
Pattern Recognition 44 (2011) 78–96
Contents lists available at ScienceDirect
Pattern Recognition
0031-32

doi:10.1

� Corr

E-m

d.tasoul

d.j.hand
journal homepage: www.elsevier.com/locate/pr
l-Perceptron: An adaptive classifier for data streams
N.G. Pavlidis a,�, D.K. Tasoulis b, N.M. Adams b, D.J. Hand a,b

a Institute for Mathematical Sciences, Imperial College London, 53 Prince’s Gate, SW7 2PG, United Kingdom
b Department of Mathematics, Imperial College London, 180 Queen’s Gate, SW7 2AZ, United Kingdom
a r t i c l e i n f o

Article history:

Received 17 June 2009

Received in revised form

7 May 2010

Accepted 29 July 2010

Keywords:

Streaming data

Classification

Population drift

Online learning

Forgetting
03/$ - see front matter & 2010 Elsevier Ltd. A

016/j.patcog.2010.07.026

esponding author. Tel.: +44 20 75940996; fa

ail addresses: n.pavlidis@imperial.ac.uk (N.G.

is@imperial.ac.uk (D.K. Tasoulis), n.adams@i

@imperial.ac.uk (D.J. Hand).
a b s t r a c t

Streaming data introduce challenges mainly due to changing data distributions (population drift). To

accommodate population drift we develop a novel linear adaptive online classification method

motivated by ideas from adaptive filtering. Our approach allows the impact of past data on parameter

estimates to be gradually removed, a process termed forgetting, yielding completely online adaptive

algorithms. Extensive experimental results show that this approach adjusts the forgetting mechanism

to maintain performance. Moreover, it might be possible to exploit the information in the evolution of

the forgetting mechanism to obtain information about the type and speed of the underlying population

drift process.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Recently a new class of data-intensive tasks has become
widely recognised: tasks which involve data that arrives in
multiple, rapid, time-varying data streams [1]. Streaming data
applications arise in finance, network monitoring, security,
telecommunications data management, web applications, manu-
facturing, sensor management, and many others. A data stream is
an ordered sequence of data that can be read only once or a small
number of times using limited computing and storage capabilities
[2]. This has posed new challenges for data analysis since it
introduces several limitations. First, data are not typically stored
after being processed, due to the practical bounds on memory
utilisation. Even if they are stored, the availability of direct
random access to any of them is unlikely [1]. Second, streaming
data applications are characterised by time-varying population
distributions. In other words, the underlying data generating
mechanism is constantly evolving [1,3,4]. Due to this character-
istic, any data analysis procedure must have the capacity to
automatically recognise or adapt to change as it happens.

In this paper we are concerned with classification tasks. A
straightforward way to design a classification method for data
streams would be to use any off-the-shelf classifier, and pre-
estimate its parameters using a subset of the available data.
Subsequently, the classifier can be used to make inferences about
ll rights reserved.

x: +44 20 75940923.

Pavlidis),

mperial.ac.uk (N.M. Adams),
future samples. This, however, will only be valid under the
assumption that the population distribution is static (i.e. remains
unchanged over time). If this assumption is violated, this
approach is no longer justified and the performance of classifiers
so constructed can be unreliable [5,6].

The problem of changing population distributions has been
termed population drift and has been recognised as an issue in
numerous areas (many of which have data stream characteristics),
including high-frequency finance [7], credit scoring [6], spam
filtering [8], user preference tracking [9], telecommunications [10],
and sensor networks [11]. In this work, we consider two real-world
applications. The first is the automated identification of tumours in a
video sequence. The classification of this imaging data is important
as it can contribute to the early diagnosis of cancer. Datasets from
video sequences are typically subject to large textural variations
across and within video frames, requiring adaptive methods to
deal with the changing data distribution. The second application we
consider is the prediction of the direction of change in high
frequency exchange rate series. High frequency foreign exchange
rate data are known to be subject to population drift [7]. Predicting
the direction of change can be exploited for profitable trading.

In discussing population drift it is useful to distinguish
between abrupt and gradual change. In an abruptly changing

environment the population distribution changes at distinct time
points, called change points. Between two consecutive change
points the population distribution is static. In contrast, in a
gradually drifting environment the population distribution
changes at each time-step.

To handle abrupt change we can use a static classifier whose
parameters are reset after the detection of each change point.
Abrupt change detection is a non-trivial problem in most real

www.elsevier.com/pr
dx.doi.org/10.1016/j.patcog.2010.07.026
mailto:n.pavlidis@imperial.ac.uk
mailto:d.tasoulis@imperial.ac.uk
mailto:n.adams@imperial.ac.uk
mailto:d.j.hand@imperial.ac.uk
dx.doi.org/10.1016/j.patcog.2010.07.026

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–96 79
applications and the effectiveness of this approach relies on the
timely identification of each change point. Change detection
methods monitor either the estimated parameters, or a measure
of classification performance. An example of the former approach
is [12], where a Kalman filter like approach is used to monitor the
parameters of a credit scoring classifier, providing a charting
mechanism to identify changes. Methods like CUSUM from
sequential analysis [13] monitor classification performance to
identify abrupt changes.

The problem of classification in abruptly changing environ-
ments has also been studied in the context of prediction with expert

advice [14]. In this setting classification is performed based on the
advice of a set of classifiers (experts). Hebster and Warmuth [15]
provide regret bounds versus the best expert which is allowed to
change a pre-specified number of times. This formulation has been
generalised in [16–19]. The focus of this paper is on the
development of individual classifiers suitable for streaming data.
Methods that handle population drift through the selection or
combination of a set of classifiers, such as prediction with expert
advice and ensemble methods, are beyond the scope of this work.

A natural way to handle gradual population drift is to estimate
parameters using a subset of the previously observed examples.
The simplest such approach is to use a window of predefined
length containing the most recent examples. More sophisticated
approaches attempt to adapt the window size and/or the
examples stored in the window according to the speed of drift
[20,21]. Instead of using a subset of previous examples, online
methods adapt to changing population distributions using
information only from the current example to update the
classifier. A general overview of a number of online classification
methods is presented in the next section.

In this work, motivated by ideas from adaptive filtering
[22,23], we develop a novel adaptive online estimation method
for perceptrons with sigmoidal activation functions. A perceptron
with a logistic activation function, jðxÞ ¼ ex=ð1þexÞ, is similar to
the logistic regression model but parameters are estimated
through the optimisation of a least squares criterion rather than
a likelihood function. In the rest of the paper we refer to
perceptrons with sigmoidal activation function as sigmoid percep-

trons. Our approach aims to accommodate any type of population
drift without storing past data. To achieve this, we define a
cumulative error function that gradually removes the impact of
past data on current parameter estimates, without relying on a
model for population drift. The underlying assumption in our
formulation is that more recent examples are more relevant to the
current problem. Although this assumption can be violated in
practise it enables the development of methods that can cope
with different types of population drift without completely
disregarding all past information.

Updating the parameters is achieved through gradient descent
on the error function. The rate at which previous information is
forgotten is controlled by a critical parameter that determines the
responsiveness of the classifier to recently observed examples.
Since in data streams the type and speed of population drift can
change, the optimal value of this forgetting factor can also be time-
varying. We propose to adjust the value of the forgetting factor in
a data-driven manner by deriving the gradient of the error
function with respect to this parameter and performing gradient
descent at each time-step.

We should note that the accurate computation of these
gradients requires storing and iterating over all the data, which
is infeasible in streaming data applications. To this end, we
employ an online algorithm which is a modification of stochastic
gradient descent [24], that allows us to update all the required
parameters, using data as it becomes available and not storing
them. Extensive experimental results show that this approach has
the ability to adjust the degree of forgetting to maintain
performance. Moreover, it might be possible to exploit the
information in the evolution of the time-varying forgetting factor
to obtain information about the type and the speed of the
underlying population drift process.

The paper is organised as follows: the next section presents
related work on online classification. In Section 3, we introduce
the data stream framework, by proposing an appropriate
formulation of the cumulative error and discuss in detail the
effect of population drift. Next in Sections 3.1 and 3.2 we propose
adaptive methodologies for the parameters of our model, and
Section 3.3 presents the proposed algorithmic scheme. Subse-
quently, Section 4 presents the experimental analysis of the
proposed schemes in different settings and compares them
against other approaches in the literature, using simulated and
publicly available data. Additionally, real datasets are used to
demonstrate the applicability of the proposed method. The paper
ends with a section of concluding remarks and discussion.
2. Related work

In this section we present an overview of a number of online
classification algorithms. Online learning is the most common
approach to handle population drift and learning from very large
and even redundant datasets. In online learning, model para-
meters are updated at each time-step using information only from
the current example. Therefore, adaptation in time-varying
environments is enabled by completely disregarding all past
information. An exhaustive review of the numerous online
classification algorithms is beyond the scope of this work. We
discuss recently proposed methods that are employed in the
empirical evaluation of the proposed approach.

The perceptron [25] is perhaps the simplest online binary
linear classifier. It employs a classification function of the form
ŷðtÞ ¼ signðbðtÞ>zðtÞÞwhere bðtÞ is the parameter vector, xðtÞARd is
the feature vector observed at time t, and zðtÞ ¼ ½1,x1ðtÞ, . . . ,xdðtÞ�

>

is the augmented feature vector. Note that in the description of
perceptron-based algorithms the class labels are y(t)¼{�1,+1}.
The parameter vector is updated only in the case of misclassifica-
tion, using gradient descent, bðtþ1Þ ¼ bðtÞþryðtÞzðtÞ, where the
step-size r is also known as the learning rate.

The passive-aggressive (PA) algorithm is a modification of the
perceptron algorithm that requires predictions, ŷðtÞ, to be made
with high confidence [26]. The degree of confidence in a
prediction is measured by the magnitude jwðtÞ>zðtÞj. To this end
a hinge-loss function is defined that penalises both wrong
predictions and predictions with low confidence. The update of
w(t) in the PA algorithm arises as the closed form solution to a
constrained optimisation problem [26]. The perceptron and the
PA algorithm are designed for problems in which the classes are
linearly separable and ignore the possibility of noise-corrupted
feature vectors or labels. To cope with noise two variants of the PA
algorithm, called PA I and PA II, were proposed in [26]. Both
algorithms employ an aggressiveness parameter, C. Higher values
of C render the update step more aggressive, whereas, low values
of C are appropriate in the presence of noise, or when the classes
overlap. The analysis of PA I and PA II in [26] shows that for any
sequence of examples, these algorithms cannot do much worse
than the best fixed predictor chosen in hindsight.

Online kernel-based classification algorithms observe exam-
ples sequentially and store selected examples in their internal
memory. The classification function is then defined by a kernel-
dependent combination of the stored examples. A limitation of
this approach is that an additional example needs to be stored
after each prediction mistake. Thus, the number of examples

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–9680
grows unboundedly unless the data sequence is perfectly
predictable. Online kernel-based methods with a storage budget
were first proposed in [27,28]. The Forgetron family of classifica-
tion algorithms [29] constitutes the first online kernel-based
classifiers restricted to a fixed budget of stored examples for
which a rigorous mistake bound has been proven. The name
Forgetron is used because these methods are variations of the
kernel-based version of the perceptron algorithm which forget
stored examples as necessary.

In [30] two kernel-based variants of the perceptron algorithm
are proposed for time-varying environments. Shifting perfor-
mance bounds are provided for these algorithms that ensure good
performance on any data sequence that is well predicted by a
sequence of classifiers whose parameters may change with time
under certain constraints. The first algorithm, called the shifting
perceptron algorithm (SPA), utilises a decaying factor that
determines the rate of weight decay. When a mistake is made
SPA scales down the old weight vector, to diminish the
importance of earlier updates, before incorporating the new
feature vector, as in the perceptron update rule. The decaying
factor is not connected to the loss function, or the magnitude of
the error, but only to the number of misclassifications. The
number of examples stored by SPA is not bounded, which can lead
to prohibitive computational difficulties when a non-linear kernel
is used. In a streaming data application the decaying factor will
tend to zero rendering the algorithm equivalent to the standard
perceptron. This can be avoided by setting the decaying factor to a
constant which yields an exponential decaying scheme similar to
that of Forgetron and the proposed l-perceptron algorithms. No
mechanism is provided to adjust the value of the decaying factor
to account for changes in the data-generating mechanism.

The randomised budget perceptron (RBP) algorithm [30]
combines shifting with a budget of stored examples. As in the
perceptron algorithm, each example on which the algorithm
makes a mistake is stored. To avoid exceeding the budget, before
adding a new example the algorithm discards randomly one of the
stored examples. No scaling down of the contribution of past
examples is involved. RBP is shown to strike the optimal trade-off
between the largest norm of a classifier in the comparison
sequence and the available budget [30]. The least recent budget
perceptron (LBP) is a variant of RBP which removes the oldest
example whenever the budget is exceeded. LBP can be regarded as
an aggressive variant of Forgetron as it does not scale down the
contribution of stored examples. The size of the budget is critical
to the performance of RBP and LBP, as shown in [30], and no
mechanism is proposed to adapt this parameter. Such a mechan-
ism would be beneficial in a streaming environment. As in the
case of SPA the rate of adaptation is not connected to the
magnitude of the error but to the number of misclassifications.

Two budget variants of the second-order perceptron [31], are
considered in [30]. These are the randomised budget second-
order perceptron (RBSOP) and the least recent second-order
perceptron (LBSOP). In RBSOP the example to be discarded is
chosen at random among the current set of stored examples,
while in LBSOP the oldest example is always removed.

In [32] the view that the learning rate of an online classifier,
e.g. r in the perceptron algorithm, can be viewed as a ‘forgetting
mechanism’ is advocated. A large learning rate magnifies the
impact of the current example on the update of the estimated
parameters, and vice versa. Based on this view a framework to
handle population drift is proposed that adapts the learning rate
of online classifiers as a function of a running estimate of the
classification error rate. The assumption behind this framework is
that an increasing error rate signifies the onset of a change in
the environment. Adaptive learning rate versions of the percep-
tron and the Winnow [33] classifiers are proposed in [32].
Moreover, an adaptive and online version of the standard linear
discriminant classifier (OLDC) is developed [32].

Sigmoid perceptrons constitute the building blocks for more
complex non-linear classifiers like multilayer perceptrons. The
parameters of sigmoid perceptrons are estimated through iterative
minimisation of an error function, the most frequent choice of which
is the sum of squared errors. The algorithm of choice for online
training of sigmoid perceptrons is stochastic gradient descent [34]. A
central issue in stochastic gradient descent is how to adaptively set
the learning rate to achieve rapid convergence without compromis-
ing the ability to adapt to population drift. The idea of utilising the
gradient of the error function with respect to parameters, e.g.
the learning rate, of the update rule for the parameter vector is at the
core of several stochastic adaptation methods [34,35]. Stochastic
meta-descent (SMD) utilises this gradient information to adapt the
local learning rates (i.e. a separate step-size for each element of
the parameter vector) [34], through exponentiated gradient
(meta-)descent. This approach is similar to the approach we develop
in the next section in that a gradient descent scheme is employed to
adaptively tune parameters of the update rule that is applied to the
parameter vector. The two approaches differ in that we do not
employ information from the current time-step only, and we adapt
the forgetting factor instead of the learning rate.

In the context of prediction with expert advice, discounted
regret has been proposed as an alternative measure which relies
on the assumption that losses in the past are less significant than
recently suffered losses. Similar to the forgetting framework we
develop, this measure assigns a weight to the regret at each time-
step that is a decreasing function of its distance in the past. In [14]
results are provided which show that when the discount factors
decrease sufficiently slowly, it is possible to make the average
discounted regret vanish when the number of time-steps is large.
3. Framework

We borrow ideas from adaptive filter theory to develop an
adaptive online sigmoid perceptron algorithm. Our approach is
based on the definition of a criterion that enables the classifier to
adapt to changes in the environment, without completely
disregarding all previous knowledge. Typical criteria used to
estimate the parameters of a classifier assign equal weight to each
example irrespective of the time it is observed. A widely used
criterion to estimate the parameters of sigmoid perceptrons is the
sum of squared errors:

Eðb,tÞ ¼
Xt

i ¼ 1

eðb,iÞ ¼
1

2

Xt

i ¼ 1

ðyðiÞ�jðb>zðiÞÞÞ2, ð1Þ

where yðtÞAf0,1g and jðb>zðiÞÞ ¼ eb
>z=ð1þeb

>zÞ.
In the presence of population drift a reasonable assumption,

applicable to any criterion, is that the impact of each example on
the parameter estimates should be related to the time of
observation. More recent examples are expected to be more
informative about the characteristics of the current populations
than examples in the distant past. This line of reasoning leads
naturally to the introduction of weights in the definition of the
optimisation criterion. At present we adopt the cumulative error
function formulation of the recursive least squares (RLS) adaptive
filter [22,23,36], although this idea can be also applied to general
likelihood functions. As in the RLS filter we introduce an
exponential weighting factor that is a function of time in the
cumulative error function:

Eðb,tÞ ¼
Xt

i ¼ 1

lt�ieðb,iÞ ¼ eðb,tÞþlEðb,t�1Þ: ð2Þ

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–96 81
In Eq. (2) the weighting factor, lA ½0,1�, is the so-called forgetting

factor. The forgetting factor discounts the impact of past examples
in order to enable the classifier to adapt in response to population
drift [23]. As l tends to unity past and present examples become
equally weighted. In contrast, lower values of l increase the
impact of recent examples on the estimated parameters. We refer
to sigmoid perceptrons whose parameters are estimated through
Eq. (2) as l-perceptrons.

The sum of the exponential weighting factors is referred to as
the effective window width [36]. The effective window width at
time-step t for constant l is ð1�lt

Þ=ð1�lÞ. For variable l, the
weight at time-step t assigned to eðb,iÞ is

Qt
j ¼ iþ1 lðjÞ. The sum of

these weights can be recursively updated according to:

nðtÞ ¼ 1þ
Xt�1

i ¼ 1

Yt

j ¼ iþ1

lðjÞ

0
@

1
A¼ 1þlðtÞnðt�1Þ, t¼ 2,3 . . . nð1Þ ¼ 1:

ð3Þ

A motivating example for the introduction of exponential
weighting with respect to time in the definition of the cumulative
error is provided in Fig. 1. We consider two, two dimensional
binary classification problems, in which the distribution of the
feature vectors for both classes yAf0,1g is Gaussian:

ðxðtÞjyÞ �N ðmyðtÞ,IÞ, Pðy¼ 0Þ ¼ Pðy¼ 1Þ ¼ 1
2, yAf0,1g, ð4Þ

where I is the identity matrix. In the first problem, m0ðtÞ ¼ ½3,3�,
and m1ðtÞ ¼ ½�3,�3�. In the second problem the class labels are
reversed, i.e. m0ðtÞ ¼ ½�3,�3� and m1ðtÞ ¼ ½3,3�. By construction, the
optimal parameter values in the second problem are opposite in
sign from the optimal values for the first problem.

A dataset that exhibits abrupt change is constructed by
drawing examples from the first classification problem during
the first 15 time-steps and from the second problem during the
final 15 time-steps. An ideal cumulative error function for this
task would have the same minimisers as the error function for the
first problem during the first 15 examples, and the same
minimisers as the error function for the second problem during
the final 15 examples. A classifier estimated using this error
function would adapt to the abrupt change instantly under the
assumption that the global minimiser of the error function is
correctly identified at each time-step.

Fig. 1 shows three dimensional mesh plots of the cumulative
error function of Eq. (2), after the presentation of all 30 examples
for two values of l. In the case of no forgetting, depicted in
Fig. 1(a), the global minimiser of the cumulative error function is
at the origin. Introducing forgetting with l¼ 0:8, Fig. 1(b), yields a
-8 -6 -4 -2 0 2 4 6 8 -8
-6

-4
-2

0
2

4
6

8

5
5.5

6
6.5

7
7.5

8

0

1

2

β1

β2

Fig. 1. Cumulative error functions for different values of the forge
cumulative error function whose minimisers are in the same
region as those of the cumulative error function without
forgetting that corresponds to the second classification problem.
Therefore, exponentially weighting the previous errors enables
the classifier to adapt to population drift, by affecting the location
of the global minimisers of the cumulative error function. The
same conclusion can be drawn by comparing the average error
rate achieved by classifiers whose parameters are estimated using
the cumulative error function with forgetting, Eq. (2), for different
values of l. Note that this average error rate is measured at each
time-step by computing the classification error over an indepen-
dent set of 100 examples randomly generated according to the
current class definition, and then averaging over the 30 time-
steps. The average error rate for l¼ 1, which amounts to no
forgetting, is 0.375, for l¼ 0:95 it reduces to 0.274, and is further
reduced to 0.195 and 0.157 for l¼ 0:9 and 0.8, respectively.
3.1. Adaptation of parameter vector

Using the cumulative error function of Eq. (2), the jth element,
bjðtÞ, of the parameter vector b can be updated through gradient
descent:

bjðtþ1Þ ¼ bjðtÞ�Z
@EðbðtÞ,tÞ
@bjðtÞ

, ð5Þ

where Z is a positive constant called the step-size parameter or the
learning rate, and the partial derivative of the cumulative error
EðbðtÞ,tÞ is:

@EðbðtÞ,tÞ
@bjðtÞ

¼
Xt

i ¼ 1

lt�i @eðbðtÞ,iÞ
@bjðtÞ

, ð6Þ

with:

@eðbðtÞ,iÞ
@bjðtÞ

¼�½yðiÞ�jðbðtÞ>zðiÞÞ�
@jðbðtÞ>zðiÞÞ

@bjðtÞ

¼ �zjðiÞ½yðiÞ�jðbðtÞ>zðiÞÞ�jðbðtÞ>zðiÞÞ½1�jðbðtÞ>zðiÞÞ�, ð7Þ

for j¼0,1,y,d.
Computing the partial derivative @EðbðtÞ,tÞ=@bjðtÞ requires

storing and processing all previous examples, Dt ¼ {(x(i),y(i))}i¼1
t ,

which is prohibitive in streaming data applications. For such
applications, we propose to update the parameter vector after the
presentation of each example using the exponentially weighted
sum of the previous realisations of the gradient. With this
-8 -6 -4 -2 0 2 4 6 8 -8
-6

-4
-2

0
2

4
6

8

0
.5
1

.5
2

.5

β1
β2

tting factor: (a) no forgetting l¼ 1 and (b) forgetting l¼ 0:8.

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–9682
modification, Eq. (5) can be rewritten as:

bjðtþ1Þ ¼ bjðtÞ�Z
Xt

i ¼ 1

lt�i @eðbðiÞ,iÞ
@bjðiÞ

: ð8Þ

For notational convenience we define:

Gbj
ðtÞ ¼

Xt

i ¼ 1

lt�i @eðbðiÞ,iÞ
@bjðiÞ

¼
@eðbðtÞ,tÞ
@bjðtÞ

þlGbj
ðt�1Þ: ð9Þ

In the neural network literature, the update formula of
Eq. (8) is known as the online backpropagation with momentum

algorithm [24]. The motivation for including the sum of
exponentially weighted previous values of the gradient,
Z
Pt�1

i ¼ 1 l
t�i@eðbðiÞ,iÞ=@bjðiÞ, which is known as the momentum

term, in the parameter update equation is to accelerate the
gradient descent method [23,24,37,38]. This simple modification
renders the step-size with respect to each element of b adaptive.
Whenever the partial derivative with respect to the jth element of
the parameter vector, @eðbðtÞ,tÞ=@bjðtÞ, has the same sign on
consecutive time-steps, the sum in Eq. (8) grows in magnitude,
accelerating the descent in downhill directions. In contrast, when
@eðbðtÞ,tÞ=@bjðtÞ has opposite signs in consecutive time-steps the
sum shrinks in magnitude, creating a stabilising effect in
directions that oscillate in sign [39]. Finally, the momentum term
can also prevent the learning process from terminating in a
shallow local minimum on the error function [24]. In [40] a
deterministic proof of convergence is derived for the online
backpropagation with momentum algorithm. In more detail, it is
shown that under certain natural assumptions, every accumula-
tion point of the update formula of Eq. (8) is a stationary point of
the cumulative error function of Eq. (1) for finite t [40].

3.2. Adaptation of forgetting

The choice of the forgetting factor is critical to classification
performance. The appropriate choice of l depends on the dynamic
character of a data stream, which is typically unknown a priori.
Moreover, setting the degree of forgetting to a constant seems
inappropriate in the presence of abrupt changes, or when the
speed of population drift varies over time. It is therefore desirable
to have an online adaptive scheme to tune l. In adaptive filtering,
stochastic gradient descent has been proposed to adapt online the
step-size of the Least Mean Squares (LMS) algorithm, and the
forgetting factor of the RLS algorithm [22]. We adopt this
approach to adapt l towards values that minimise the error at
time-step (t+1) [22,23].

To obtain an expression for the gradient with respect to l, we
express the error as a composite function of l and apply the chain
rule:

@eðbðtþ1Þ,tþ1Þ

@l
¼
Xd

j ¼ 0

@eðbðtþ1Þ,tþ1Þ

@bjðtþ1Þ

@bjðtþ1Þ

@l
: ð10Þ

An expression for @bjðtþ1Þ=@l is obtained by differentiating
Eq. (5) with respect to l:

@bjðtþ1Þ

@l
¼
@bjðtÞ

@l
�Z @

2EðbðtÞ,tÞ
@l@bjðtÞ

: ð11Þ

We obtain @2EðbðtÞ,tÞ=@l@bjðtÞ by differentiating Eq. (6):

@2EðbðtÞ,tÞ
@l@bjðtÞ

¼
Xt

i ¼ 1

ðt�iÞlt�i�1 @eðbðtÞ,iÞ
@bjðtÞ

þlt�i @
2eðbðtÞ,iÞ
@l@bjðtÞ

()

¼
Xt�1

i ¼ 1

ðt�iÞlt�i�1 @eðbðtÞ,iÞ
@bjðtÞ

()
þ
Xt

i ¼ 1

lt�i @
2eðbðtÞ,iÞ
@l@bjðtÞ

()
,

ð12Þ
adding and subtracting
Pt�1

i ¼ 1 l
t�i�1@eðbðtÞ,iÞ=@bjðtÞ from the right-

hand side yields:

@2EðbðtÞ,tÞ
@l@bjðtÞ

¼
Xt�1

i ¼ 1

ðt�i�1Þlt�i�1 @eðbðtÞ,iÞ
@bjðtÞ

()

þ
Xt�1

i ¼ 1

lt�i�1 @eðbðtÞ,iÞ
@bjðtÞ

()
þ
Xt

i ¼ 1

lt�i @
2eðbðtÞ,iÞ
@l@bjðtÞ

()

¼
Xt�1

i ¼ 1

ðt�i�1Þlt�i�1 @eðbðtÞ,iÞ
@bjðtÞ

()
þ
Xt�1

i ¼ 1

lt�i�1 @eðbðtÞ,iÞ
@bjðtÞ

()

þ
@2eðbðtÞ,tÞ
@l@bjðtÞ

þl
Xt�1

i ¼ 1

lt�i�1 @
2eðbðtÞ,iÞ
@l@bjðtÞ

()

¼
@2eðbðtÞ,tÞ
@l@bjðtÞ

þ
Xt�1

i ¼ 1

lt�i�1 @eðbðtÞ,iÞ
@bjðtÞ

()

þl
Xt�1

i ¼ 1

ðt�i�1Þlt�i�2 @eðbðtÞ,iÞ
@bjðtÞ

()(

þ
Xt�1

i ¼ 1

lt�i�1 @
2eðbðtÞ,iÞ
@l@bjðtÞ

())
: ð13Þ

Inspection of Eq. (13) reveals that the last two terms are actually
@2EðbðtÞ,t�1Þ=@l@bjðtÞ, and the second term is @EðbðtÞ,t�1Þ=@bjðtÞ,
which leads to:

@2EðbðtÞ,tÞ
@l@bjðtÞ

¼
@2eðbðtÞ,tÞ
@l@bjðtÞ

þ
@EðbðtÞ,t�1Þ

@bjðtÞ
þl

@2EðbðtÞ,t�1Þ

@l@bjðtÞ

¼
Xt

i ¼ 1

lt�i @2eðbðtÞ,iÞ
@l@bjðtÞ

þ
@EðbðtÞ,i�1Þ

@bjðtÞ

 !
: ð14Þ

Note that:

@2eðbðtÞ,iÞ
@l@bjðtÞ

¼
Xd

k ¼ 0

@2eðbðtÞ,iÞ
@bkðtÞ@bjðtÞ

@bkðtÞ

@l
:

Substituting Eqs. (11) and (14) in Eq. (10) yields a recursive
formula for the computation of the derivative of the error at time
(t+1) with respect to the forgetting factor:

@eðbðtþ1Þ,tþ1Þ

@l
¼
Xd

j ¼ 0

@eðbðtþ1Þ,tþ1Þ

@bjðtþ1Þ

@bjðtÞ

@l

�

�Z @2eðbðtÞ,tÞ
@l@bjðtÞ

þ
@EðbðtÞ,t�1Þ

@bjðtÞ

(
þl

@2EðbðtÞ,t�1Þ

@l@bjðtÞ

))
:

ð15Þ

The computation of @EðbðtÞ,t�1Þ=@bjðtÞ and @2EðbðtÞ,t�1Þ=
@l@bjðtÞ requires storing and processing all the examples up to
time t. Therefore, @2EðbðtÞ,tÞ=@l@bjðtÞ and @bjðtþ1Þ=@l cannot be
employed by an online algorithm. To develop a completely online
algorithm suitable to streaming applications we propose to use
Glbjðtþ1Þ and Bj(t) described below which can be updated at each
time-step without storing previous examples:

Glbjðtþ1Þ ¼ GlbjðtÞ�ZBjðtÞ, ð16Þ

BjðtÞ ¼
@2eðbðtÞ,tÞ
@l@bjðtÞ

þGbj
ðt�1ÞþlBjðt�1Þ

¼
Xt

i ¼ 1

lt�i @2eðbðiÞ,iÞ
@l@bjðiÞ

þGbj
ði�1Þ

 !
, ð17Þ

where Gbj
ð�Þ, defined in Eq. (9), is used in the update of bðtÞ. We

have noticed empirically that the trace of Glbjðtþ1Þ can diverge if
Z and l are chosen too high. The stability of the algorithm is
significantly improved by multiplying Bj(t) in Eq. (16) by Zð1�lÞ,
or Z=nðtÞ, instead of Z. This modification does not compromise the

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–96 83
rapid convergence of the algorithm and in Algorithm 1 we
propose to multiply Bj(t) by Z=nðtÞ. Note that no scaling is involved
in the update of the parameters bjðtþ1Þ. Extensive empirical
evidence presented in Section 4 suggests that the quantity:

Gleðtþ1Þ ¼
Xd

j ¼ 0

@eðbðtþ1Þ,tþ1Þ

@bjðtþ1Þ
Glbjðtþ1Þ, ð18Þ

conveys significant information about the direction in which an
adaptation of l will improve performance.

3.3. Proposed algorithm

The online algorithm we propose, the adaptive l-perceptron,
summarised in Algorithm 1, is a two-step procedure for adapting
the parameter vector, b, and the forgetting factor, l, after the
presentation of each example. An efficient OðdÞ algorithm permits
the computation of the product of the Hessian matrix with a
vector without having to compute or store the Hessian [41].
Therefore, the storage and time complexity of the proposed
algorithm are both OðdÞ.

Algorithm 1. Adaptive l-Perceptron.
Require: Z40,a40,lð1ÞA ½0,1Þ,G�l o0,Gþl 40,lþ Aðl�,1Þ,

l�A ½0,lþ Þ
Set: bjð1Þ ¼ 0,Gbj

ð0Þ ¼ 0,Glbjð1Þ ¼ 0,8j¼ 0, . . . ,d, B(0)¼0,

n(0) ¼ 0
for t¼1,2,ydo

// Classify
Predict class label of x(t)
Receive true class label y(t)

nðtÞ ¼ 1þlðtÞnðt�1Þ

// Update bjðtÞ

for j¼0,1,y,d do

Gbj
ðtÞ ¼

@eðbðtÞ,tÞ
@bjðtÞ

þlGbj
ðt�1Þ

bjðtþ1Þ ¼ bjðtÞ�ZGbj
ðtÞ

end for

// Update lðtÞ

GleðtÞ ¼
Pd

j ¼ 0

@eðbðtÞ,tÞ
@bjðtÞ

GlbjðtÞ

if GleðtÞ4Gþl or GleðtÞoG�l then

lðtþ1Þ ¼ ½lðtÞ�asignðGleðtÞÞ�l
þ

l�

else
lðtþ1Þ ¼ lðtÞ

end if

//Compute Glbjðtþ1Þ

for j¼0,1,y,d do

BjðtÞ ¼
@2eðbðtÞ,tÞ
@l@bjðtÞ

þGbj
ðt�1ÞþlBjðt�1Þ

Glbjðtþ1Þ ¼ GlbjðtÞ�
Z

nðtÞBjðtÞ,

end for
end for
We propose to adapt lðtÞ using information only from the sign
of GleðtÞ and not its magnitude:

lðtþ1Þ ¼ ½lðtÞ�a signðGleðtÞÞ�l
þ

l� : ð19Þ

Eq. (19) is a heuristic rule to update lðtÞ online that relies on the
sign of GleðtÞ and employs truncation values. Sign-based gradient
descent schemes have been shown to be eminently suitable in
applications with imprecise or noise-corrupted function and
gradient values [42,43], and have frequently been used to adapt
step-size parameters in neural network training [38,44,45]. It will
be shown in the following section that GleðtÞ exhibits noisy
behaviour. The bracket followed by l� and lþ in Eq. (19) indicates
truncation. Truncation is also employed in the variable step-size
LMS algorithm, and the RLS algorithm with adaptive forgetting
[23]. In the adaptive l-perceptron algorithm the upper truncation
value, lþ , is particularly important. Values of l close to unity
cause a steady increase in the magnitude of GleðtÞ which renders
the behaviour of the adaptive scheme unstable (i.e. wide
fluctuations of lðtÞ). The value of the lower threshold is not as
important. In the experimental results we use lþ ¼ 0:88, and
l� ¼ 0:1. In the adaptive l-perceptron algorithm lðtÞ is updated if
GleðtÞ exceeds Gþl 40, or is below G�l o0. These thresholds are
imposed to further avoid oscillations of l due to the noise in
GleðtÞ. A sensitivity analysis with respect to all the parameters of
the adaptive algorithm is presented in Section 4.1.
4. Experimental results

To investigate the behaviour of the proposed method we
employ it first on data generated using controlled simulation
settings. In all the experiments with artificial datasets the
distribution of the feature vectors for both classes yAf0,1g is
Gaussian with:

ðxðtÞjyÞ �N ðmyðtÞ,SyðtÞÞ, Pðy¼ 0Þ ¼ Pðy¼ 1Þ ¼ 1
2, yAf0,1g, ð20Þ

where myARd, and SyARd�d is a random covariance matrix. The
mean vectors for both classes are initialised uniformly in [�2,2]d.
Note that this definition of the classes introduces model
misspecification since only in the unlikely event that the two
covariance matrices Sy are equal will the optimal decision
boundary be linear. In all other cases a quadratic discrimination
rule is optimal.

Gradually drifting datasets are created by having the mean
vector of each conditional probability density function, myðtÞ,
follow a damped random walk, while the covariance matrix, SyðtÞ

is updated through a convex combination:

myðtþ1Þ ¼ ymyðtÞþe, e�N ð0,s2IÞ and yAð0:9,1Þ,

Syðtþ1Þ ¼
T�t

T
S0

yþ
t

T
ST

y ,

where T denotes the size of the dataset, S0
y ,ST

y are two
random covariance matrices, and s2 controls the speed of
drift, with larger values corresponding to more rapid drift. By
setting to random values myðtÞ, and SyðtÞ for yAf0,1g abrupt
changes are generated every p time-steps after the first 250 time-
steps. Artificial datasets consist of 10,000 examples, and all the
reported results are averages over 100 simulations. The error rate
at each time-step is computed over an independent set of 100
examples randomly generated according to the current class
definitions.

4.1. Sensitivity analysis

In this subsection we perform a sensitivity analysis of the
proposed method. We first explore the relationship between
the learning rate of the stochastic gradient descent scheme, Z, and
the forgetting factor, l. Fig. 2 illustrates the average error rate
achieved by different constant forgetting l-perceptrons on
artificial datasets exhibiting gradual and abrupt drift. The figure
shows that irrespective of the type of drift the optimal constant

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
E

rr
or

Forgetting factor λ

η 0.001
η 0.01

η 0.05
η 0.1

η 0.5
η 1

η 0.001
η 0.01

η 0.05
η 0.1

η 0.5
η 1

η 0.001
η 0.01

η 0.05
η 0.1

η 0.5
η 1

η 0.001
η 0.01

η 0.05
η 0.1

η 0.5
η 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
E

rr
or

Forgetting factor λ

0.3
0.32
0.34
0.36
0.38

0.4
0.42
0.44
0.46
0.48

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
E

rr
or

Forgetting factor λ

0.39
0.4

0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n
E

rr
or

Forgetting factor λ

Fig. 2. Average error rate of constant forgetting l-perceptron s for different values of the step-size Z: (a) abrupt changes d¼2; (b) abrupt changes d¼20; (c) gradual drift

d¼2; and (d) gradual drift d¼20.

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–9684
value of l decreases as Z increases, and for ZZ0:5 the optimal l is
zero. This finding is not unexpected. For small values of Z the
change in bðtÞ over consecutive time-steps is very slow and hence
the sum of the exponentially weighted previous values of the
gradient is a good approximation to the gradient of the cumulative
error, EðtÞ, with respect to the current parameter vector, bðtÞ.
In contrast, as Z increases the parameter vector changes rapidly
in consecutive time-steps and therefore previous values of the
gradient contain little, or misleading, information concerning the
direction of descent at the current parameter estimates.

The evolution of the forgetting factor through the adaptive
l-perceptron algorithm for different values of Z is depicted in
Fig. 3, which shows that the adaptive forgetting factor behaves
differently under different types of population drift. In the case of
abrupt change, there is a distinct pattern in the evolution of l
after each change point, whereas in the case of gradual drift, l
appears to fluctuate randomly around a mean value that is related
to Z. We thoroughly discuss the behaviour of the adaptive
forgetting factor under different types of population drift later.
Fig. 3 also indicates that the adaptive forgetting scheme tends to
decrease the mean value of l as Z increases for Zo0:5. For
Z¼ 0:5,1 this no longer holds and in these cases the behaviour of
the forgetting factor also ceases to be informative about the
underlying population drift process. The adaptive forgetting
scheme is unable to adjust l towards values that improve
performance in these cases because as Z increases the
approximation of the derivative of the error at the current time-
step with respect to l,@eðbðtÞ,tÞ=@l, through GleðtÞ, becomes
poorer. An illustration of this phenomenon is provided in Fig. 4,
where the evolution of GleðtÞ in an abruptly changing
environment is shown for four values of Z. The periodic pattern
in GleðtÞ induced by abrupt changes every 500 time steps is
becoming progressively less clear and for Z¼ 0:5, GleðtÞ exhibits
random oscillations of increasing magnitude.

We next investigate the sensitivity of the adaptive
l-perceptron algorithm to a, the step-size of the sign-based
gradient descent scheme for l, presented in Eq. (19). Fig. 5 depicts
the average error rate achieved for different values of Z and a. For
brevity we depict only the results for environments that are
subject to both gradual drift and abrupt changes. Fig. 5 shows that
setting a around 5� 10�3 is an appropriate choice. For slow drift,
performance appears to be more sensitive to the choice of a than
to the choice of Z, whereas the opposite holds for rapid drift.

Finally, we investigate the sensitivity to the two thresholds Gþl
and G�l that are employed by the adaptive forgetting scheme.
Fig. 6 illustrates the average error rate achieved by the adaptive
l-perceptron algorithm on datasets that exhibit gradual drift. For
smaller values of the step-size parameter the best performance is
achieved by setting jGþl j4 jG

�
l j. This setting renders the algorithm

less prone to decrease the forgetting factor for small values of
GleðtÞ. For larger values of Z the opposite setting, jGþl jo jG

�
l j,

yields optimal performance. This is expected since, as Fig. 2 shows
for Z¼ 0:5, optimal performance is achieved by having l¼ 0.
However, in no case is it optimal to have the two thresholds equal
in magnitude, or equal to zero (which corresponds to the standard
sign-based gradient descent).

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fo
rg

et
tin

g
fa

ct
or

 λ

η 10-3 η 10-2 η 0.05

η 0.1 η 0.5 η 1
η 10-3 η 10-2 η 0.05

η 0.1 η 0.5 η 1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fo
rg

et
tin

g
fa

ct
or

 λ

Fig. 3. Evolution of l for different values of the step-size parameter: (a) gradual drift d¼20, s¼ 0:2 and (b) abrupt changes d¼20, p¼500.

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-40

-30

-20

-10

0

10

20

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

η 10-3 η 10-2

η 0.5η 0.1

G
λ

E
 (t

)
G

λ
E

 (t
)

G
λ

E
 (t

)
G

λ
E

 (t
)

Fig. 4. Evolution of GleðtÞ for different values of Z in abruptly changing environment with p¼500 and d¼20: (a) Z¼ 10�3; (b) Z¼ 10�2; (c) Z¼ 10�1; and (d) Z¼ 0:5.

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–96 85
4.2. Artificial datasets

In this subsection we investigate the behaviour of the
l-perceptron algorithm on artificial datasets that exhibit abrupt
and gradual population drift. We consider two values for the
dimensionality of the feature vectors, d¼2 and d¼20. In all the
experiments we compare the performance of the 17 algorithms
listed in Table 1 in terms of the average error rate. The average
error rate is computed as the average of the error rate over all the
time-steps and all the simulations. In all the tables that report
average error rates, statistically significant differences in
comparison with the adaptive l-perceptron algorithm at a
5% significance level are marked with a + or � . A + marks a
statistically significant superior performance of the adaptive
l-perceptron against the other method, a�marks statistically
significant inferior performance, and no sign marks indistin-
guishable results. We used an adaptation of Student’s
t-test intended for testing two samples having possibly unequal

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
η

0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

α

0.2
0.22
0.24
0.26
0.28
0.3
0.32
0.34
0.36
0.38
0.4
0.42

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
η

0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

α

Fig. 5. Average error rate of the adaptive l-perceptron algorithm for different values of the step-sizes Z and a: (a) s¼ 0:1 and (b) s¼ 0:2.

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0 0.02 0.04 0.06 0.08 0.1
-0.1

-0.08

-0.06

-0.04

-0.02

0

G
λ-

G
λ-

G
λ-

Gλ
+

Gλ
+

Gλ
+

0.262
0.264
0.266
0.268
0.27
0.272
0.274
0.276
0.278
0.28
0.282

0 0.02 0.04 0.06 0.08 0.1
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0 0.02 0.04 0.06 0.08 0.1
-0.1

-0.08

-0.06

-0.04

-0.02

0

Fig. 6. Average error rate of the adaptive l-perceptron algorithm for different values of the thresholds Gþl and G�l : (a) Z¼ 0:01; (b) Z¼ 0:1; and (c) Z¼ 0:5.

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–9686
variances [46]. We ignore multiplicity issues arising due to the
large number of tests performed. These tests are intended to give
an idea of relative performance, and a statistically significant
result increases our confidence that the conclusion reflects a
genuine underlying reality. As a benchmark in the artificial
datasets, the performance of the ideal classifier is reported. In this
context the ideal classifier is Quadratic Discriminant Analysis
(QDA) that employs the true myðtÞ and SyðtÞ, at each time-step to
predict the labels of the feature vectors.

For the sliding window classifier, the examples in a window of
predefined length, w, are used to update b. The parameter vector
is updated every w time-steps by performing 10 iterations of the
resilient propagation (RPROP) algorithm [43]. Each iteration of an
offline gradient based optimisation algorithm, like RPROP,
involves as many gradient computations as those required by
the stochastic gradient descent with forgetting algorithms over w

time-steps. The step-size for all the methods that employ such a
parameter is set to 0.1. The adaptive perceptron, the adaptive
Winnow and the OLDC classifiers estimate the classification error
over a window to update their learning rate. Window lengths of
25, 50, 75 and 100 were considered for these methods. In all cases
we report the results for the best choice of window length. For the
PA I and PA II algorithms the aggressiveness parameter C is set to
10�3 [26]. We employ linear kernels for SPA, RBP, LBP, RBSOP and
LBSOP. For SPA we consider all the choices for a constant scaling
factor in [0.1,0.9] with a step-size of 0.1, and report the results for
the best choice. The self-adaptive Forgetron, RBP, LBP, RBSOP, and
LBSOP store a number of previous feature vectors which is

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–96 87
determined by the budget parameter, B. We consider the values
B¼25, 100, 500, 1000 and report the results for the best choice of
this parameter in each case. The global meta-learning rate of the
SMD is set to 0.1. For the adaptive l-perceptron algorithm we set
a¼ 5� 10�3,Gþl ¼ 0:035, G�l ¼�0:015, lð1Þ ¼ lþ ¼ 0:88, and
l� ¼ 0:1.
Table 1
Considered methods (with abbreviations).

1. Sliding window sigmoid perceptron (window)

2. Perceptron (Perc) [25]

3. Adaptive perceptron (ad Perc) [32]

4. Passive-aggressive (PA) [26]

5. Passive-aggressive I (PA I) [26]

6. Passive-aggressive II (PA II) [26]

7. Shifting perceptron (SPA) [30]

8. Randomised budget perceptron (RBP) [30]

9. Least recent budget perceptron (LBP) [30]

10. Randomised budget second-order perceptron (RBSOP) [30]

11. Least recent budget second-order perceptron (LBSOP) [30]

12. Self-adaptive Forgetron (Forgetron) [29]

13. Adaptive Winnow (ad Winnow) [32]

14. Online linear discriminant classifier (OLDC) [32]

15. Sigmoid perceptron using stochastic meta-descent (SMD) [34]

16. Constant forgetting l-perceptron

17. Adaptive l-perceptron (l-Perc)

Table 2
Average error rate on static environments with standard deviation in parentheses.

d¼2 d¼20

Ideal QDA 0.158 (0.125) 0.193 (0.050) +

Window 50 0.161 (0.119) 0.201 (0.044) +

Perc 0.197 (0.140) + 0.172 (0.047) +

Ad Perc 0.188 (0.136) + 0.164 (0.044) +

PA 0.200 (0.142) + 0.166 (0.046) +

PA I 0.150 (0.119) 0.120 (0.034) �

PA II 0.149 (0.117) 0.125 (0.035)

SPA 0.202 (0.141) + 0.174 (0.047) +

RBP 0.202 (0.141) + 0.176 (0.049) +

LBP 0.202 (0.141) + 0.176 (0.048) +

RBSOP 0.197 (0.140) + 0.178 (0.049) +

LBSOP 0.198 (0.140) + 0.178 (0.049) +

Forgetron 0.197 (0.140) + 0.247 (0.052) +

OLDC 0.147 (0.116) 0.129 (0.035)

Ad Winnow 0.206 (0.130) + 0.245 (0.031) +

SMD 0.148 (0.117) 0.122 (0.035) �

Const. l perc 0.148 (0.118) 0.124 (0.035)

l-Perc 0.154 (0.122) 0.132 (0.036)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 200 400 600 800 1000

E
rr

or
 ra

te

ideal
Perc

Ad Winnow 25
Forgetron 25

λ Perc
SMD

Fig. 7. Classification error rate on static e
4.2.1. Static environment

In the first set of experiments we investigate the performance
of the proposed approach in static environments. In a static
environment the population distributions are constant over
time. In the context of the artificially generated datasets this is
achieved by having myðtÞ ¼ myð1Þ, and SyðtÞ ¼Syð1Þ for yAf0,1g.
Table 2 presents the average error rate achieved on two and
20 dimensional artificial datasets by all methods. The value of l
that yields the lowest average error rate for a constant forgetting
l-perceptron is in both cases zero. This is due to the rapid
convergence of the performance of the l-perceptron algorithm
relative to the length of the simulation. As Fig. 7 shows, the
performance of the adaptive l-perceptron algorithm converges
in less than 200 time-steps. Once performance converges in a
static environment and given that the step-size parameter Z is
constant, greater values of l increase the variability of the
estimated minimiser at each time-step and hence compromise
performance. Fig. 8 illustrates the evolution of the forgetting
factor, lðtÞ, for the adaptive l-perceptron algorithm, averaged
over all the simulations. Note that for both values of
dimensionality, d¼2, 20, the adaptive forgetting scheme
steadily reduces the value of l throughout the length of the
simulation.

The convergence behaviour of different constant forgetting
l-perceptrons is illustrated in Fig. 9 for two values of
Z¼ 10�1 and 10�2. The figure shows that for both values of Z a
high value of l increases the speed of convergence. As discussed
in Section 4.1, for smaller values of Z higher values of l yield
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 200 400 600 800 1000

E
rr

or
 ra

te

ideal
Perc

Ad Winnow 25
Forgetron 25

λ Perc
SMD

nvironments: (a) d¼2 and (b) d¼20.

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fo
rg

et
tin

g
fa

ct
or

 λ

d = 2 d = 20

Fig. 8. Evolution of the forgetting factor in static environments.

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0 20 40 60 80 100

E
rr

or
 ra

te

λ 0.99
λ 0.9

λ 0.7
λ 0.5

λ 0.3
λ 0

λ 0.99
λ 0.9

λ 0.7
λ 0.5

λ 0.3
λ 0

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0 20 40 60 80 100

E
rr

or
 ra

te

Fig. 9. Algorithm convergence on static problems for different constant forgetting l-perceptrons: (a) Z¼ 0:01 and (b) Z¼ 0:1.

Table 3
Average error rate on gradually drifting environments.

d¼2 d¼20

s¼ 0:1 s¼ 0:2 s¼ 0:1 s¼ 0:2

Ideal QDA 0.264 (0.015) � 0.134 (0.012) � 0.193 (0.005) � 0.093 (0.003) �

Window 0.356 (0.014) + 0.290 (0.020) + 0.447 (0.005) + 0.468 (0.005) +

Perc 0.340 (0.014) + 0.218 (0.016) � 0.355 (0.004) � 0.348 (0.004) �

Ad Perc 0.334 (0.013) 0.216 (0.015) � 0.358 (0.004) � 0.354 (0.004) �

PA 0.343 (0.015) + 0.214 (0.016) � 0.348 (0.004) � 0.340 (0.004) �

PA I 0.446 (0.017) + 0.386 (0.020) + 0.465 (0.005) + 0.466 (0.005) +

PA II 0.376 (0.014) + 0.293 (0.017) + 0.413 (0.004) � 0.414 (0.004) �

SPA 0.345 (0.014) + 0.220 (0.016) � 0.356 (0.004) � 0.349 (0.004) �

RBP 0.349 (0.014) + 0.226 (0.017) � 0.376 (0.004) � 0.343 (0.004) �

LBP 0.348 (0.014) + 0.224 (0.016) � 0.365 (0.003) � 0.326 (0.004) �

RBSOP 0.345 (0.014) + 0.225 (0.016) � 0.377 (0.004) � 0.374 (0.004) �

LBSOP 0.344 (0.014) + 0.223 (0.016) � 0.381 (0.004) � 0.380 (0.004) �

Forgetron 0.353 (0.013) + 0.229 (0.016) � 0.420 (0.003) + 0.411 (0.004) �

OLDC 0.384 (0.012) + 0.336 (0.017) + 0.423 (0.004) + 0.430 (0.004) +

Ad Winnow 0.344 (0.013) + 0.256 (0.014) � 0.414 (0.004) � 0.402 (0.003) �

SMD 0.348 (0.015) + 0.260 (0.016) � 0.425 (0.004) + 0.426 (0.004) +

l¼ 0:9 l¼ 0:8 l¼ 0:5 l¼ 0:3

Const. l perc 0.334 (0.014) 0.256 (0.015) � 0.400 (0.004) � 0.407 (0.004) �

l-Perc 0.337 (0.015) 0.273 (0.016) 0.417 (0.004) 0.423 (0.004)

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–9688
lower average error rate. Fig. 9 shows that for Z¼ 10�2 the most
rapid convergence is exhibited for l¼ 0:99. However, even for this
step-size the value of l that yields the lowest average error rate
over the entire length of the simulation is substantially smaller,
namely l¼ 0:7.
4.2.2. Gradual drift

The average error rate achieved by all the considered methods
is reported in Table 3, for gradually drifting environments with
dimensionality d¼2, 20 and s¼ 0:1,0:2, corresponding to slow
and rapid drift. Fig. 10 depicts the evolution of the classification
error over the final 1000 time-steps. For clarity of presentation,
the performance of six methods is shown in the figure. In the two
dimensional case with slow drift, s¼ 0:1, the adaptive
l-perceptron is among the best performing methods. Increasing
s to 0.2 has the effect of increasing the distance between the
mean vectors of the conditional probability density functions,
PðxðtÞjyÞ, y¼ f0,1g, and thereby reducing the extent of class
overlap. This is reflected in the performance improvement
achieved by all methods compared to the case with s¼ 0:1.
Fig. 11 illustrates a trace plot of the parameters of an optimal
sigmoid perceptron and the parameter estimates through the
adaptive l-perceptron algorithm in a single simulation. The
optimal parameters of a sigmoid perceptron are estimated
offline at each time-step using a dataset of 300 examples from
the current populations. As the extent of class overlap decreases
and the classes become more linearly separable, the perceptron,
and its variants (adaptive perceptron, PA, SPA, RBP, LBP, RBSOP,
LBSOP) compare more favourably to other methods. The extent of
class overlap is much smaller in the higher dimensional datasets,
d¼20, with drift. For this reason, the best performance in these
datasets is achieved by the perceptron and its aforementioned
variants. In the higher dimensional datasets, the adaptive
l-perceptron algorithm achieves a statistically significant
superior performance against SMD, OLDC, PA I and the window
classifier.

The evolution of lðtÞ through the adaptive l-perceptron
algorithm, depicted in Fig. 12, indicates that after a transient
period the adaptive scheme sets lðtÞ to a lower average value for a
higher dimensionality of the feature vector, d, and a larger speed
of drift, s2. The dimensionality appears to have a much larger

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

9000 9200 9400 9600 9800 10000

E
rr

or
 ra

te

ideal
Perc

Ad Winnow 25
Forgetron 25

λ Perc
SMD

0.1

0.15

0.2

0.25

0.3

0.35

9000 9200 9400 9600 9800 10000

E
rr

or
 ra

te

ideal
Perc

Ad Winnow 25
Forgetron 25

λ Perc
SMD

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

9000 9200 9400 9600 9800 10000

E
rr

or
 ra

te

ideal
Perc

Ad Winnow 25
Forgetron 25

λ Perc
SMD

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55

9000 9200 9400 9600 9800 10000

E
rr

or
 ra

te

ideal
Perc

Ad Winnow 25
Forgetron 25

λ Perc
SMD

Fig. 10. Classification error at each time-step on gradually drifting environments with constant speed of drift: (a) d¼2, s¼ 0:1; (b) d¼2, s¼ 0:2; (c) d¼20, s¼ 0:1; and

(d) d¼20, s¼ 0:2.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

8000 8500 9000 9500 10000

β0 β1 β2 β0
λ β1

λ β2
λ β0 β1 β2 β0

λ β1
λ β2

λ

-3

-2

-1

0

1

2

3

8000 8500 9000 9500 10000

Fig. 11. Trace plots of the evolution of the parameters of an optimal sigmoid perceptron, b% , and the parameters estimated through the adaptive l-perceptron algorithm,

bl , under gradual drift: (a) d¼2, s¼ 0:1 and (b) d¼2, s¼ 0:2.

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–96 89
impact on the average value of lðtÞ than s2. Note that the same
holds for the optimal constant value of l reported in Table 3.
4.2.3. Abrupt change

As in the case of gradual drift, we consider two values of the
dimensionality of the feature vector, d¼2,20 and two values for
the interval between two consecutive change points, p¼200,500.
The average error rate of all the considered methods on abruptly
changing environments is reported in Table 4. The classification
error during the final 1000 time-steps of the simulations is shown
in Fig. 13.

The best performing methods in terms of average error rate are
the perceptron, the adaptive perceptron and PA. Fig. 13 reveals

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–9690
that these methods achieve a lower average error rate because
they do not learn the classification problem between consecutive
change points as well as methods like the adaptive l-perceptron
and SMD. As a consequence their performance is compromised
less at each change point. The relative performance of the
adaptive l-perceptron depends on the extent of class overlap
and on the frequency of change points. As the time interval
between consecutive change points increases the benefits from
learning each classification task effectively outweigh the perfor-
mance deterioration at each change point, and vice versa. This
finding also shows that in the case of abrupt changes there can be
aspects of performance that are not captured by the average error
rate criterion.

For the lower dimensional feature space, Fig. 14 provides trace
plots of the parameters of an optimal sigmoid perceptron, and the
parameter estimates through the adaptive l-perceptron
algorithm.

Fig. 15 depicts the evolution of lðtÞ through the adaptive
l-perceptron algorithm. After a transient period, the evolution of
l follows closely the pattern of abrupt changes in the data. Each
abrupt change is accompanied by a decline of lðtÞ, signifying that
the importance of previous examples in the estimation of b is
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

d = 2, σ = 0.1
d = 2, σ = 0.2

d = 20, σ = 0.1
d = 20, σ = 0.2

Fig. 12. Evolution of the forgetting factor in gradually drifting environments with

constant speed of drift.

Table 4
Average error rate on abruptly changing environments.

d¼2

p¼500 p¼200

Ideal QDA 0.173 (0.028) � 0.171 (0.017

Window 0.206 (0.024) � 0.250 (0.015

Perc 0.221 (0.030) � 0.225 (0.018

Ad Perc 0.214 (0.030) � 0.219 (0.018

PA 0.223 (0.031) � 0.226 (0.018

PA I 0.334 (0.028) + 0.395 (0.021

PA II 0.232 (0.025) 0.282 (0.017

SPA 0.226 (0.030) � 0.230 (0.018

RBP 0.227 (0.031) 0.233 (0.018

LBP 0.226 (0.031) � 0.232 (0.017

RBSOP 0.223 (0.031) � 0.231 (0.018

LBSOP 0.222 (0.030) � 0.229 (0.018

Forgetron 0.227 (0.030) 0.235 (0.017

OLDC 0.270 (0.024) + 0.323 (0.017

Ad Winnow 0.233 (0.028) 0.249 (0.017

SMD 0.227 (0.024) 0.254 (0.020

l¼ 0:8 l¼ 0:8

Const. l perc 0.216 (0.023) � 0.249 (0.014

l-Perc 0.234 (0.025) 0.268 (0.015
reduced. Following this decline and prior to the next change point,
lðtÞ increases. Also note that the average values of lðtÞ induced by
the adaptive forgetting scheme are close to the optimal constant
values for l reported in Table 4.

The evolution of GleðtÞ for d¼20 is plotted in Fig. 16. The figure
shows that at each abrupt change point GleðtÞ exhibits large
positive spikes which cause the decrease in l shown in Fig. 15. As
the classifier learns how to distinguish between the two classes
with the presentation of more examples from the current class
definitions, GleðtÞ decreases. This pattern suggests that it might be
possible to monitor GleðtÞ to detect abrupt population drift.

4.2.4. Gradual drift with abrupt changes

We finally consider the hardest case of population drift in
which both types of population drift, abrupt changes and gradual
drift, are present. We construct a dataset in which the class
definitions are subject to gradual drift with s¼ 0:1 and abrupt
changes every 500 time-steps. The average error rate for all the
methods is reported in Table 5. For low dimensional examples the
adaptive l-perceptron algorithm outperforms most other
methods. As in the previous cases, for d¼20 the perceptron, and
its variants perform substantially better than other algorithms
because the extent of overlap between classes is smaller. Fig. 17
illustrates the performance of six methods during the last 1000
time-steps of the simulation. The figure shows that the impact
that abrupt changes have on performance is more pronounced
when d¼2. This finding is reflected in the evolution of GleðtÞ

depicted in Fig. 18. For d¼2, the previously observed pattern of
large positive values of GleðtÞ at each change point is retained
despite the presence of gradual drift. On the contrary, for d¼20,
GleðtÞ appears to fluctuate randomly, as in the case of gradual
drift. Trace plots for the lower dimensional feature space, of the
parameters of an optimal sigmoid perceptron, b%, and the
parameters estimated through the adaptive l-perceptron
algorithm, bl, are shown in Fig. 19.

4.3. Publicly available datasets

In this section we evaluate the performance of the proposed
adaptive l-perceptron algorithm on the following five publicly
d¼20

p¼500 p¼200

) � 0.192 (0.010) � 0.193 (0.006) �

) � 0.230 (0.008) � 0.272 (0.006) �

) � 0.191 (0.009) � 0.215 (0.006) �

) � 0.187 (0.008) � 0.214 (0.006) �

) � 0.183 (0.009) � 0.207 (0.006) �

) + 0.316 (0.012) + 0.388 (0.010) +

) + 0.211 (0.008) � 0.278 (0.007) �

) � 0.192 (0.009) � 0.217 (0.006) �

) � 0.200 (0.009) � 0.230 (0.006) �

) � 0.197 (0.009) � 0.229 (0.007) �

) � 0.201 (0.009) � 0.234 (0.006) �

) � 0.200 (0.009) � 0.235 (0.006) �

) � 0.300 (0.009) + 0.320 (0.006) +

) + 0.232 (0.011) � 0.298 (0.009) �

) � 0.311 (0.009) + 0.348 (0.006) +

) � 0.242 (0.008) 0.306 (0.007) +

l¼ 0:7 l¼ 0:5

) � 0.207 (0.008) � 0.266 (0.006) �

) 0.242 (0.011) 0.304 (0.010)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

9000 9200 9400 9600 9800 10000

E
rr

or
 ra

te
ideal

Perc

Ad Winnow 25

Forgetron 25

λ Perc

SMD

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

9000 9200 9400 9600 9800 10000

E
rr

or
 ra

te

ideal

Perc

Ad Winnow 25

Forgetron 25

λ Perc

SMD

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

9000 9200 9400 9600 9800 10000

E
rr

or
 ra

te

ideal

Perc

Ad Winnow 25

Forgetron 25

λ Perc

SMD

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

9000 9200 9400 9600 9800 10000

E
rr

or
 ra

te

ideal

Perc

Ad Winnow 25

Forgetron 25

λ Perc

SMD

Fig. 13. Classification error rate on abruptly changing environment: (a) d¼2, p¼500; (b) d¼2, p¼200; (c) d¼20, p¼500; and (d) d¼20, p¼200.

-3

-2

-1

0

1

2

3

4

8000 8500 9000 9500 10000
-3

-2

-1

0

1

2

3

4

8000 8500 9000 9500 10000

Fig. 14. Trace plots of the evolution of the parameters of an optimal sigmoid perceptron, b% , and the parameters estimated through the adaptive l-perceptron algorithm,

bl , in the case of abrupt changes: (a) d¼2, p¼500 and (b) d¼2, p¼200.

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–96 91
available datasets:
�
 Stagger dataset [47]: This is an artificial dataset in which
classes are separable exhibiting abrupt population drift.
Feature vectors contain three categorical variables each with
three possible values. The dataset consists of 1200 examples
and the class definitions change every 400 examples. The first
and third class definitions yield linear classification bound-
aries, whereas the class boundary generated by the second
class definition is non-linear. Classifier performance at each
time-step is evaluated on a testing set of 200 examples
generated using the current class definitions.

�
 Moving hyperplane dataset [48]: A gradually changing environ-

ment with two dimensional feature vectors and separable
classes. The dataset is constructed by having a linear class

0

0

0

0

Fig

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–9692
boundary that crosses the origin rotate one degree at each
time-step. The total number of examples is 7200 correspond-
ing to 20 full cycles. Feature vectors are sampled uniformly
from the unit square. A testing dataset of 100 examples is used
to evaluate classifier performance at each time-step.

�
 Gauss dataset [49]: A two-dimensional dataset that exhibits

abrupt changes. Feature vectors are labelled according to two
different but overlapping Gaussian density functions
ðN ð½0,0�>,IÞ and N ð½2,0�>,4IÞÞ. After each change point, the
class labels are reversed.

�
 SINE1 dataset [49]: Two-dimensional dataset exhibiting abrupt

changes, with separable classes. Each feature assumes values
uniformly distributed in [0,1]. Initially, points that lie below the
curve y¼ sinðxÞ are assigned to class 0, otherwise they are
labelled as class 1. At each change point class labels are reversed.

�

Table 5
Average error rate on artificial datasets exhibiting both gradual and abrupt drift.

d¼2, p¼500, s¼ 0:1 d¼20, p¼500, s¼ 0:1
Electricity market dataset [50]: Dataset of prices in the
Australian New South Wales (NSW) Electricity Market. The
data consists of 45,312 successive measurements, taken every
30 min, spanning the period from May 1996 to December
1998. Each feature vector has five variables: day of week, time
stamp, NSW electricity demand, an electricity demand mea-
sure, and scheduled electricity transfer between states. The
class label is either up or down, referring to whether the
current electricity price is higher or lower than the average
price of the preceding 24 h. During the considered period the
market was expanded by the inclusion of adjacent areas, which
produced a more elaborate management of the supply.
0.5

.55

0.6

.65

0.7

.75

0.8

.85

0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

d = 2, p = 500
d = 2, p = 200

d = 20, p = 500
d = 20, p = 200

. 15. Evolution of the forgetting factor l in abruptly changing environments.

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

8000 8500 9000 9500 10000

G
λ

E
 (t

)

Fig. 16. Evolution of GleðtÞ in abruptly changing enviro
Table 6 reports the classification error for all the consi-
dered methods. For the STAGGER and Moving Hyperplane

the reported results are averages over 100 simulations and the
statistical significance of performance differences against the
adaptive l-perceptron algorithm is evaluated using paired t-tests.
For specific datasets, such as GAUSS, SINE1, Electricity Market
and the two real-world applications we consider in the following
subsections, we evaluate statistical significance through McNemar’s
test [51]. The performance of the adaptive l-perceptron is compe-
titive with most other methods in the STAGGER and GAUSS
datasets. In the Electricity Market dataset, most methods achieve
statistically significant lower classification error than the adaptive
l-perceptron. In the Moving Hyperplane dataset the adaptive
l-perceptron, achieves a substantially lower average classification
error than all other methods.

We employ the SINE1 dataset to evaluate the effect of noise on
classification accuracy. In the original dataset classes are separ-
able. To examine the effect of noise we add to each feature vector
a random vector sampled from a zero-mean Gaussian with a
covariance matrix, s2I, where s2Af0,0:1,0:3,0:5g. The perfor-
mance of the considered classifiers on these noisy datasets is
reported in Table 7. In the original dataset, RBSOP and LBSOP
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

8000 8500 9000 9500 10000

G
λ

E
 (t

)

nments: (a) d¼20, p¼500 and (b) d¼20, p¼200.

Ideal QDA 0.252 (0.013) � 0.192 (0.005) �

Window 0.362 (0.012) + 0.455 (0.005) +

Perc 0.331 (0.011) 0.359 (0.004) �

Ad Perc 0.324 (0.011) � 0.362 (0.004) �

PA 0.334 (0.011) 0.352 (0.004) �

PA I 0.445 (0.016) + 0.469 (0.005) +

PA II 0.371 (0.013) + 0.417 (0.005) �

SPA 0.336 (0.011) 0.360 (0.004) �

RBP 0.340 (0.010) + 0.378 (0.003) �

LBP 0.338 (0.011) + 0.366 (0.003) �

RBSOP 0.336 (0.011) + 0.384 (0.004) �

LBSOP 0.335 (0.011) 0.387 (0.004) �

Forgetron 0.345 (0.011) + 0.422 (0.003)

OLDC 0.382 (0.013) + 0.428 (0.005) +

Ad Winnow 0.335 (0.010) 0.416 (0.004) �

SMD 0.342 (0.013) + 0.429 (0.005) +

l¼ 0:8 l¼ 0:5

Const. l perc 0.329 (0.011) � 0.405 (0.005) �

l-Perc 0.333 (0.011) 0.422 (0.005)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

9000 9200 9400 9600 9800 10000

E
rr

or
 ra

te
ideal
Perc

Ad Winnow 25
Forgetron 25

λ Perc
SMD

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

9000 9200 9400 9600 9800 10000

E
rr

or
 ra

te

ideal
Perc

Ad Winnow 25
Forgetron 25

λ Perc
SMD

Fig. 17. Classification error on datasets that exhibit abrupt changes and gradual drift: (a) d¼2 and (b) d ¼ 20.

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

8000 8500 9000 9500 10000

G
λ

E
 (t

)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

8000 8500 9000 9500 10000

G
λ

E
 (t

)

Fig. 18. Evolution of GleðtÞ in environments with both gradual and abrupt drift: (a) d ¼ 2 and (b) d ¼ 20.

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–96 93
exhibit the lowest classification error. The performance of the
perceptron and its variants deteriorates substantially with the
introduction of noise. For sZ0:3 the performance of these
methods is not better than assigning labels randomly. Note that
as s2 increases the requirement of the PA algorithm to make
predictions with high confidence impairs its performance relative
to the other perceptron variants. For all levels of noise the sliding
window classifier, and the adaptive l-perceptron perform very
well.

Overall, the experimental results suggest that the adaptive
l-perceptron algorithm is most suitable to applications that
exhibit gradual drift with non-linearly separable classes. An
important class of problems in which classes are not separable
is when either the feature vectors, or the labels are corrupted by
noise. The adaptive l-perceptron can also handle abrupt changes
when classes are separable but the perceptron and the PA
algorithm achieve a higher classification accuracy under these
conditions.
4.4. Automated tumour detection

We further investigate the performance of the proposed
method on a dataset concerned with the automated detection of
tumours in colonoscopic video sequences [52]. The accurate
online classification of imaging data can contribute to the early
detection of colorectal cancer precursors, and assist in the early
diagnosis of colorectal cancer. In the dataset textures from normal
and abnormal tissue samples were randomly chosen from four
frames of the same video sequence without applying any
preprocessing to the data [52]. Feature extraction was performed
using the method of co-occurrence matrices [53]. This method
represents the spatial distribution and the dependence of the grey
levels within a local area using an image window of size 16 by
16 pixels. Each feature vector thus constructed, contains 16
elements. The class label designates whether a window contains
tumour pixels (class 1), or not (class 0). The dataset consists of
17,076 feature vectors. The four frame sequence is exhibited in
Fig. 20.

Table 8 reports the average classification error attained by the
considered methods, while Fig. 21(a) illustrates the average
classification error over a window of length 100 for six
methods. The best performing methods on this dataset are the
Forgetron, PA, the perceptron and the adaptive Winnow. Fig. 21(b)
depicts the evolution of l through the adaptive forgetting scheme
(top) and the proportion of patterns belonging to class 1 in a data
window of length 100 (bottom). The bottom part of Fig. 21(b)
indicates that there are periods during which no tumour pixels
are encountered. The methods that always update their
parameters, i.e. the adaptive l-perceptron, SMD and OLDC,
appear to overfit the data during these periods and suffer
a large classification error when tumour pixels appear.

Table 7
Classification error on SINE1 dataset for different levels of noise.

s2 ¼ 0 s2 ¼ 0:1 s2 ¼ 0:3 s2 ¼ 0:5

Window 0.072� 0.280 (0.004)� 0.360 (0.005)� 0.394 (0.006)�

Perc 0.153 � 0.415 (0.006) + 0.530 (0.006) + 0.557 (0.007) +

Ad Perc 0.128 � 0.368 (0.007) + 0.494 (0.007) + 0.538 (0.007) +

PA 0.113 � 0.459 (0.008) + 0.597 (0.007) + 0.619 (0.007) +

PA I 0.499 + 0.503 (0.004) + 0.501 (0.004) + 0.501 (0.004) +

PA II 0.508 + 0.497 (0.004) + 0.479 (0.003) + 0.470 (0.004) +

SPA 0.132 � 0.422 (0.007) + 0.545 (0.006) + 0.575 (0.007) +

RBP 0.128 � 0.396 (0.007) + 0.489 (0.007) + 0.514 (0.006) +

LBP 0.102 � 0.398 (0.006) + 0.506 (0.006) + 0.530 (0.006) +

RBSOP 0.035 � 0.350 (0.006) + 0.450 (0.005) + 0.481 (0.005) +

LBSOP 0.029 � 0.352 (0.005) + 0.453 (0.005) + 0.485 (0.006) +

Forgetron 0.113 � 0.407 (0.006) + 0.516 (0.006) + 0.536 (0.006) +

OLDC 0.160 � 0.310 (0.007) � 0.385 (0.007) + 0.415 (0.005) +

Ad Winnow 0.356 + 0.419 (0.010) + 0.471 (0.007) + 0.510 (0.009) +

SMD 0.408 + 0.398 (0.005) + 0.413 (0.005) + 0.424 (0.005) +

l¼ 0:6 l¼ 0:9 l¼ 0:8 l¼ 0:6

Const. l perc 0.288 � 0.294 (0.004) � 0.360 (0.004) � 0.394 (0.006) �

l-Perc 0.342 0.317 (0.004) 0.362 (0.004) 0.400 (0.005)

Table 6
Classification error on publicly available datasets.

STAGGER Mov. hyperplane Gauss Elec. market

Window 0.185 (0.012) � 0.322 (0.009) + 0.309 � 0.342 +

Perc 0.254 (0.013) + 0.333 (0.005) + 0.455 + 0.166 �

Ad Perc 0.238 (0.021) � 0.332 (0.006) + 0.435 + 0.166 �

PA 0.238 (0.009) � 0.376 (0.004) + 0.400 + 0.152 �

PA I 0.351 (0.018) + 0.498 (0.004) + 0.466 + 0.380 +

PA II 0.303 (0.015) + 0.467 (0.009) + 0.406 + 0.318 +

SPA 0.248 (0.016) 0.353 (0.005) + 0.413 + 0.166 �

RBP 0.248 (0.016) 0.358 (0.007) + 0.401 + 0.196 �

LBP 0.248 (0.016) 0.343 (0.007) + 0.405 + 0.176 �

RBSOP 0.167 (0.007) � 0.342 (0.007) + 0.461 + 0.186 �

LBSOP 0.163 (0.006) � 0.322 (0.008) + 0.467 + 0.197 �

Forgetron 0.041 (0.006) � 0.378 (0.009) + 0.201 � 0.159 �

OLDC 0.270 (0.021) + 0.419 (0.011) + 0.353 � 0.325 +

Ad Winnow 0.330 (0.033) + 0.302 (0.007) + 0.427 + 0.166 �

SMD 0.286 (0.016) + 0.403 (0.013) + 0.367 0.250 �

l¼ 0:9 l¼ 0:8 l¼ 0:8 l¼ 0:3

Const. l perc 0.246 (0.014) 0.220 (0.007) � 0.326 � 0.259 �

l-Perc 0.246 0.223 0.364 0.296

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

8000 8500 9000 9500 10000

β0 β1 β2 β0
λ β1

λ β2
λ

Fig. 19. Trace plots of the evolution of the parameters of an optimal sigmoid

perceptron and the parameters estimated through the adaptive l-perceptron

algorithm in the case of gradual drift and abrupt changes: d¼2, p¼500, s¼ 0:1.

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–9694
The evolution of the forgetting factor by the adaptive
l-perceptron, illustrated in Fig. 21(b), indicates that the
algorithm attempts to accommodate these abrupt changes in
the prior probability of each class by sharply reducing the
forgetting factor.
4.5. High-frequency foreign exchange

In the past the cost of gathering high frequency foreign
exchange data was prohibitive and datasets were constructed by
discrete sampling at much lower frequencies, e.g. daily data. The
analysis of high frequency data has the potential to reveal
important aspects of the operation of the foreign exchange
market, as participants in these markets form decisions by
observing high-frequency data. The advent of electronic technol-
ogy has enabled the collection of high-frequency foreign exchange
rate data. However, the analysis of this data presents the problem
of dealing with a process that is time-varying [7]. Forecasting the
level and the direction of change of foreign exchange rates has
proven a challenging task [54].

We consider time-series of 10 min closing prices for three
exchange rates against the Euro, namely the exchange rate of the
Euro against the US Dollar (EUR/USD), the exchange rate of the
British pound against the Euro (GBP/EUR), and the exchange rate
of the Euro against the Japanese Yen (EUR/JPY). The data cover the
period from 21/10/2002 until 15/5/2007 and each time-series
consists of more than 165,000 observations. We use the previous
ten values of the exchange rate as features to predict the direction
of the exchange rate movement at the current time-step. In
particular, the feature vector at each time-step t, t410, is x(t) ¼
(p(t),y,p(t�9)), where p(t) is the value of the exchange rate at
time t, and the class label y(t) is defined as:

yðtÞ ¼
1 if pðtþ1ÞZpðtÞ,

0 otherwise:

(

The average classification error achieved by each method is
reported in Table 9. The best performing methods in these
datasets are PA I and PA II, the modifications of the PA algorithm
that account for noise, OLDC, SMD and the adaptive l-perceptron.
In particular, for the EUR/GBP exchange rate these methods
achieve an average accuracy in predicting the direction of change
in excess of 60%. The performance of all the methods that do not
accommodate for class overlap, like the perceptron, PA, and
Forgetron, is not better than deciding randomly the direction of
the exchange rate movement.
Table 8
Average classification error on colonoscopic images dataset.

Window 0.064 �

Perc 0.056 �

Ad Perc 0.059 �

PA 0.054 �

PA I 0.281 +

PA II 0.206 +

SPA 0.062 �

RBP 0.063 �

LBP 0.062 �

RBSOP 0.097 �

LBSOP 0.088 �

Forgetron 0.045 �

OLDC 0.162

Ad Winnow 0.056 �

SMD 0.192 +

Const. l perc 0.3 0.141 �

l-Perc 0.163

Fig. 20. The four frame sequence of the colonoscopic images.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2000 4000 6000 8000 10000 12000 14000 16000

C
la

ss
ifi

ca
tio

n
er

ro
r

Perc
ad Winnow

Forgetron 25
OLDC 25

SMD
λ Perceptron

0.3
0.4
0.5
0.6
0.7
0.8
0.9

2000 4000 6000 8000 10000 12000 14000 16000

Forgetting factor λ

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000

Proportion of class 1 over the last 100 patterns

Fig. 21. Classification error on the colonoscopic images dataset (left) and evolution of l and proportion of patterns belonging to class 1 in a data window of length 100

(right).

Table 9
Average classification error on 10 min closing prices of high-frequency foreign

exchange data.

EUR/USD EUR/JPY EUR/GBP

Window 0.433 � 0.448 + 0.375 +

Perc 0.515 + 0.517 + 0.497 +

Ad Perc 0.515 + 0.516 + 0.493 +

PA 0.516 + 0.518 + 0.500 +

PA I 0.430 � 0.440 � 0.370 �

PA II 0.434 � 0.442 � 0.371

SPA 0.515 + 0.516 + 0.497 +

RBP 0.504 + 0.506 + 0.484 +

LBP 0.509 + 0.509 + 0.483 +

RBSOP 0.491 + 0.496 + 0.457 +

LBSOP 0.489 + 0.494 + 0.459 +

Forgetron 0.515 + 0.517 + 0.499 +

OLDC 0.430 � 0.442 0.375 +

Ad Winnow 0.515 + 0.516 + 0.498 +

SMD 0.433 � 0.441 � 0.371 +

l¼ 0:3 l¼ 0:3 l¼ 0

Const. l perc 0.430 � 0.440 � 0.370 �

l-Perc 0.435 0.442 0.371

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–96 95
5. Conclusions

The scope of this work has been to develop an adaptive online
approach for perceptrons with sigmoidal activation functions
suitable to streaming data applications. We develop a formulation
in which adaptation is achieved by exponentially weighting, and
thereby forgetting, past contributions to the current descent
direction in parameter space. In this framework, a gradient
descent scheme can be employed to adjust the forgetting factor
in an online and data-driven manner. The storage requirements of
this scheme would render it impractical for streaming data
applications. Motivated by this formulation, we propose an
algorithm that only involves quantities that can be updated
online. The computational complexity of this algorithm scales
linearly with the dimensionality of the feature vector.

The proposed approach can be viewed as a compromise
between offline and online learning in the following sense. For
small values of the step-size of the stochastic gradient descent
scheme, previous estimates of the gradient provide accurate
information concerning the gradient of the cumulative error
function at the current point in parameter space. Under these
conditions, introducing forgetting accelerates adaptation and
moreover, the information in the evolution of the forgetting
factor can be used to obtain insight about the type and speed of
the underlying population drift process. As the step-size of the
stochastic gradient descent scheme increases, previous estimates
of the gradient become less informative about the direction of
descent from the current point in the parameter space. In these
cases the optimal forgetting factor is zero, and the proposed
method becomes equivalent to stochastic gradient descent.

Experimental results show that the proposed approach exhibits
robust behaviour under various types of population drift, and that
the adaptive scheme adjusts the forgetting factor towards values
that yield higher classification performance. Extensive comparison
with numerous online linear classifiers on artificially constructed
and real-world datasets shows that the adaptive l-perceptron is
more suitable for applications that exhibit gradual drift and when
the classes are not separable. In future work we intend to extend
this work to generalised linear models and multilayer neural
networks for classification and regression tasks.
Acknowledgements

We wish to thank the reviewers for their valuable comments
and suggestions which greatly improved this paper. This research
was undertaken as part of the ALADDIN (Autonomous Learning
Agents for Decentralised Data and Information Networks) project
and is jointly funded by a BAE Systems and EPSRC (Engineering
and Physical Research Council) strategic partnership, under EPSRC

N.G. Pavlidis et al. / Pattern Recognition 44 (2011) 78–9696
Grant EP/C548051/1. David Hand was partially supported by a
Royal Society Wolfson Research Merit Award.

References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data
streams, in: PODS ’02: Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, ACM, New York, NY, USA2002, pp. 1–16.

[2] J. Gama, P. Rodrigues, Data stream processing, in: J. Gama, M. Gaber (Eds.),
Learning from Data Streams: Processing Techniques in Sensor Networks,
Springer2007, pp. 25–39.

[3] G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in:
Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2001, pp. 97–106.

[4] H. Wang, W. Fan, P.S. Yu, J. Han, Mining concept-drifting data streams using
ensemble classifiers, in: Proceedings of ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2003, pp. 226–235.

[5] D.J. Hand, Classifier technology and the illusion of progress, Statistical Science
21 (1) (2006) 1–34.

[6] M.G. Kelly, D.J. Hand, N.M. Adams, The impact of changing populations on
classifier performance, in: Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 1999, pp. 367–371.

[7] C.A.E. Goodhart, M. O’Hara, High frequency data in financial markets: issues
and applications, Journal of Empirical Finance 4 (1997) 73–114.

[8] F. Fdez-Riverola, E.L. Iglesias, F. Dı́az, J.R. Méndez, J.M. Corchado, Spamhunt-
ing: an instance-based reasoning system for spam labelling and filtering,
Decision Support Systems 43 (3) (2007) 722–726.

[9] B. Crabtree, S.J. Soltysiak, Identifying and tracking changing interests,
International Journal on Digital Libraries 2 (1) (1998) 38–53.

[10] M. Black, R. Hickey, Learning classification rules for telecom customer call
data under concept drift, Soft Computing 8 (2) (2004) 102–108.

[11] L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, O. Kipersztok, Real-time
data mining of non-stationary data streams from sensor networks, Informa-
tion Fusion 9 (3) (2008) 344–353.

[12] J. Whittaker, C. Whitehead, M. Somers, A dynamic scorecard for monitoring
baseline performance with application to tracking a mortgage portfolio,
Journal of the Operational Research Society 58 (7) (2007) 911–921.

[13] M. Basseville, I. Nikiforov, Detection of Abrupt Changes: Theory and
Application, Prentice-Hall, 1993.

[14] N. Cesa-Bianchi, G. Lugosi, Prediction, Learning and Games, Cambridge
University Press, 2006.

[15] M. Hebster, M.K. Warmuth, Tracking the best expert, Machine Learning 32 (2)
(1998) 151–178.

[16] Y. Freund, R.E. Schapire, Y. Singer, M.K. Warmuth, Using and combining
predictors that specialize, in: Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, 1997, pp. 334–343.

[17] E. Lehrer, A wide range no-regret theorem, Games and Economic Behavior 42 (1)
(2003) 101–115.

[18] A. Blum, Y. Mansour, From external to internal regret, Journal of Machine
Learning Research 8 (2007) 1307–1324.

[19] E. Hazan, C. Seshadhri, Efficient learning algorithms for changing environ-
ments, in: Proceedings of the 26th Annual International Conference on
Machine Learning, 2009, pp. 393–400.

[20] C.C. Aggarwal, C. Charu, J. Han, J. Wang, P.S. Yu, On demand classification of
data streams, in: KDD ’04: Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, New York, NY,
USA2004, pp. 503–508.

[21] M. Black, R.J. Hickey, Maintaining the performance of a learned classifier
under concept drift, Intelligent Data Analysis 3 (6) (1999) 453–474.

[22] A. Benveniste, M. Métivier, P. Priouret, Adaptive Algorithms and Stochastic
Approximation, Springer-Verlag, New York, 1990.

[23] S. Haykin, Adaptive Filter Theory, third ed., Prentice-Hall International, 1996.
[24] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations of back-

propagation errors, Nature 323 (1986) 533–536.
[25] F. Rosenblatt, The perceptron: a probabilistic model for information storage

and organization in the brain, Psychological Review 65 (6) (1958) 386–407.
[26] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, Y. Singer, Online passive–
aggressive algorithms, Journal of Machine Learning Research 7 (2006) 551–585.

[27] K. Crammer, J. Kandola, Y. Singer, Online classification on a budget, Advances
in Neural Information Processing Systems 16 (2004) 225–232.

[28] J. Weston, A. Bordes, L. Bottou, Online (and offline) on an even tighter budget,
in: Proceedings of the 10th International Workshop on Artificial Intelligence
and Statistics, 2005, pp. 413–420.

[29] O. Dekel, S. Shalev-Shwartz, Y. Singer, The forgetron: a kernel-based perceptron
on a budget, SIAM Journal on Computing 37 (5) (2008) 1342–1372.

[30] G. Cavallanti, N. Cesa-Bianchi, C. Gentile, Tracking the best hyperplane with a
simple budget perceptron, Machine Learning 69 (2/3) (2007) 143–167.

[31] N. Cesa-Bianchi, A. Conconi, C. Gentile, A second-order perceptron algorithm,
SIAM Journal on Computing 34 (3) (2005) 640–668.

[32] L.I. Kuncheva, C.O. Plumpton, Adaptive learning rate for online linear
discriminant classifiers, in: N. da Vitoria Lobo, T. Kasparis, M. Georgiopoulos,
F. Roli, J. Kwok, G.C. Anagnostopoulos, M. Loog (Eds.), Lecture Notes in
Computer Science, vol. 53, 2008, pp. 510–519.

[33] N. Littlestone, Learning quickly when irrelevant attributes abound: a new
linearthreshold algorithm, Machine Learning 2 (1988) 285–318.

[34] N.N. Schraudolph, Local gain adaptation in stochastic gradient descent, in:
Proceedings of the International Conference on Artificial Neural Networks,
1999, pp. 569–574.

[35] L.B. Almeida, T. Langlois, J.D. Amaral, A. Plakhov, Parameter adaptation in
stochastic optimization, in: D. Saad (Ed.), On-Line Learning in Neural
Networks, Cambridge University Press1999, pp. 111–134.

[36] M. Niedźwiecki, Identification of Time-Varying Processes, Wiley, 2000.
[37] C. Bishop, Neural Networks for Pattern Recognition, Clarendon Press, Oxford,

1995.
[38] R.A. Jacobs, Increased rates of convergence through learning rate adaptation,

Neural Networks 1 (4) (1988) 295–307.
[39] S. Haykin, Neural Networks: A Comprehensive Foundation, second ed.,

Prentice-Hall International, 1999.
[40] O. Mangasarian, M. Solodov, Serial and parallel backpropagation convergence

via nonmonotone perturbed minimization, Optimization Methods and Soft-
ware 4 (1994) 103–116.

[41] B.A. Pearlmutter, Fast exact multiplication by the Hessian, Neural Computa-
tion 6 (1) (1994) 147–160.

[42] C. Igel, M. Husken, Empirical evaluation of the improved Rprop learning
algorithms, Neurocomputing 50 (2003) 105–123.

[43] M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation
learning: the RPROP algorithm, in: IEEE International Conference on Neural
Networks, San Francisco, CA, 1993, pp. 586–591.

[44] F.M. Silva, dL.B. Almeida, Speeding-up backpropagation, in: R. Eckmiller (Ed.),
Advanced Neural Computers, Elsevier1990, pp. 151–160.

[45] T. Tollenaere, Supersab: fast adaptive back propagation with good scaling
properties, Neural Networks 3 (5) (1990) 561–573.

[46] B.L. Welch, The generalization of student’s problem when several different
population variances are involved, Biometrika 34 (1–2) (1947) 28–35.

[47] G. Widmer, M. Kubat, Learning in the presence of concept drift and hidden
contexts, Machine Learning 23 (1996) 60–101.

[48] A. Narasimhamurthy, L.I. Kuncheva, A framework for generating data to
simulate changing environments, in: Proceedings of IASTED International
Conference on Artificial Intelligence and Applications, 2007, pp. 384–389.

[49] M. Baena-Garcı́a, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavald�a,
R. Morales-Bueno, Early drift detection method, in: ECML PKDD 2006
Workshop on Knowledge Discovery from Data Streams, 2006.

[50] M. Harries, Splice-2 comparative evaluation: electricity pricing, Technical
Report, University of South Wales, 1999.

[51] Q. McNemar, Note on the sampling error of the difference between correlated
proportions or percentages, Psychometrika 12 (2) (1947) 153–157.

[52] S.A. Karkanis, G.D. Magoulas, N. Theofanous, Image recognition and
neuronal networks: intelligent systems for the improvement of imaging
information, Minimal Invasive Therapy & Allied Technologies 9 (3–4) (2000)
225–230.

[53] R.M. Haralick, Statistical and structural approaches to texture, Proceedings of
the IEEE 67 (5) (1979) 786–804.

[54] C. Brooks, Linear and non-linear (non)-forecastability of high-frequency
exchange rates, Journal of Forecasting 16 (2) (1998) 125–145.
Nicos G. Pavlidis is a Research Associate at the Institute for Mathematical Sciences, at Imperial College London. He has studied Economics at the University of Cambridge
and holds a Ph.D. in Mathematics and Computer Science from the University of Patras, Greece.
Dimitris K. Tasoulis holds a Ph.D. and an M.Sc. in Mathematics and Computer Science. He is currently a Lecturer in the Mathematics Department, at Imperial College London.
Niall Adams is currently a Reader in the Department of Mathematics, Imperial College London. His research interests include pattern recognition and data mining. His
application interests include consumer finance and cell biology.
David Hand is Professor of Statistics at Imperial College, London. He studied Mathematics at the University of Oxford and Statistics and Pattern Recognition at the
University of Southampton. He is currently President of the Royal Statistical Society.

	lambdahyphenPerceptron: An adaptive classifier for data streams
	Introduction
	Related work
	Framework
	Adaptation of parameter vector
	Adaptation of forgetting
	Proposed algorithm

	Experimental results
	Sensitivity analysis
	Artificial datasets
	Static environment
	Gradual drift
	Abrupt change
	Gradual drift with abrupt changes

	Publicly available datasets
	Automated tumour detection
	High-frequency foreign exchange

	Conclusions
	Acknowledgements
	References

