A faster exact separation algorithm for blossom inequalities

Letchford, A N and Reinelt, G and Theis, D O (2004) A faster exact separation algorithm for blossom inequalities. In: Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science . Springer, USA, pp. 19-52. ISBN 3-540-22113-1

Full text not available from this repository.


In 1982, Padberg and Rao gave a polynomial-time separation algorithm for b-matching polyhedra. The current best known implementations of their separation algorithm run in O(|V|^2|E| log(|V|^2/|E|)) time when there are no edge capacities, but in O(|V||E|^2 log(|V|^2/|E|)) time when capacities are present. We propose a new exact separation algorithm for the capacitated case which has the same running time as for the uncapacitated case. For the sake of brevity, however, we will restrict our introduction to the case of perfect 1-capacitated b-matchings, which includes, for example, the separation problem for perfect 2-matchings. As well as being faster than the Padberg-Rao approach, our new algorithm is simpler and easier to implement.

Item Type:
Contribution in Book/Report/Proceedings
Additional Information:
The full version of this paper appeared as: A.N. Letchford, G. Reinelt & D.O. Theis (2008) Odd minimum cut-sets and b-matchings revisited. SIAM J. Discr. Math., 22(4), 1480-1487.
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
11 Jul 2011 19:58
Last Modified:
15 Sep 2023 01:46