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Abstract

In this paper we Þrst show that call options, together with the mar-

ket portfolio, are sufficient to obtain Pareto efficiency while put options

are not. Next we investigate how investors� heterogeneous preferences

and beliefs affect their investment strategies and who buys options from

whom. We show that an investor buys options with strike prices below

a threshold from investors who have lower cautiousness/optimism while

selling options with strike prices above the threshold to investors who have

higher cautiousness/optimism. We also show that the investor�s threshold

increases with increases in his cautiousness and optimism.
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Who Buys Options from Whom? The Role of

Options in an Economy with Heterogeneous

Preferences and Beliefs

Introduction

What is the role of options in an economy? Ross (1976), Breeden and Litzen-

berger, Hakansson (1978), Leland (1980) and Brennan and Solanki (1981) all

searched for an answer. Leland (1980) presented an important result that shows

explicitly how investors construct their optimal sharing rules using options. He

suggested that a twice differentiable payoff function can be generated by a frac-

tion of the reference portfolio and a further portfolio of options on the portfolio.1

In a recent paper Carr and Madan (2001) have formalized this result and rigor-

ously showed how a twice differentiable function is generated by a portfolio of

call options and put options.

Leland (1980) and Brennan and Solanki (1981) also sought answers to two

closely related questions: Who buys and who sells options? And how do in-

vestors� heterogeneous preferences and beliefs affect their investment strategies?

Leland characterized investors who buy portfolio insurance (options) in terms

of global convexity of their optimal sharing rules. He examined two cases. In

the Þrst case he assumed homogeneous beliefs and concluded that investors who

have higher/lower cautiousness than the representative investor will have glob-
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ally convex/concave optimal sharing rules, which means they buy/sell portfolio

insurance.2 In the second case he assumed identical cautiousness and concluded

that investors who are more/less optimistic than the market will have glob-

ally convex/concave optimal sharing rules, which means they buy/sell portfolio

insurance.

Brennan and Solanki (1981) also discussed these two cases and obtained

similar results, although they focused on obtaining analytical expressions of in-

vestors� optimal sharing rules for HARA utility functions and lognormal beliefs.

Leland (1980) and Brennan and Solanki�s (1981) work has important impli-

cations for portfolio management. However, they made an assumption in their

models which requires that there exists a representative investor who has con-

stant (positive) cautiousness. As is well known, this assumption is restrictive.

In general there rarely exists such a representative investor since heterogeneity

among investors has an impact on the equilibrium of the market.3 Thus the

case is not closed.

In this paper we begin by further investigating the role of options in an

economy with heterogeneous preferences/beliefs. Assuming investors are het-

erogeneous, we show that if the value of the market portfolio is bounded below

and unbounded above (as usually assumed), every investor�s optimal sharing

rule can be generated by a portfolio of call options on the market portfolio with

all strike prices, plus (possibly) a fraction of the market portfolio; but it can not

be done using put options in a similar way.4 This implies that limited liability,

which keeps the value of the market portfolio bounded below, tends to give
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call options and put options different roles in achieving Pareto efficiency. This

result also has an implication for portfolio insurance. From the construction of

investor i�s optimal sharing rule we see clearly that his net position is just a

series of call options (short or long). There is no ßoor in the investor�s position

at all. Thus it is inappropriate to state that the investor wants to buy or sell

portfolio insurance. This implies that heterogeneity in preferences and beliefs

cannot explain the demand for portfolio insurance.

Later we continue Leland (1980) and Brennan and Solanki�s (1981) studies

to investigate the impact on investors� investment strategies of heterogeneous

preferences and beliefs and characterize option buyers and sellers. But we use a

different approach. Instead of exogenously assuming the characteristics of the

representative investor, we derive them endogenously.

By re-examining the two special cases in Leland�s (1980) work, we show

that a rational investor buys options with strike prices below a threshold from

investors who have lower cautiousness/optimism while selling options with strike

prices above the threshold to investors who have higher cautiousness/optimism.

Moreover, the investor�s threshold increases with increases in his cautiousness

and optimism.

The difference between our results and those in Leland (1980) is worth not-

ing. For example, we show that in the Þrst case mentioned above, only the

investor who has the lowest/highest cautiousness has a globally concave/convex

optimal sharing rule. This is in contrast to Leland�s conclusion that investors

who have lower/higher cautiousness than the representative investor (assumed
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to have positive constant cautiousness) all have globally convex/concave optimal

sharing rules. Similarly, we show that in the second case only the least/most

optimistic investor�s optimal sharing rule is globally concave/convex. This is

in contrast to Leland�s conclusion that investors who are more/less optimistic

than the market all have globally convex/concave optimal sharing rules.

Because the scenario given in this paper is different from that described by

Leland (1980) and Brennan and Solanki (1981), their suggestion for portfolio

management needs to be adjusted accordingly. Leland suggested that investors

who have average expectation but higher cautiousness than average and those

who have average cautiousness but are more optimistic than the market would

beneÞt from a �run with your winners, cut your losers� kind of dynamic strat-

egy. Investors with opposite characteristics would prefer the �buy low, sell high�

strategy, which is equivalent to writing a call (or selling insurance).

The results given in this paper suggest that the above strategy is too simple.

Most portfolio managers (investors, in our model) invest in the market portfolio

partially covered by options with low strike prices and write options with high

strike prices. Thus the optimal strategy for them must be more complicated.

The strategy �run with your winners, cut your losers� is not always optimal. We

can conclude only that it is optimal for an investor when the value of the portfolio

is below a threshold, but when the value of the portfolio is above the threshold,

the strategy �buy low and sell high� is more appropriate. The threshold for the

change of strategy increases with higher cautiousness and optimism.

Our work is related to Benninga and Blume (1985), Brennan and Cao (1996),
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and Franke, Stapleton and Subrahmanyam (hereafter FSS) (1998). Benninga

and Blume (1985) investigated the optimality of a certain insurance strategy

in which an investor buys a risky asset and a put on that asset. Brennan and

Cao (1996) investigated the impact of asymmetric information on the demand

for options in an economy with exponential utility and normally distributed

returns. They developed a dynamic noisy rational expectation model in which

investors can trade continuously and concluded that well informed investors

tend to buy on good news and sell on bad news. FSS (1998) investigated the

impact of background risk on investors� optimal sharing rules in an economy

in which investors have power utility functions with the same power coefficient.

They concluded that investors with background risk tend to buy options while

investors without background risk tend to sell them.

In Section I we introduce a two-period economy in which we study investors�

optimal sharing rules. Section II shows how options help to achieve Pareto ef-

Þciency in an economy with heterogeneity under general conditions. In Section

III we investigate the impact of heterogeneity in preferences on investors� op-

timal sharing rules. Section IV shows the impact of heterogeneity in beliefs.

In Section V we compare our model with Leland�s (1980) model. Section VI

concludes the paper. Detailed proofs are in the appendices.

I A Two-Period Economy

In this section we introduce a two-period economy. We assume there are N

investors indexed by i = 1, 2, ..., N . Let X be the payoff of the market portfolio
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at the end of the two periods. Assume that there is a complete market for state-

contingent claims on X.5 Thus all investors can buy and sell state-contingent

claims on X so that, as discussed in Leland (1980), any investor i can choose

a payoff function xi(X). Let ui(x) be investor i�s utility function. Let f(X)

be the objective probability density function and fi(X) investor i�s subjective

probability density function respectively. We assume that there exists a pricing

kernel, φ(X), whose functional form will be determined in an equilibrium of the

economy.

Let wi0 be investor i�s initial endowment, expressed as a fraction of the spot

value of the total wealth in the economy. Let xi0 be investor i�s amount of

wealth consumed in the Þrst period and xi in the second period respectively.

Then the investor has the following utility maximization problem:

max
xi0,xi

ui(xi0) + ρiEi[ui(xi)], (1)

subject to

xi0 +E(φxi) = wi0(X0 +E(φX)), (2)

where ρi is his time preference parameter, Ei(.) denotes the expectation operator

under the subjective probability measure with p.d.f.fi(X), and E(.) denotes the

expectation operator under the true probability measure with p.d.f.f(X). In

equilibrium, the market is cleared and we have

X
i

xi0(X0) = X0 and
X
i

xi(X) = X. (3)

Since negative consumption is not allowed, we require that for every i, xi0 ≥ 0

and xi ≥ 0. We assume that all utility functions have inÞnite marginal utility
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of zero consumption.6 This implies that the Þrst order condition is an equality,

as follows

f(X)φ(X) = ρifi(X)u
0
i(xi)/u

0
i(xi0), (4)

which can be rewritten as

u0i(xi) = (u
0
i(xi0)/ρi)φ(X)/gi(X), (5)

where

gi(X) = fi(X)/f(X).

To focus on the main issues addressed in this paper, we will not discuss the

existence of an equilibrium.7 Moreover, whenever needed, sufficient regularity

conditions are assumed about all functions involved.

II The Role of Options

As noted by Leland (1980) �For analytical tractability, however, most of these

models (including the CAPM) have assumed homogeneous expectations, and

investors with linear risk tolerance utility functions with the same slope � pre-

cisely those assumptions that eliminate the demand for options!� As noted by

Benninga and Mayshar (1997), �the empirical evidence seems to contradict this

assumption.� In this section we discuss the impact of heterogeneity of prefer-

ences on investors� optimal sharing rules.

Let γi(x) be investor i�s relative risk aversion, i.e., γi(x) ≡ −xu00i (x)/u0i(x).

Let

²i(X) ≡ −X(ln gi(X))0.
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We call it investor i�s (coefficient of) optimism.8 Let

δi(X) ≡ γi(xi(X))− ²i(X).

We call it investor i�s delta coefficient. We call δi(0) and

�δi(∞) ≡ γi(∞)− ²i(∞)

investor i�s delta coefficient at zero and inÞnity respectively.9

We will see later that investors� delta coefficients determine the representa-

tive investor�s coefficient of relative risk aversion.

Although an equilibrium is assumed in the economy, since investors have

heterogeneous preferences, there does not exist an aggregate investor in Rubin-

stein�s sense.10 But we still have a representative investor in the sense of Ben-

ninga and Mayshar�s (1997) �pricing representative� investor. He is so called

because if the economy had only one investor, namely the �pricing representa-

tive� investor with the total endowment of the economy, then the equilibrium

state prices in the economy would remain unchanged.

Differentiating both sides of (5) leads to the following result:

x0i(X) = R
−1
i (xi)(Re(X)− g0i(X)/gi(X)), (6)

where

Ri(x) = −u00i /u0i(x) and Re(X) = −φ0(X)/φ(X)

are the coefficients of absolute risk aversion of investor i and the representative

investor respectively. Equation (6) can be written as

Xx0i(X)/xi(X) = (γe(X) + ²i(X))/γi(xi), (7)
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where

γi(x) = xRi(x) and γe(X) = XRe(X)

are the coefficients of relative risk aversion of investor i and the representative

investor respectively. Noting that
P
i x

0
i = 1, from (6) we obtain

γe(X) =
X
i

si(γi(xi)− ²i(X)), (8)

where

si ≡ R−1i (xi)/
X
i

R−1i (xi).

From (8) we can see that the representative investor�s coefficient of relative risk

aversion is a weighted average of individual investors� delta coefficients with

weights equal to their risk tolerance. Noting that an investor�s delta coefficient is

equal to his coefficient of relative risk aversion minus his coefficient of optimism,

we can see that investors� (negative) coefficients of optimism have the same

impact on the representative investor�s coefficient of relative risk aversion as

their coefficients of relative risk aversion.

As is well known, in an economy where investors are all homogeneous, in-

vestors all have linear sharing rules. In that case any investor�s marginal optimal

payoff, share of the economy and ratio of his risk tolerance to the aggregate risk

tolerance are all constants across states. However, in an economy with hetero-

geneous investors, in general, these values are state dependent. This is shown

in Lemma 1.

The following lemma tells us how an investor�s marginal optimal payoff, share

of the economy and ratio of his risk tolerance to the aggregate risk tolerance in
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the worst and best states are related to his delta coefficients at zero and inÞnity

respectively.

Lemma 1 The following two statements hold:

1. If investors are ordered such that δ1(0) > δ2(0) > ... > δN(0), then

s1(0) = x
0
1(0) = lim

X→0
x1/X = 1

and for every i 6= 1,

si(0) = x
0
i(0) = lim

X→0
xi/X = 0.

2. If investors are ordered such that δ1(∞) > δ2(∞) > ... > δN(∞) and

δN(∞) > −mini{²i(∞)}, then

sN(∞) = x0N(∞) = lim
X→+∞

xN/X = 1

and for every i 6= N ,

si(∞) = x0i(∞) = lim
X→+∞

xi/X = 0.

Proof: See Appendix A. Q.E.D.

Statement 1 in Lemma 1 tells us that in the worst state, any investor�s

marginal optimal payoff, share of the economy and ratio of his risk tolerance to

the aggregate risk tolerance are zero, except the investor who has the highest

delta coefficient at zero. Statement 2 tells us that in the best state, any investor�s

marginal optimal payoff, share of the economy and ratio of his risk tolerance to

the aggregate risk tolerance are zero, except the investor who has the lowest delta
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coefficient at inÞnity. The results imply that in the worst state the economy is

like one where the only investor has the highest delta coefficient at zero while

in the best state it is like one where the only investor has the lowest delta

coefficient at inÞnity.

Here we have assumed that investors are completely heterogeneous. How-

ever, Þrst we may note that investors are not required to appear in the same

position in the two statements. Second, this assumption is just for simplicity.

It is not difficult to generalize the case to one where some investors have the

same delta coefficients (at zero or inÞnity).

We now present the following proposition.

Proposition 1 The following two statements hold:

1. Assume that investors are ordered such that +∞ > δ1(0) > δ2(0) > ... >

δN(0).

(a) Then γe(0) = δ1(0).

(b) Moreover, every investor i�s optimal sharing rule can be constructed

as follows:

xi(X) = x
0
i(0)X +

Z +∞

0

x00i (K)c[X;K]dK, (9)

where x01(0) = 1, x02(0) = ... = x0N(0) = 0 and c[X;K] denotes the payoff

of the call option on the market portfolio with strike price K.

2. Assume that investors are ordered such that

+∞ > δ1(∞) > δ2(∞) > ... > δN(∞) and δN(∞) > −mini{²i(∞)}.
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(a) Then γe(∞) = δN(∞).

(b) Moreover, no investor i�s optimal sharing rule can be constructed as

in (10)

xi(X) = aiX +

Z +∞

0

β(K)p[X;K]dK + bi, (10)

where ai and bi are constants, β(K) is a function ofK and p[X;K] denotes

the payoff of the put option on the market portfolio with strike price K.

Proof: See Appendix B.

Results 1(a) and 2(a) tell us that the representative investor�s coefficient of

relative risk aversion is state dependent. In the worst state, it equals the highest

value of investors� delta coefficients at zero; in the best state, it equals the lowest

value of investors� delta coefficients at inÞnity. This implies that in the worst

state the representative investor acts like the investor who has the highest delta

coefficient at zero while in the best state he acts like the investor who has the

lowest delta coefficient at inÞnity.

Result 1(b) explains the composition of investors� optimal sharing rules. It

shows that the investors who have the highest delta coefficients at zero hold

the market portfolio plus a portfolio of short or long positions in call options

on the market portfolio while all other investors just hold a portfolio of short

or long positions in call options on the market portfolio. The result also tells

us that additional to the market portfolio, call options on the market portfolio

with a continuum set of strike prices are sufficient to obtain Pareto efficiency in

an economy with heterogeneous investors. This result shows clearly the special
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role of call options in such an economy.

If there is a risk free asset, then we can use put options to replicate the

call options. Thus investor i�s optimal sharing rule can be constructed in the

following alternative way:11

xi(X) = xi(S0)− x0i(S0)S0 + x0i(S0)X +
Z S0

0

x00i (K)p[X;K]dK (11)

+

Z +∞

S0

x00i (K)c[X;K]dK,

where 0 < S0 < +∞ is arbitrary. Even if there is no risk free asset, as long as

we can Þnd S0 > 0 such that xi(S0)− x0i(S0)S0 = 0, then we can still replace

some of the call options with put options as in (11) with no need to borrow or

lend.12 This implies that heterogeneity among investors can explain demand for

both call options and put options.

Although we can replace some of the call options with put options, Result

2(b) tells us that we cannot replace all call options with put options. That is, no

investor can construct his optimal sharing rule using put options on the market

portfolio in a way similar to that in Result 1(b) using call options. The result

highlights a difference between the role of call options and that of put options.

The difference results from the fact that the value of the market portfolio is

unbounded above while it is bounded below. Since the value of the market

portfolio is unbounded above, xi(S0)−x0i(S0)S0 is unbounded when S0 → +∞,

i.e., the amount of loans made to replicate call options becomes inÞnitely large.

This result implies that limited liability, which keeps the value of the market

portfolio bounded below, tends to cause call options and put options to have
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different roles in achieving Pareto efficiency.

Moreover, eq. (11) has implications for portfolio insurance. If an investor�s

optimal sharing rule is convex, one may conclude that he has a demand for

portfolio insurance. However, this conclusion may be superÞcial. Note that

although an investor can construct his optimal sharing rule by buying put op-

tions, he will simultaneously buy a fraction of the market portfolio and make

some loans; i.e., he is just replicating call options using put options, the market

portfolio and loans. Recall that eq. (9) shows clearly that the net position of in-

vestor i is just a series of call options. There is no ßoor in the investor�s position

at all. This implies that it is inappropriate to state that the investor has a de-

mand for portfolio insurance. Heterogeneity in preferences and beliefs has been

used to explain the demand for portfolio insurance using options (see, for ex-

ample, Leland (1980)). However, the above result implies that this explanation

is incomplete.

III Impact of Heterogeneous Preferences

Both heterogeneity in preferences and heterogeneity in beliefs may impact on

the composition of investors� optimal sharing rules. To see their impact clearly,

we can separate the two effects. In this section we assume that investors have

homogeneous beliefs and discuss the impact on investors� optimal sharing rules

and investment strategies of heterogeneity in their preferences.

The following assumptions are made in this section:

14



(i) Investors have homogeneous beliefs.

(ii) Investors are risk averse and have constant relative risk aversion.

(iii) Investors are ordered such that

C1 < C2 < ... < CN , which is equivalent to γ1 > γ2 > ... > γN ,

where Ci = 1/γi and γi are investor i�s cautiousness and relative risk aversion

respectively.

Note that Assumption (iii) is purely for simplicity. As in the last section,

we can easily generalize this case to one where some investors have the same

coefficients of relative risk aversion.

Now since investors have homogeneous beliefs, letting gi(X) = 1 in eq. (6),

we obtain

x0i(X) = Re(X)/Ri(xi), (12)

where Re(X) is the representative investor�s absolute risk aversion. Differenti-

ating both sides of eq. (12), we obtain:

x00i (X) = R
−1
i (xi)R

2
e[Ci(xi)−Ce(X)], (13)

where Ci(xi) is investor i�s cautiousness and Ce(X) is that of the representative

investor.

Two points can be made from eq. (13). First, if investor i has higher

cautiousness at state X = K than does investor j (along their optimal sharing

rules), i.e., if C(xi(K)) > C(xj(K)), then investor i is more likely to buy options

on the market portfolio with strike price K than is investor j. Secondly, an

investor, say i, buys options on the market portfolio with strike price K if
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and only if his cautiousness is higher (along his optimal sharing rule) than the

representative investor�s at state X = K; i.e., Ci(xi(K)) > Ce(K). These two

results were Þrst given by Leland (1980) although he characterized option buyers

in terms of global convexity of their optimal sharing rules.

Since
P
i x

00
i = 0, from eq. (13) we obtain

Ce(X) =
X
i

x0i(X)Ci(xi). (14)

From eq. (14) we can see that the representative investor�s coefficient of

cautiousness is a weighted average of the individual investors� coefficients with

weight equal to their risk tolerance relative to the aggregate risk tolerance.

We now present the following proposition.

Proposition 2 In the economy the following statements hold:

1. Ce(∞) = CN and Ce(0) = C1.

2. C 0e(X) > 0.

3. There exist

+∞ = X◦
1 > X

◦
2 > ... > X

◦
N = 0

such that

when X > X◦
i , x

00
i (X) > 0 and when X < X◦

i , x
00
i (X) < 0.

Proof: See Appendix C.

Statements 1 and 2 tell us that when investors have different constant cau-

tiousness the representative investor has increasing cautiousness and that his
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cautiousness increases from the lowest cautiousness among investors to the high-

est.

Statement 3 explains how the convexity of an investor�s optimal sharing rule

depends on his cautiousness relative to the others. If an investor has the lowest

cautiousness in the economy, his optimal sharing rule is globally concave. If

an investor has the highest cautiousness, his optimal sharing rule is globally

convex. All other investors� optimal sharing rules are convex at low market

portfolio values (bad states) and concave at high market portfolio values (good

states). The threshold value at which an investor�s optimal sharing rule turns

from convex to concave varies with his cautiousness. More precisely, it increases

with increases in cautiousness.

From Statement 3 and eq. (9) we can see that if an investor has the lowest

cautiousness in the economy, he takes only short positions in options. If an

investor has the highest cautiousness in the economy, he takes only long positions

in options. All other investors buy options with low strike prices from those

who have lower cautiousness and sell options with high strike prices to those

with higher cautiousness. Moreover, the threshold strike price at which an

investor turns from buying options to selling options increases with increases in

his cautiousness.

Intuitively, risk-averse investors tend to hedge downside uncertainty (bad

states) and capitalize on upside uncertainty (good states). This results in opti-

mal sharing rules, which are convex at bad states and concave at good states.

The fact that an investor with higher cautiousness has a higher threshold value
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at which he turns from buying options to selling them implies that his standard

of good states is higher than that of an investor with lower cautiousness.

Moreover, from eq. (11) every investor i 6= N , can construct his optimal

sharing rule by replicating call options with strike prices under X◦
i . That is,

xi(X) = xi(X
◦
i )− x0i(X◦

i )X
◦
i + x

0
i(X

◦
i )X +

Z X◦
i

0

x00i (K)p[X;K]dK(15)

+

Z +∞

X◦
i

x00i (K)c[X;K]dK,

where X◦
i is given in Statement 3. We can verify that

xi(X
◦
i )− x0i(X◦

i )X
◦
i = inf

X
{xi(X)− x0i(X)X} ≤ 0, (16)

i.e., the amount of loans he makes reaches its maximum; and

x0i(X
◦
i ) = sup

X
{x0i(X)}, (17)

i.e., the fraction of the market portfolio the investor holds reaches its maximum.

This apparently results from the investor�s replicating strategy.

IV Impact of Heterogeneous Beliefs

Assume investors have identical constant relative risk aversion. This implies

that every investor i�s utility function can be written as13

ui(x) = x
1−γ/(1− γ), (18)

where γ > 0.
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We assume that all investors� beliefs are lognormal. Let f(X) denote the ob-

jective probability density function and fi(X) investor i�s subjective probability

density function respectively. We can write

f(X) =
1

σ
√
2πX

e
−(lnx−µ)2

(2σ2) and fi(X) =
1

σi
√
2πX

e
−(lnx−µi)2

(2σ2
i
) . (19)

We further assume that investors agree on the variance of the growth rate

of the market portfolio value.14 That is,

for every i, σi = σ.

However, investors disagree on the mean µi, which reßects their divergent opin-

ions about the economy. We assume that investors are ordered such that

µ1 < µ2 < ... < µN .

Note that this assumption is purely for simplicity. As in the last section, we

can easily generalize the case to one where some investors have the same mean

parameters.

Under the above assumption it can be veriÞed that

²i ≡ −X(ln gi(X))0 = (µi − µ)/σ2 (20)

is a constant and

²1 < ²2 < ... < ²N .

We now present the following result.

Proposition 3 In the economy assume γ ≥ 3(²N − ²1). Then there exist

0 = X◦
1 > X

◦
2 > ... > X

◦
N = +∞
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such that

when X < X◦
i , x

00
i (X) > 0 and when X > X◦

i , x
00
i (X) < 0.

Proof: See Appendix D.

Proposition 3 gives a picture of the economy analogous to that given by

Proposition 2. It tells us that the most optimistic investor has a globally convex

optimal sharing rule and the most pessimistic investor has a globally concave

optimal sharing rule. All other investors have optimal sharing rules that are

convex in low market portfolio values and concave in high market portfolio

values. The threshold market portfolio value at which an investor�s optimal

sharing rule turns from convex to concave varies with his optimism. More

precisely, it increases with increases in the investor�s mean parameter µi, which

reßects his optimism.

Analogous to the Þrst case studied in the last section, we can see that if an

investor is the least optimistic in the economy, he takes only short positions in

options. If an investor is the most optimistic, he takes only long positions in

options. All other investors buy options with low strike prices written by less

optimistic investors and sell options with high strike prices to more optimistic

investors. Moreover, the threshold strike price at which an investor turns from

buying options to selling options increases with increases in his optimism.

Intuitively, a more optimistic investor will think a call option has a higher

probability of exercise than a less optimistic investor. Thus the more optimistic

an investor, the more likely he buys a call option. This intuition is consistent
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with the result derived above.

V Comparison with Leland�s (1980) Results

In this section we compare our model (in which we investigate the impact on

investors� investment strategies in the special cases) with Leland�s (1980) model.

Recall that in the Þrst case we assume investors have homogeneous beliefs and

constant relative risk aversion, while in the second case we assume investors

have identical constant relative risk aversion and heterogeneous lognormal be-

liefs. In the following comparison we use (L) to denote Leland�s model and (H)

to denote our model.

(a) On the representative investor:

� (L): The representative investor is assumed to have constant relative risk

aversion. Apparently, when investors are heterogeneous this is possible

only if the system is not closed, i.e.,
P
i xi(X) 6= X.

� (H): We assume that the economy is closed i.e., Pi xi(X) = X. This

enables us to derive the characteristics of the representative investor en-

dogenously. We Þnd that the derived representative investor has declining

relative risk aversion.

(b) On options� role:

� (L): Together with the market portfolio, call options cannot achieve Pareto

efficiency. Let investor i be one of those who have lower cautiousness than
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the representative investor in the Þrst case. According to Leland�s model,

we have

Xx0i(X)/xi(X) = γe/γi.

Since Ce = 1/γe > Ci = 1/γi, we have limX→0 x0i(0) = +∞. This implies

that xi(X) cannot be written as (9). Similarly, we can show in the second

case that the optimal sharing rule of an investor who is less optimistic

than the market cannot be written as in (9).

� (H): Together with the market portfolio, call options with all strike prices

can achieve Pareto efficiency. That is, every investor�s optimal sharing

rule can be written as in (9).

(c) On investors� optimal sharing rules:

� (L): In the Þrst case investors who have higher/lower cautiousness than

the representative investor have globally convex/concave optimal sharing

rules. In the second case investors who are more/less optimistic than the

market have globally convex/concave optimal sharing rules.

� (H): In the Þrst case only the investor who has the highest/lowest cau-

tiousness has globally convex/concave optimal sharing rules. All other

investors� optimal sharing rules are convex at low market portfolio values

and concave at high market portfolio values. In the second case only the

most/least optimistic has globally convex/concave optimal sharing rules.

All other investors� optimal sharing rules are convex at low market port-

folio values and concave at high market portfolio values.
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(d) On who buys and who sells options and on demand for portfolio insur-

ance:

� (L): Investors who have average expectations, but have higher cautiousness

than average, will wish to buy portfolio insurance (options); investors who

have average cautiousness, but whose expectations of returns are more

optimistic than average, will wish to buy portfolio insurance (options).

� (H): Most investors buy options with low strike prices and sell options

with high strike prices. Heterogeneity in preferences and beliefs cannot

explain demand for portfolio insurance.

(e) On investment strategy:

Let class (1) be the investors who have average expectation but higher cau-

tiousness than the representative investor and class (2) be the investors who

have average cautiousness but more optimistic expectations than the market.

� (L): �Since the dynamic trading strategy which yields call option returns

(or insured returns) involves buying into the portfolio as its value goes

up, but selling out as its value goes down, our results also suggest that

investors in class (1) and (2) would beneÞt from a �run with your winners,

cut your losers� kind of dynamic strategy rather than a simply �buy and

hold� policy. Investors with opposite characteristics would prefer the �buy

low, sell high� strategy which is equivalent to writing a call (or selling

insurance).�

� (H): Most investors invest in the market portfolio partially covered by op-
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tions with low strike prices and write options with high strike prices. Thus

the optimal strategy for them must be more complicated. The strategy

�run with your winners, cut your losers� is not always optimal for investors

in class (1) and (2). We can conclude only that it is the optimal strategy

for an investor when the value of the market portfolio is below his thresh-

old, but when the value of the market portfolio is beyond the threshold,

the strategy �buy low and sell high� is more appropriate. The threshold

for the change of strategy increases with increases in cautiousness and

optimism.

VI Conclusions

This paper Þrst shows that, in an economy with heterogeneous preferences and

beliefs, if the value of the market portfolio is bounded below but unbounded

above, additional to the market portfolio, call options with all strike prices can

achieve Pareto efficiency while put options cannot. This implies that limited

liability, which keeps the value of the market portfolio bounded below, tends to

cause call options and put options to have different roles in achieving Pareto

efficiency. Another implication of the result is that although heterogeneity in

preferences and beliefs can explain the demand for options, they cannot explain

demand for portfolio insurance. We also show the impact on investors� optimal

sharing rules of heterogeneity among investors. The endogenously derived char-

acteristics of the representative investor in the paper are different from those
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exogenously assumed by Leland (1980) and Brennan and Solanki (1981) and

lead to different optimal sharing rules. This gives different implications for

portfolio management. Generally speaking, the optimal sharing rule of a typi-

cal investor will be convex in low market portfolio values and concave in high

market portfolio values. Optimally, a typical investor should follow the strategy

�run with your winners and cut your losers� when the value of the portfolio

is below a threshold, while he should change to �buy low and sell high� when

the value of the portfolio is above the threshold. The threshold increases with

increases in an investor�s cautiousness and optimism.
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Appendix A Proof of Lemma 1

We show the proof of the second half. The Þrst half can be analogously proved.

Given that for every i, γi(∞) > 0, we have for every i, limx→+∞Ri(x) = 0.

Now consider the situation when X approaches inÞnity. In that case if xi is

bounded, then si = R
−1
i (xi)/(

P
iR

−1
i (xi)) will approach zero. From (8), this

implies that the value of γe(X) when X approaches inÞnity is determined by

the values of γi(x) and ²i(x). Hence we have

lim inf
X→+∞

γe(X) ≥ δ(∞). (21)

From (7) and (21), we conclude that for every i,

lim inf
X→+∞

X
x0i(X)
xi(X)

≥ 1.

It follows that

for every i, xi(∞) = +∞. (22)

On the other hand, from (7) we have

d lnwi(X)

d lnX
=
γe(X)− γi(xi) + ²i(X)

γi(xi)
. (23)

This together with (7), (21) and the result that xi(∞) = +∞ implies that for

every i 6= N ,

lim inf
X→+∞

d lnwi(X)

d lnX
= lim inf
X→+∞

γe(X)− γi(xi) + ²i(X)
γi(xi)

< 0,

where wi(X) = xi(X)/X. It follows that for every i 6= N , for sufficiently large

X,

d lnwi(X)

d lnX
=
γe(X)− γi(xi) + ²i(X)

γi(xi)
< 0,

26



which implies that

for any i 6= N, lim
X→+∞

wi(X) = 0. (24)

Since si(X) = R
−1
i (xi)/

P
iR

−1
i (xi), we have

si(X) = wi(X)
γ−1i (xi)P

iwi(X)γ
−1
i (xi)

. (25)

But we have

0 < inf
X
γi(xi) ≤ sup

X
γi(xi) < +∞, (26)

which is implied by the conditions that for every i, 0 < γi(∞) < 0 and 0 <

γi(0) < +∞ and the fact that for every i, γi(xi) is differentiable in X. It follows

that

0 < inf
X

γ−1i (xi)P
i wi(X)γ

−1
i (xi)

< +∞.

From this and (25) we conclude that

lim
X→+∞

wi(X) = 0 is equivalent to lim
X→+∞

si(X) = 0. (27)

This and (24) imply that

for any i 6= N, lim sup
X→+∞

si(X) = 0.

Now rewrite (7) as

x0i(X) = si(X)−wi(X)
²i(X)

γi(xi)
. (28)

Since for any i 6= N , wi(∞) = 0, si(∞) = 0 and ²i(X)/γi(xi) is bounded from

above and below, it follows that for any i 6= N , x0i(∞) = 0.
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On the other hand since

X
i

wi(X) =
X
i

x0i(X) =
X
i

si(X) = 1,

it follows that

wN(∞) = x0N(∞) = sN(∞) = 1.

Q.E.D.

Appendix B Proof of Proposition 1

The Results 1(a) and 2(a) immediately Lemma 1 and Equation (8). We need

only to prove the other results.

We Þrst prove 1(b). Applying Lemma 1, we have x01(0) = 1, x02(0) = ... =

x0N(0) = 0. Now rewrite the right side of (9) as

x0i(0)X +
Z X

0

x00i (K)[X −K]dK,

which can be written as

x0i(0)X +X
Z X

0

x00i (K)dK −
Z X

0

Kx00i (K)dK,

or

x0i(0)X +X(x
0
i(X)− x0i(0))−

Z X

0

Kdx0i(K).

This is equivalent to xi(X)− xi(0). But from Lemma 1 xi(0) = 0. Hence (9) is

proved.
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We now show 2(b). Equation (10) can be written as

xi(X) = aiX +

Z +∞

X

α(K)[K −X]dK + bi. (29)

Differentiating both sides of the above equation twice, we have

α(K) = x00i (K).

Substituting this into (29), we have

xi(X) = aiX +

Z +∞

X

x00i (K)[K −X]dK + bi. (30)

The second term in the right side of (30) can be written as

Z +∞

X

x00i (K)[K −X]dK (31)

= lim
Y→+∞

(

Z Y

X

Kdx0i(K)−X
Z Y

X

dx0i(K))

= lim
Y→+∞

(Y x0i(Y )− xi(Y ) + xi(X)−Xx0i(Y ))

Applying Lemma 1 we conclude that for every i, x0i(∞) exists. Hence the right

side of (31) is equivalent to

xi(X)−Xx0i(∞) + lim
Y→+∞

(Y
x0i(Y )
xi(Y )

− 1)xi(Y ).

From (7) it can be rewritten as

xi(X)−Xx0i(∞) + lim
Y→+∞

(
γe(Y ) + ²i(Y )

γi(xi(Y ))
− 1)xi(Y ). (32)

On the other hand, since for every i, −²i(∞) < δ(∞) and γe(∞) = δ(∞) we

have for every i

lim
Y→+∞

γe(Y ) + ²i(Y )

γi(xi(Y ))
> 0. (33)
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Again since for every i, −²i(∞) < δ(∞) and γe(∞) = δ(∞), using (7) we derive

that for every i

lim
Y→+∞

X
x0i(Y )
xi(Y )

> 0,

which implies that for every i

lim
Y→+∞

xi(Y ) = +∞. (34)

Again since for every i, −²i(∞) < δ(∞) and γe(∞) = δ(∞), we have for every

i 6= N ,

lim
Y→+∞

(
γe(Y ) + ²i(Y )

γi(xi(Y ))
− 1) < 0. (35)

From the above two equations we conclude that for every i 6= N

lim
Y→+∞

(
γe(Y ) + ²i(Y )

γi(xi(Y ))
− 1)xi(Y ) = −∞. (36)

Hence for every i 6= N , the right side of (10) is not deÞned.

Moreover, we have

X
i

(Y
x0i(Y )
xi(Y )

− 1)xi(Y ) = Y
X
i

x0i(Y )−
X
i

xi(Y ) = 0.

This and (36) imply that

lim
Y→+∞

(Y
x0N(Y )
xN(Y )

− 1)xN(Y ) = +∞.

Hence for i = N , the right side of (10) is not deÞned either. Q.E.D.

Appendix C Proof of Proposition 2
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Statement 1 immediately follows Lemma 1 and (14). Thus we need only to

prove Statements 2 and 3.

(a) We Þrst show the proof of Statement 2.

From (13) we have

x00i (X) = R
2(X)R−1i (xi)(Ci(xi)−C(X)),

where we have omitted subscript �e� in Re(X) and Ce(X). Differentiating both

sides of the above equation, we have

x000i (X)
x00i (X)

= −2R
0(X)
R(X)

− R
0
i(xi)

Ri(xi)
x0i(X) +

C0i(xi)x
0
i(X)−C0(X)

Ci(xi)−C(X) ,

which can be rewritten as:

x000i /x
00
i (= 2(P −R) + (Pi −Ri)x0i + (C0ix0i −C0)/(Ci −C),

where we have omitted the arguments of the functions. Applying (12) and (13)

and rearranging the terms, we obtain

x000i (X) =
R2

Ri
(Ci −C)(−2(P −R) + (Pi −Ri) R

Ri
)− R

2

Ri
C0 +C0ix

0
i

R2

Ri
.

Since
P
i x

000
i = 0 we have

R
X
i

R−1i (Ci −C)(−2(P −R) + (Pi −Ri) R
Ri
) +

X
i

C 0ix
02
i −C0 = 0.

Since C0i = 0, we have

C0 = −2R(P −R)
X
i

(Ci −C)/Ri +R2
X
i

(Ci −C)Ci/Ri.
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From (14) we obtain
P
i (Ci −C)/Ri = 0. Thus we have

C0 = R2
X
i

Ci(Ci −C)/Ri,

which can be rewritten as:

C0 = R2(
X
i

C2i /Ri −R(
X
i

Ci/Ri)
2).

Rearranging the terms, we obtain

C 0 = R3(
X
i

R−1i
X
i

C2i /Ri − (
X
i

Ci/Ri)
2).

Applying Cauchy�s inequality, we obtain C0 > 0.

(b) We now prove Statement 3. From (12) and (13) we obtain

X
x00i
x0i
= γe(Ci −Ce(X)).

But from Proposition 1 we have γe(0) = γ1 and γe(∞) = γN . Hence we conclude

that around zero and inÞnity the sign of Xx00i /x
0
i is the same as that of Ci −

Ce(∞). Noting that for every i, x0i(X) is always positive, we conclude that

around zero and inÞnity

Xx00i /x
0
i and Ci −Ce(∞) have the same sign. (37)

On the other hand, from Statement 1 and Statement 2, Ce(X) is increasing

in X from Ce(0) = CN to Ce(∞) = C1. This and (37) imply that for any

i, there exists X◦
i ∈ [0,+∞] such that x00i (X) > (<)0 when X > (<)X◦

i and

Ce(X◦
i ) = Ci. Apparently X◦

1 = +∞, X◦
N = 0 and for any i, X◦

i < X◦
i+1.

Q.E.D.
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Appendix D Proof of Proposition 3

We Þrst prove the following lemma.

Lemma 2 In the economy we have the following result:

1. For any i 6= 1, limX→0X2x00i (X)/xi > 0; if γ ≥ ²N − ²1, then x00N(X) > 0.

2. If γ ≥ ²N − ²1, then for any i 6= N, limX→+∞X2x00i (X)/xi < 0; if

γ ≥ 2(²N − ²1), then x001(X) < 0.

3. Assume γ ≥ 2(²N − ²1). Then for any i, x00i+1(X)/xi+1 > x00i (X)/xi.

4. Assume γ ≥ 3(²N − ²1). Then for any i, (X2x00i (X)/xi)
0 < 0.

Proof: From (7) we have

x0i(X) = (xi/X)(γe + ²i)/γ. (38)

From (8) we have

γe(X) = γ −
X
i

wi²i, (39)

where

wi = xi/X.

Differentiating both sides of (38), we obtain

x00i (X) = xi[(γe + ²i)
2/γ −Ceγ2e − ²i]/(γX2). (40)

Noting that
P
i x

00
i (X) = 0, from the above equation we obtain

Ceγ
2
e =

X
i

wi[(γe + ²i)
2/γ − ²i]. (41)
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(a) We Þrst prove Statements 1 and 2. Substitute (41) into (40) we have

γX2x00i (X)/xi = (γe + ²i)
2/γ −

X
i

wi((γe + ²i)
2/γ − ²i)− ²i, (42)

where wi = xi/X. Applying Equation (39), we can rewrite Equation (42) as

γX2x00i (X)/xi = (γ−
X
i

wi²i+ ²i)
2/γ−

X
i

wi((γ −
X
i

wi²i + ²i)
2/γ − ²i)− ²i,

which can be simpliÞed as

γ2X2x00i (X)/xi = γ(−
X
i

wi²i+ ²i)+ (−
X
i

wi²i+ ²i)
2−

X
i

wi(²i−
X
i

wi²i)
2.

(43)

Letting i = N in (43), we obtain

γ2X2x00N(X)/xN = γ(−
X
i

wi²i+²N)+(−
X
i

wi²i+²N)
2−
X
i

wi(²i−
X
i

wi²i)
2,

which we can rewrite as

γ2X2x00N/xN =
X
i

wi(−²i + ²N)(γ + ²N + ²i − 2
X
i

wi²i).

It follows that

γ2X2x00N/xN >
X
i

wi(−²i + ²N)(γ − (²N − ²1)) ≥ 0.

Hence x00N > 0.

Similarly we can shown that given that γ ≥ 2(²N − ²1), x001 < 0.

From Lemma 1 and (43) we obtain

γ2 lim
X2→+∞

X2x00i (X)
xi

= (−²N + ²i)(−²N + ²i + γ), (44)
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and

γ2 lim
X→0+

X2x00i (X)
xi

= (−²1 + ²i)(−²1 + ²i + γ). (45)

Hence Statements 1 and 2 are proved.

(b) We now prove Statement 3. We have

γ(−
X
i

wi²i + ²i) + (
X
i

wi²i − ²i)2 − [γ(−
X
i

wi²i + ²j) + (
X
i

wi²i − ²j)2]

= (²i − ²j)(γ + ²i + ²j − 2
X
i

wi²i).

From (43) and the above equation, we have

γ2X2(
x00i (X)
xi

− x
00
j (X)

xj
) = (²i − ²j)(γ + ²i + ²j − 2

X
i

wi²i). (46)

Since γ ≥ 2(²N − ²1), if i 6= j, we have

²i + ²j − 2
X
i

wi²i + γ > γ − 2(²N − ²1) ≥ 0.

This implies that the right side of Equation (46) is positive if and only if ²i > ²j .

Thus we conclude that x00i (X)/xi > x
00
j (X)/xj , if and only if ²i > ²j ; i.e., if

investor i is more optimistic than investor j.

(c) Finally we prove Statement 4. From (43), we obtain

γ2X2x00i (X)
xi

= −(γ + 2²i)
X
i

wi²i + 2(
X
i

wi²i)
2 −

X
i

wi²
2
i + γ²i + ²

2
i .

It follows that

(
γ2X2x00i (X)

xi
)0 = −((γ + 2²i)− 4

X
i

wi²i)
X
i

w0i²i −
X
i

w0i²
2
i . (47)
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From (38) and (39), we obtain

w0i =
wi
γX

(−
X
i

wi²i + ²i).

Substituting for w0i in (47), we obtain

γX(
X2x00i (X)

xi
)0 = (γ + 2²i − 4

X
i

wi²i)
X
i

wi²i(
X
i

wi²i

−²i) +
X
i

wi²
2
i (
X
i

wi²i − ²i).

We write it as

γX(
X2x00i (X)

xi
)0 = −(γ + 2²i − 4

X
i

wi²i)
X
i

wi(
X
i

wi²i − ²i)2

−
X
i

wi(²i −
X
i

wi²i)
2(²i +

X
i

wi²i).

It follows that

γX(
X2x00i (X)

xi
)0 < −(γ − 3(²N − ²1))

X
i

wi(²i −
X
i

wi²i)
2 ≤ 0.

Q.E.D.

We are now ready to prove the proposition. Applying Lemma 2, we obtain

Statements 1, 2, 3 and 4. From Statements 1 and 2, we conclude that for any i,

1 < i < N , when X is sufficiently large, x00i < 0 and when X > 0 is sufficiently

small x00i > 0. This and Statement 4 imply that for any i, 1 < i < N , there exists

X◦
i ∈ (0,+∞) such that x00i (X) > (<)0, when X < (>)X◦

i . From Statements

1 and 2, we also obtain that there exists X◦
1 = 0 such that x001(X) > (<)0,

when X < (>)X◦
1 and there exists X

◦
N = +∞ such that x00N(X) > (<)0, when

X < (>)X◦
N . From Statement 3 we conclude that for any i, X

◦
i+1 > X

◦
i . Q.E.D.
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Notes

1See Section III in Leland (1980).

2An investor�s cautiousness is deÞned by Wilson (1968) as the Þrst derivative

of his risk tolerance. It can be written as the ratio of the investor�s absolute

prudence to his absolute risk aversion minus one. A utility function has positive

constant cautiousness if and only if it is a logarithmic utility function (ln(x+a))

or a risk-averse power utility function with power coefficient smaller than one

((x+ a)1−γ/(1− γ), γ > 0).

3For example, in the Þrst case Benninga and Mayshar (2000) showed that

heterogeneity among investors results in a representative investor with declining

relative risk aversion.

4Although a call option can be always replicated by using a put option, we

are not necessarily able to replicate all call options by using put options. If

we do so, since the value of the market portfolio is unbounded above we can

show that the amount of loans we need to make will approach inÞnity. See also

Statement 2b in Proposition 1.

5Later we will show that a market of call options with all strike prices is

sufficient.

6This will be implied by the condition that investors� coefficients of relative

risk aversion are positive when their consumption approaches zero, which will

be assumed through out the paper.
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7It is understood that under sufficient regularity conditions, there always

exists an equilibrium. Interested readers may refer to Borch (1962) and Mas-

Colell (1985).

8It is so called since if for all X, ²i(X) = −X(ln gi(X))0 > 0 then Ei(X) >

E(X). This can be shown as follows. It is apparent that fi(X) and f(X)

intersect at least once. But since ²i(X) = −X(ln gi(X))0 > 0, they can intersect

only once, say at X0. Moreover f(X) must intersect fi(X) from below. Thus we

conclude that X −X0 and fi(X)− f(X) always have the same sign. It follows

that

Ei(X)−E(X) = Ei(X−X0)−E(X−X0) =
Z +∞

0

(X−X0)(fi(X)−f(X))dX > 0.

9In this paper given any function h(x), h(0) means limx→0+ h(x) and h(∞)

means limx→+∞ h(x). Note that �δi(∞) ≡ γi(∞)−²i(∞) is not necessarily equal

to δi(∞). They are equivalent only if xi(∞) = +∞, which is indeed satisÞed in

this paper by assuming δ(∞) > −mini{²i(∞)}. See Equation (22) in Appendix

A).

10There exists an aggregate investor in Rubinstein�s sense if security prices

are independent of the allocation of wealth across investors. It is shown by

Rubinstein (1974) and Brennan and Kraus (1978) that there exists an aggregate

investor in Rubinstein�s sense if and only if either all investors have identical

cautiousness and beliefs or all investors have exponential utility functions.

11The result is an application of Theorem 1 in Carr and Madan (2001) which
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states that every twice differentiable function xi(X) can be written as (11).

12In most cases, there exists S0 > 0 such that xi(S0) − x0i(S0)S0 = 0. For

example, in the special case examined in the following section for investor i, S0

is the point at which γe(X) intersects γi(xi(X)).

13Let investor i�s utility function be ui(x) = (x+ai)1−γ/(1−γ). To guarantee

that the Þrst order conditions are equalities, every investor�s marginal utility of

zero consumption must be inÞnity. This requires that ai = 0.

14Expressed as the continuously compounded growth rate, ln(X/X0).
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