 and 24 months

0 1 2 3 6 12 18
Year
1989 01194 0.1356 0.1403 0.1429 0.1467 0.149%  0.1507
1990 0.1413 01556 0.1592 0.1609 0.1624 0.1624 0.1614
1991 01215 0.1368 0.1416 0.1441 0.1478 0.1502 0.1510
1992 01239 01261 01283 0.1301 01338 0.1375 0.1395
1993 01080 0.1101 0.1128 0.1150 0.1195 0.1245 0.1272
1994 01114 01189 01213 01228 01256 0.1284  0.1300
1995 0.0965 0.1041 0.1067 0.208 01119 0.1160 0.1187
1996 0.1564 0.1357 0.1311 01295 01283 0.1288  0.1297
1997 01697 0.1650 0.1626 0.1609 0.1574 0.1540 0.1523
1998 01734 01693 0.1682 0.1672 01650 0.1623 0.1610

Mean 01322 01357 01372 01382 01399 0.1414 0.1422
St.dev. 0.0267 0.0221 00211 00204 0.0186 0.0165 0.0151

24

0.1515
0.1607
0.1516
0.1409
0.1292
0.1314
0.1210
0.1308
0.1515
0.1602

0.1429
0.0141
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Table 5. A matrix of implied volatilities for a short memory volatility process.

The parameters of the EGARCH price process are listed in Table 2. The half-life of a
volatility shock is 1.8 months.

Options are valued on 31 December 1998. The returns history is the set of 2,000 daily
returns from the S & P 100 index from 4 February 1991 to 31 December 1998. European
option prices are estimated from 10,000 simulations of the asset prices on the dates that the
options expire.

Implied volatilities shown in Roman font have standard errors (s.e.) that are at most 0.0005,
those shown in italic font have s.e. between 0.0005 and 0.0020; results are not shown when
the s.e. exceeds 0.0020, when options are either deep in or out-of-the-money.

Implied volatilities for options that
expire after 1, 2, 3, 6, 12, 18 and 24 months

X 1 2 3 6 12 18 24
72 0.1705 0.1651
76 0.1744 0.1670 0.1624
80 01835 0.1696 0.1637 0.1600
84 01994 0.1911 0.a7/1 01655 0.1607 0.1577

88 01959 0.1876 0.1818 0.1711 0.1617 0.1579 0.1556
92 01845 0.1780 0.1734 01653 0.15/9 0.1552 0.1535
96 01735 0.1693 0.1660 0.1599 0.1546 0.1526 0.1515
100 0.1644 0.1615 0.1593 0.1549 0.1514 0.1502 0.1496
104 0.1577 0.1550 0.1533 0.1502 0.1481 0.1479 0.1478
108 0.1537 0.1498 0.1480 0.1461 0.1452 0.1457 0.1461
112 0.1510 0.1461 0.1437 01422 0.1425 0.1436 0.1445
116 01525 0.1435 0.1407 0.1388 0.1400 0.1417 0.1429

120 01421 01384 0.1359 01376 0.1399 0.1415
126 01325 0.1345 0.1373 0.1394
132 0.1304 0.1317 0.1348 0.1374
138 01293 0.1328 0.1353
144 01272 0.1305 0.1336
150 01255 0.1286 0.1322
156 0.1269 0.1306
162 0.1246  0.1294
168 0.1220 0.1282
174 0.1277

180 0.1274
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Table 6. A matrix of implied volatilities for along memory volatility process.

The parameters of the FIEGARCH price process are listed in Table 2 and include an
integration level of d =0.4.

Options are valued on 31 December 1998. The returns history is the set of 2,000 daily
returns from the S & P 100 index from 4 February 1991 to 31 December 1998. European
option prices are estimated from 10,000 simulations of the asset prices on the dates that the
options expire.

Implied volatilities shown in Roman font have standard errors (s.e.) that are at most 0.0005,
those shown in italic font have s.e. between 0.0005 and 0.0020; results are not shown when
the s.e. exceeds 0.0020, when options are either deep in or out-of-the-money.

Implied volatilities for options that
expire after 1, 2, 3, 6, 12, 18 and 24 months

X 1 2 3 6 12 18 24
72 0.1811 0.1765
76 01829 0.1783 0.1743
80 01895 01792 01754 0.1723
84 01970 0.1847 0.1760 0.1728 0.1703
88 01954 0.1889 0.1798 0.1729 0.1703 0.1683

92 0.1953 0.1860 0.1815 0.1750 0.1699 0.1680 0.1664
96 01814 0.1771 0.1746 01707 0.1672 0.1657 0.1645
100 01699 0.1691 0.1685 0.1666 0.1645 0.1635 0.1627
104 01611 0.1623 0.1631 01627 0.1617 0.1615 0.1610
108 0.1557 0.1569 0.1581 0.1593 0.1592 0.1596 0.1595
112 01525 0.1526 0.1538 0.1559 0.15/0 0.1577 0.1579

116 0.1499 0.1505 0.1529 0.1549 0.1559 0.1564
120 0.1480 0.1480 0.1504 0.1528 0.1543 0.1550
126 0.1439 0.1469 0.1502 0.1520 0.1530
132 0.1440 0.1478 0.1497 0.1512
138 0.1421 0.1456 0.1477 0.1492
144 0.1436  0.1456 0.1473
150 0.1417 0.1438 0.1457
156 0.1402 0.1421 0.1444
162 0.1409 0.1428
168 0.1388 0.1416
174 0.1370  0.1405

180 0.1399
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Figure 1. Moving-average coefficients for four ARFIMA(1, d, 1) processes.
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Figure 2. Ten volatility term structures for a short memory process.
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Figure 3. Ten volatility term structures for a long memory process with d = 0.4.
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Figure 4. Differences between ten pairs of term structures.
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Figure 5. Ten smile shapes for three-month options and a short memory
process.
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Figure 6. Ten smile shapes for three-month options and a long memory process
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with d = 0.4.
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Figure 7. Ten smile shapes for two-year options and a long memory process
with d = 0.4.
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Figure 8. Impact of asymmetric volatility shocks on one-month options.
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Figure 9. Impact of asymmetric volatility shocks on one-year options.

0.20 ~

0.19 -

0.18 -

0.17 - el

0.16 A T~

0.15 A

....................................................................

S -~

- —
v —

0.14 A

0.13 A

—
-
.
_—
-~
_—
-
-
-
-
-
- -
_—
-~ -
-

— - - —d=0.4, theta<0
— — — d=0, theta<0
------ d=0.4, theta=0
—d=0, theta=0

0.12
84

88

92

96

100

Exercise price

104

108

112

116

120




