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Abstract 
 
 
The volatility information content of stock options for individual firms is measured 

using option prices for 149 U.S. firms during the period from January 1996 to 

December 1999. Volatility forecasts defined by historical stock returns, at-the-money 

(ATM) implied volatilities and model-free (MF) volatility expectations are compared 

for each firm. The recently developed model-free volatility expectation incorporates 

information across all strike prices, and it does not require the specification of an 

option pricing model. 

 Our analysis of ARCH models shows that, for one-day-ahead estimation, 

historical estimates of conditional variances outperform both the ATM and the MF 

volatility estimates extracted from option prices for more than one-third of the firms. 

This result contrasts with the consensus about the informational efficiency of options 

written on stock indices; several recent studies find that option prices are more 

informative than daily stock returns when estimating and predicting index volatility. 

However, for the firms with the most actively traded options, we do find that the 

option forecasts are nearly always more informative than historical stock returns.  
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 When the prediction horizon extends until the expiry date of the options, our 

regression results show that the option forecasts are more informative than forecasts 

defined by historical returns for a substantial majority (86%) of the firms. Although 

the model-free (MF) volatility expectation is theoretically more appealing than 

alternative volatility estimates and has been demonstrated to be the most accurate 

predictor of realized volatility by Jiang and Tian (2005) for the S&P 500 index, the 

results for our firms show that the MF expectation only outperforms both the ATM 

implied volatility and the historical volatility for about one-third of the firms. The 

firms for which the MF expectation is best are not associated with a relatively high 

level of trading in away-from-the-money options. 

 
 
 
JEL classifications: C22; C25; G13; G14 
Keywords: Volatility; Stock options; Information content; Implied volatility; Model-
free volatility expectations; ARCH models 
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1 Introduction 

 

The information content of option implied volatilities have been widely examined by 

the literature since the introduction of the option pricing model by Black and Scholes 

(1973). Their option pricing formula provides an easy and fast way to transfer the 

option price into a market forecast of the average volatility of underlying asset returns 

over the option’s life. When option market participants price options, they incorporate 

both the historical information and some other information about the future events. So 

the implied volatilities embedded in the option prices are expected to contain more 

information of the future volatility than historical predictors.  

 

The ability of option implied volatility to provide better estimates than historical 

forecasts has been established for stock indices. Jiang and Tian (2005) contribute to 

the literature by adding the model-free volatility expectation, developed by Britten-

Jones and Neuberger (2000), into the comparison and confirm the superior 

informational efficiency of it when predicting the realized volatility of the S&P500 

index.  

 

However, no study has ever comprehensively investigated which is the most 

informative measure to forecast the future volatility of individual stocks. Volatility 

estimation and forecasting is well known to be an important area in Finance, 

especially for risk management and option pricing,. The main purpose of this paper is 

to help understand more about the informational efficiency of the volatility estimates 

implicit by the options written on the U.S. individual stocks.  
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1.1 Prior literature 

 

Numerous empirical studies show the interest to the relative importance of implied 

and historical volatility predictors [Poon and Granger (2003)]. Day and Lewis (1992) 

test the information content of the S&P100 index options by incorporating option 

implied volatility into GARCH and EGARCH models. However, they do not find 

conclusive evidence that option implied volatilities could subsume all the information 

provided by the conditional volatility from GARCH or EGARCH models. Lamoureux 

and Lastrapes (1993) employ the same GARCH specifications that add implied 

volatility as a factor in the conditional variance equation. Their studies on 10 U.S. 

individual stocks and with forecast horizon equal to one day reach similar results as 

Day and Lewis (1992). However, both studies have been criticized for the 

mismatching between forecast horizons and option time to maturity in later literature.  

 

Another early empirical study by Canina and Figlewski (1993) challenge the 

usefulness of implied volatility as a guide to the future variability of the S&P100 

index returns. They find that implied volatility does not have a statistically significant 

correlation with realized volatility for most of their subsamples, where subsamples are 

defined according to option moneyness levels and time to maturities. Even a simple 

measure of historical volatility outperforms the implied volatility for their data.  

 

The negative conclusions might be caused by a lack of data, mis-measurement of 

implied volatilities, or inappropriate statistical inference. After correcting various 

methodological errors, later studies of the S&P 100 index provide a consensus that the 
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ATM option implied volatility or the near-the-money volatilities are more efficient 

estimates of the subsequent realized volatility than estimates based solely on historical 

information. Directly related to Canina and Figlewski (1993), Christensen and 

Prabhala (1998) re-examine the information content of the S&P 100 index options by 

adopting non-overlapping monthly volatility observations. Their regression analysis 

shows that the implied volatility does predict future realized volatility and 

outperforms the historical forecasts. The same conclusions are drawn by the 

contemporaneous study also on the S&P 100 index options, by Fleming (1998). 

Studies that focus on exchange rate options also favour the conclusion that option 

implied volatility is an efficient estimate of the future realized volatility [Kroner, 

Keafsey and Claessens (1995), Jorion (1995), Xu and Taylor (1995) and Guo (1996)].  

 

Ederington and Guan (2002) summarize and discuss the regressions results of several 

earlier studies. Their regressions for the S&P500 futures options conclude that option 

implied volatility is an informationally efficient estimate of the future realized 

volatility but it is not an unbiased estimate. In the comparison with the historical 

forecasts, option implied volatility is more efficient and, for some assets during some 

sample periods, it subsumes all information contained in its competitor.  

 

More recent studies start to use intraday returns to produce volatility forecast 

[Andersen, Bollerslev, Diebold and Laybys (2003)], which is proved to be more 

informative than low-frequency data. Concentrating on the S&P 100 index, Blair, 

Poon and Taylor (2001) use the CBOE volatility index (VIX)1 as the measure of 

option implied volatility and daily and intra-day returns sources to measure historical 

                                                 
1 Blair, Poon and Taylor (2001) adopt the old VIX index listed on the CBOE. The old VIX is renamed 
as VOX after September 2003. 
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volatility. They find no evidence for incremental information contained in daily index 

returns beyond that provided by the VIX. The implied volatilities in their sample 

outperform intraday returns for both in-sample estimation and out-of-sample 

forecasting. Studies using high-frequency foreign exchange rate data include Taylor 

and Xu (1997), Li (2002) , Pong et al (2004) and Martens and Zein (2004).  

 

The most accurate forecasts of stock index volatility were often provided by functions 

of option implied volatilities in many studies until the introduction of the model-free 

volatility expectation2. Constructive theoretical relationships between volatility and 

option prices have been developed by Carr and Madan (1998) and Demeterfi, 

Derman, Kamal and Zou (1999a, 1999b). Building on the pioneering work of Breeden 

and Lizenberger (1978), they show that the fair value of a variance swap rate, which 

is the risk-neutral forecast of the subsequent realized variance, can be replicated by 

taking a static position in options of all strike prices. Likewise, Britten-Jones and 

Neuberger (2000) show that a complete set of call options can be used to infer the 

risk-neutral expectation of the integrated variance until the option expiry date, which 

is a natural input into volatility forecasting. Jiang and Tian (2007) prove that the risk-

neutral variance expectation derived by Britten-Jones and Neuberger (2000) is 

theoretically identical to the equilibrium variance swap rate in Demeterfi, Derman, 

Kamal and Zou (1999a, 1999b).  

 

This newly-developed volatility measure also extracts information from option prices 

and thus is potentially superior to historical predictors. It is also expected to be more 

                                                 
2 Previous studies, like Britten-Jones and Neuberger (2000) and Jiang and Tian (2005, 2007), define the 
square root of the risk-neutral variance expectation as the model-free implied volatility. We name the 
same concept as model-free volatility expectation in this study, as it is not a volatility measure 
“implicit” in a single option price but is an estimate of risk-neutral expectation. 
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efficient than the Black-Scholes implied volatility because, firstly, it does not depend 

on any option pricing formula; and secondly, it is estimated from all available option 

prices while Black-Scholes implied volatilities rely on only one or a few near-the-

money options. In September 2003, the model-free volatility expectation was adopted 

by the CBOE for calculating the components of its volatility index (VIX). The 

definition of the new VIX index and the theory that underpinned both the old and the 

new are discussed and compared by Carr and Wu (2006).  

 

When comparing the information content and forecasting ability of the model-free 

volatility expectation with the other volatility estimates, Jiang and Tian (2005) adopt 

regression analysis on the S&P 500 index options and reach the strong conclusions 

that the model-free volatility expectation not only outperforms both the ATM implied 

volatility and the past realized volatility, calculated from intraday index returns, but 

also subsumes all information that are provided by them.  

 

Lynch and Panigirtzoglou (2004) also examine the information content of the model-

free volatility expectation in a comparison with historical volatility measured by 

intraday returns. Their results for various financial assets, including the S&P 500 

index, the FTSE 100 index, Eurodollar and short sterling futures, show that the 

model-free volatility expectation is more informative than the historical high-

frequency returns, but is a biased estimator of future realized volatility.  

 

Although not intended to examine the information efficiency of the model-free 

volatility expectation, Carr and Wu (2004) synthesize the variance swap rates of 5 

stock indices and 35 individual stocks using option prices, following the strategy 
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suggested by Carr and Madan (1998) and Demeterfi, Derman, Kamal and Zou (1999a, 

1999b). Their estimates of the equilibrium variance swap rate, equivalent to the 

model-free variance expectation, are significant when explaining the time-series 

movements of realized variance measured by daily returns for all the indices and the 

majority of the individual stocks. 

 

However, nearly all of the previous studies, whether they use the Black-Scholes 

implied volatility or the model-free volatility expectation, only investigate the 

information content of option prices that are written on stock indices or exchange 

rates. There are very few studies that test the information content of individual stock 

options. We may anticipate that the volatility information contained in the prices of 

stock options is less efficient when estimating and predicting volatility, compared 

with index option prices, since stock options are traded far less frequently. Lamoureux 

and Lastrapes (1993) study two years data for each of 10 U.S. firms and their results 

indicate that the simple GARCH(1,1) model is more informative than a model that 

incorporates implied volatility alone. It is inevitably difficult to draw firm conclusions 

from their small quantity of data. 

 

1.2 Scope 

 

This paper is the first to examine the volatility information content of individual stock 

options based on a large sample of U.S. stocks. We develop a method to implement 

the model-free volatility expectation for individual stock options that are less liquid 

than options written on stock indices or exchange rates. For each of 149 sample firms, 

we compare the historical information from daily stock returns, the information 
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contained in the ATM implied volatility and the information provided by the model-

free volatility expectation. 

 

Our empirical results show that both model-free volatility expectation and ATM 

implied volatility do contain relevant information about future return variations. 

However, in contrast to previous studies about stock index options, our research on 

individual stocks shows that for one-day-ahead estimation neither the ATM implied 

volatility nor the model-free volatility expectation is consistently superior to a simple 

ARCH model for all firms. Especially for firms with few traded options, it is often 

better to use an asymmetric ARCH model to estimate the next day’s volatility. When 

the estimation horizon extends until the end of the option lives, it is found that both of 

the volatility estimates extracted from option prices outperform the historical 

volatility for a substantial majority of our sample firms.  

 

Interestingly, in our results, the ATM implied volatility outperforms the model-free 

volatility expectation for 87 out of 149 firms when predicting volatility one-day-

ahead, and for 85 firms when the forecast horizon equals the option’s life.  The 

relatively poor performance of the model-free volatility expectation compared with 

the ATM implied volatility for some firms is different from what we expected 

according to the theory and can not be explained by either selected properties of 

market available option observations (such as number of option observations, range of 

option moneyness) or the relative trading liquidity of ATM options to all options. It 

appears probable that overall illiquidity of the individual stock option market 

constitutes one explanation for our findings. 
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The rest of this paper is organized as follows. Section 2 describes the newly 

developed model-free volatility expectation and related implementation issues. Data 

descriptions are provided in Section 3. Section 4 describes the empirical 

methodologies that we choose to compare the information efficiency of different 

volatility estimates. Section 5 compares the volatility estimates for one-day-ahead 

forecasts and option life forecasts. In Section 6, 149 firms are separated into different 

groups according to the most informative volatility estimate for each firm. By doing 

so, we try to point out the properties of the firms in different groups. Conclusions are 

presented in Section 7. 

 

2 Model-free volatility expectation and implementation issues 

 

Previous studies have shown that the Black-Scholes implied volatility curve with 

varying strike prices for a fixed maturity appears to be a U-shape for currency options 

[Taylor and Xu (1994a)] and to be a “smirk” for equity index options [Rubinstein 

(1994)]. When using Black-Scholes implied volatilities to define a volatility forecast, 

we must select one or more of the available option prices and thus lose the 

information contained in the other prices. This section introduces a new method to 

construct the risk-neutral expectation of the future integrated variance. This new 

method also uses the information provided by market option prices but, in contrast to 

implied volatility forecasts, it incorporates a complete set of option prices and thus is 

model-independent.  
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2.1 Theoretical formula 

 

The concept of the model-free variance expectation appeared in Carr and Madan 

(1998), Demeterfi, Derman, Kamal and Zou (1999a, 1999b) and Carr and Wu (2006) 

in connection with the development of volatility and variance swap contracts. It was 

refined and related to volatility forecasting by Britten-Jones and Neuberger (2000).  

 

At time 0 it is supposed that there is a complete set of European option prices for an 

expiry time T. For a general strike price K, these option prices are denoted by ),( TKc  

and ),( TKp  respectively. For a risk-neutral measure Q, the price of the underlying 

asset tS  is assumed to satisfy the equation SdWSdtqrdS σ+−= )( , where r is the 

risk-free rate, q is the dividend yield, tW  is a Wiener process and tσ  is the risk-

neutral stochastic volatility. The integrated squared volatility of the asset over the 

horizon T  is defined as:  

.
0

2
,0 ∫=

T
tT dtV σ  

 

Britten-Jones and Neuberger (2000) show that the risk-neutral expectation of the 

integrated squared volatility is given by the following function of the continuum of 

European out-of-the-money (hereafter OTM) option prices: 
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where TF ,0  is the forward price at time 0 for a transaction at the expiry time T . 

Following previous literature, the quantity defined by Equation (1) will be referred to 

as the model-free variance expectation and its square root as the model-free volatility 
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expectation3. Dividing the variance expectation by the option time to maturity defines 

the average integrated variance.  

 

The key assumption required to derive Equation (1) is that the stochastic processes for 

the underlying asset price and volatility are continuous. As the volatility expectation 

does not rely on a specific option pricing formula, the expectation is “model-free”, in 

contrast to the Black-Scholes implied volatility. Both Carr and Wu (2004) and Jiang 

and Tian (2005) show that Equation (1) is an excellent approximation when there are 

occasional jumps in stock price process. However, the real options market obviously 

does not satisfy the assumption of continuous option prices with strike prices ranging 

from zero to infinity. 

 

2.2 Discrete formula 

 

The CBOE employs a discrete form of the model-free volatility expectation to 

construct the volatility index, VIX. At time 0 , when there are N  available OTM 

options, the model-free volatility expectation with time to maturity T  is computed by 

the equation4: 

2
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where *K  is the strike price used to select call or put options, ),( TKQ i  is the call 

price with strike price iK  when *KKi ≥  and otherwise it is the put price, and iKΔ  is 

                                                 
3 Previous studies have noticed that taking the squared root of the risk-neutral variance expectation as 
the expectation of subsequent volatility is subject to a bias, which is determined by the variance of 
volatility. The bias is positive unless the volatility is actually constant. 
4 This equation is from the white paper, which is on the CBOE’s website. 
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set equal to 
2

11 −+ − ii KK 5. The quantity MFσ  is the annualized value of the model-

free volatility expectation from time 0 until time T . 

 

The CBOE uses market available option prices directly to estimate Equation (2) and 

sets *K  as the available strike price just below the forward price TF ,0 , which might 

incur various estimation errors, as shown by Jiang and Tian (2007). When we employ 

Equation (2), we use market available strikes to estimate a risk-neutral density and 

hence we can infer option prices for as many strikes as necessary. Consequently we 

can set TFK ,0
* = . Thus the final term in Equation (2) then disappears and ),( TKQ i  

always represents an OTM or ATM option price in our calculations. 

 

2.3 Construction of implied volatility curve 

 

As shown in the Equation (1), the model-free volatility expectation is obtained from 

the integrals of functions of option prices at all strikes. However, stock option prices 

are usually only available for a small number of strike prices. In order to obtain 

consistent option prices for a large number of strikes, we must estimate implied 

volatility curves from small sets of observed option prices. Jiang and Tian (2007) 

prove the importance of constructing implied volatility curves when estimating the 

model-free volatility expectation using discrete option data. They also show that the 

bias from ignoring the step is economically substantial, especially for volatility 

futures contracts.  

                                                 
5 KΔ  for the lowest strike is the difference between the lowest strike and the next higher strike. 
Likewise, KΔ  for the highest strike is the difference between the highest strike and the next lower 
strike. 
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We implement a variation of the practical strategy described by Malz (1997a, 1997b), 

who proposed estimating the implied volatility curve as a quadratic function of the 

Black-Scholes option’s delta; previously a quadratic function of the strike price had 

been suggested by Shimko (1993). As stated by Malz (1997a), making implied 

volatility a function of delta, rather than of the strike price, has the advantage that the 

away-from-the-money implied volatilities are grouped more closely together than the 

near-the-money implied volatilities. Also, extrapolating a function of delta provides 

sensible limits for the magnitudes of the implied volatilities. 

 

The quadratic specification is chosen because it is the simplest function that captures 

the basic properties of the volatility smile. Furthermore, there are insufficient stock 

option prices to estimate higher-order polynomials. Only three strike prices are 

required to estimate the parameters of a quadratic implied volatility function.  

  

Delta is defined here as the first derivative of the Black-Scholes call option price with 

respect to the underlying forward price: 

))((
),,(
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where ),,( ,0 TKFC iT  is the call option price with strike price iK  and maturity day T . 

(.)Φ  is the cumulative probability distribution function. The value of i  ranges from 1 

to the number of strike prices that are observed for the firm’s options at time zero. 
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Following Bliss and Panigirtzoglou (2002, 2004), *σ  is a constant that permits a 

convenient one-to-one mapping between delta and the strike price. In this study, *σ  

is the volatility implied by the option observations whose strike price is nearest to the 

forward price, TF ,0 . The value of the call delta, Δ , increases from zero for deep out-

of-the-money (OTM) call options to rTe−  for deep ITM (in-the-money) call options.  

 

The parameters of the quadratic function have been estimated by minimizing the sum 

of squared errors function: 

∑
=

Δ−
N

i
iiii )),(V̂IIV(w

1

2θ                                         (4), 

where N  is the number of observed strike prices for the firm on the observation day, 

iIV  is the observed implied volatility for a strike price iK  and ),(V̂I ii θΔ  is the fitted 

implied volatility also for strike price iK , with iΔ  given by Equation (3) and θ  the 

vector of the three parameters defining the quadratic function. The minimization is 

subject to the constraint that the fitted implied volatility curve is always positive when 

delta, Δ , is between 0 and rTe− . 

 

The squared errors of the fitted implied volatilities are weighted by )1( iiiw Δ−Δ= , 

to ensure that the most weight is given to near-the-money options. Far-from-the-

money options are given low weights because their contracts are less liquid and hence 

their prices are the most susceptible to non-synchronicity errors. Introducing weights 

when fitting the quadratic function reduces the impact from any outliers of far-from-

the-money options. 
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After the implied volatility function is fitted, we extract 1000 equally spaced values of 

delta that cover the range from 0 to rTe− . Equation (3) is used again for transferring 

delta values back to strike prices and then Black-Scholes option prices are calculated 

for OTM options. If either the least call price or the least put price exceeds 0.001 

cents then we extend the range of strike prices6, to eliminate any error caused by 

truncating integrals The OTM prices are then used to evaluate the daily values of 

model-free volatility expectations. 

 

3 Data 

 

The number of U.S. firms with option trading on the CBOE increased dramatically 

from 1996 to 1999. This provides some motivation for studying the individual stock 

options market. However, although the market as a whole is developing fast, the 

trading for each individual firm’s options is far less active than the stock index 

options or exchange rate options. Therefore, research on individual stock options 

requires a selection of firms that includes those with sufficient option trading 

activities. This section introduces the data sources and the method to select firms from 

those listed on the CBOE. 

                                                 
6  The extrapolation in either tail occurs with an equal spacing of 0.01 in moneyness, defined 
as TFK ,0 , with the implied volatility equal to the appropriate end-point of the quadratic function. It 
continues until the OTM prices are less than 0.001 cents.  
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3.1 Sources  

 

The option data used in the following studies are from the IvyDB Database of 

OptionMetrics, which contains the prices for all U.S. listed equities and market 

indices and all U.S. listed index and equity options, based on daily closing quotes at 

the CBOE. Daily stock price data are from CRSP. The dataset also includes interest 

rate curves, dividend projections. Our sample starts in January 1996 and ends in 

December 1999. There are 1009 trading days during this period. 

 

We use the implied volatilities provided by IvyDB Database directly in our study, as 

do Carr and Wu (2004) and Xing, Zhang and Zhao (2007) who choose the same 

database. Each implied volatility provided is computed from the midpoint of the 

highest closing bid price and the lowest closing offer price across all exchanges on 

which the option trades. As all individual stock options on the CBOE are American-

style options, the implied volatilities are calculated based on the binomial tree model 

of Cox, Ross and Rubinstein (1979), which takes account of the early exercise 

premium and dividends. Whenever call and put implieds are both available, for the 

same firm, trading day, expiry date and strike price, the average of the two implied 

volatilities is used. Doing so reduces any measurement errors from nonsynchronous 

asset and option prices, because the call error is normally negatively correlated with 

the put error. Options with less than seven days to maturity are excluded in order to 

avoid any liquidity and market microstructure effects around expiry.  
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The interest rate that corresponds to each option’s expiration is obtained by linearly 

interpolating between the two closest continuously compounded zero-coupon rates 

that are derived from BBA LIBOR rates and included by the zero-curve file provided 

in the IvyDB Database. We calculate the forward stock price TF ,0  that has the same 

expiry date, T , as options. It is defined as the future value of the difference between 

the current spot price and the present value of all future dividend distributions 

between times 0 and T inclusive. The dividend distribution information is also 

included in the IvyDB Database. Daily stock returns, taking account of dividends, 

have been obtained from CRSP for each firm. They are transformed into continuously 

compounded returns, such that )1log( *
tt rr += , where *

tr  is the CRSP stock return. 

 

3.2 Selection of firms  

 

All firms with sufficient option trading activity are included in our study. Two criteria 

are used to select firms from the database. Firstly, only firms that have options written 

on them throughout the whole sample period are included. So every selected firm has 

option observations for 1009 trading days from January 1996 to December 1999. 

Consequently, the comparison of different volatility measures for each firm will not 

be influenced by either the firms’ sample period or sample size. 

 

Secondly, a firm must have sufficient option trading activity, where sufficient is 

defined by us as enough to construct implied volatility curves for at least 989 (i.e. 

98%) of the 1009 trading days. If the firm has too many days of missing data, the 
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firm’s options are considered to be illiquid and then the information content of option 

prices is expected to reduce.  

 

Our method for constructing the implied volatility curve is described in the next 

section and requires at least three strike prices and their corresponding implied 

volatilities to estimate a quadratic function. Whenever there are less than three 

available strike prices on a trading day, we are unable to construct the implied 

volatility curve and thus unable to calculate the model-free volatility expectation.  

 

The options with the nearest time-to-maturity are usually chosen. When there are less 

than three available strike prices for the nearest time-to-maturity, we switch to the 

second nearest time-to-maturity, which is usually in the month after the trading day. 

However, when it is impossible to estimate the implied volatility curve for the two 

nearest-to-maturity sets of option contracts, we assume the estimates from option 

prices are missing data for that trading day and instead remain unchanged from the 

previous trading day. 

 

A total of 149 firms pass both filters. The number of market option observations 

during the sample period varies from firm to firm and from period to period. There are 

less option observations in 1996, compared with later periods. The maximum number 

of daily option observations occurs in 1999 for 58 firms. 

 

Figure 1 shows the distribution of the average number of daily available strike prices 

for the 149 selected firms. The average number for firm i , iN , equals the total 

number of available strike prices for firm i  during the sample period divided by the 
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number of trading days, which is 1009 for all firms; for those trading days when it is 

impossible to construct an implied volatility curve because of a lack of observations, 

the number of available strike prices is set to zero. The minimum, median and 

maximum values of iN  across firms are 3.7, 5.1 and 12.9 respectively. More than a 

half of the averages iN  are between 4 and 6. As shown by Figure 1, it is obvious that 

the stock options in our sample have far less observations than the stock index options 

studied in previous literature.  

 

4 Empirical methodology 

 

We investigate the information efficiency of the model-free volatility expectation and 

the ATM implied volatility, firstly when the forecast horizon is one day and secondly 

when it is matched with the option’s days to maturity. This section firstly introduces 

the ARCH specifications for one-day-ahead forecasts and the OLS regression models 

for option life forecasts. The second subsection describes how we compute the 

volatility estimates under consideration. Finally, the summary statistics of the 

volatility estimates are presented.  

 

4.1 Econometric specifications 

 

Both ARCH and regression models have been estimated in many previous 

comparisons of the information content of different volatility estimates. ARCH 

models can be estimated from daily returns, while regression models are estimated for 
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a data-frequency that is determined by the expiration dates of the option contracts. 

The primary advantages of ARCH models are the availability firstly of more 

observations and secondly of maximum likelihood estimates of the model parameters. 

A disadvantage of ARCH models, however, is that the data-frequency is usually very 

different to the forecasting horizon that is implicit in option prices, namely the 

remaining time until expiry. This fact may weaken the relative performance in an 

ARCH context of volatility estimates extracted from option prices. To learn as much 

as we can about the volatility estimates drawn from the option prices, our study 

therefore evaluates both ARCH specifications for the one-day-ahead forecasts and 

regressions that employ a forecast horizon equal to the option’s time to maturity.  

 

ARCH specifications for one-day-ahead forecasts 

 

To compare the performance of historical daily returns, ATM implied volatilities and 

model-free volatility expectations, when estimating future volatility, three different 

ARCH specifications that incorporate different daily information sets are estimated 

for daily stock returns tr  from January 1996 to December 1999.  The specifications 

include an MA(1) term in the conditional mean equation to capture any first-order 

autocorrelation in stock returns.  

 

The general specification is as follows: 
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Here L  is the lag operator, th  is the conditional variance of the return in period t  and 

1−ts  is 1 if 01 <−tε  and it is 0 otherwise. The terms 1, −tMFσ  and 1, −tATMσ  are 

respectively the daily estimates of model-free volatility expectation and the ATM 

implied volatility, computed at time 1−t  by dividing the annualized values by 252 . 

 

By placing restrictions on selected parameters in the conditional variance equation, 

three different volatility models based upon different information sets are obtained: 

(1) The GJR(1,1)-MA(1) model, as developed by Glosten, Jagannathan and 

Runkle (1993): 0==== δγ βδβγ . 

(2) The model that uses the information provided by model-free volatility 

expectations alone: 0===== −
δβδβαα . 

(3) The model that uses information provided by ATM implied volatilities alone: 

0===== −
γβγβαα . 

 

The parameters are estimated by maximising the quasi-log-likelihood function, 

defined by assuming that the standardized returns tz  have a Normal distribution. To 

ensure that the conditional variances of all models remain positive, constraints such as 

0>ω , 0≥α , 0≥+ −αα , 0≥β , 0≥γβ  and 0≥δβ  are placed on the parameters. 

Inferences are made through −t ratios, constructed from the robust standard errors of 

Bollerslev and Wooldridge (1992). The three special cases listed above are ranked by 

comparing their log-likelihood values; a higher value indicates that the information 

provides a better description of the conditional distributions of daily stock returns. 
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Similar models with implied volatility added into ARCH models are also estimated by 

Day and Lewis (1992) and Blair, Poon and Taylor (2001) on the S&P100 index, 

Lamoureux and Lastrapes (1993) on individual stocks and Xu and Taylor (1995) on 

foreign exchange rates. The GJR(1,1) model is adopted here because asymmetric 

volatility effects have been found for individual U.S. firms by previous studies such 

as Cheung and Ng (1992) and Duffee (1995). It should be noted that as ARCH 

conditional volatility is always for the next day or week, to enhance the specification 

in Equation (5) the implied volatilities obtained from option prices should be chosen 

to have short times to maturity.  

 

OLS regressions for option life forecasts 

 

Univariate and encompassing regressions are estimated for each firm, as in the index 

studies by Canina and Figlewski (1993), Christensen and Prabhala (1998) and Jiang 

and Tian (2005). While a univariate regression can assess the information content of 

one volatility estimation method, the encompassing regression addresses the relative 

importance of competing volatility estimates.  

 

The most general regression equation is specified as follows:  

TtTtATMATMTtMFMFTtHisHisTtRE ,,,,,,,0,, εσβσβσββσ ++++=       (6), 

where TtRE ,,σ  is the measure of the realized volatility from time t  to time T  , and 

TtHis ,,σ  is a historical volatility forecast calculated from the GJR(1,1)-MA(1) model 

using the information up to time t . The terms TtMF ,,σ  and TtATM ,,σ are non-

overlapping measures of the model-free volatility expectation and the ATM implied 

volatility. Inferences are made using the robust standard errors of White (1980), 
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which take account of heteroscedasiticity in the residual terms Tt,ε . Regression 

results are also obtained when the volatility variables are replaced either by variances 

or by the natural logarithms of 100 multiplied by volatilities. 

 

4.2 Estimating volatility 

 

Option measures 

 

We use daily estimates of the ATM implied volatility and the model-free volatility 

expectation in the estimation of the ARCH models for one-day-ahead forecasts. The 

ATM implied volatility is the implied volatility corresponding to the available strike 

price closest to the forward price. It is taken from the IvyDB Database directly and is 

calculated through the binomial tree model as introduced in Section 3.1. The model-

free volatility expectation of Equation (2) is calculated by extracting a large number 

of OTM option prices from the fitted implied volatility curve described in Section 2.3. 

 

Figure 3 shows two time series of daily option measures of volatility, for General 

Electric and IBM during our sample period. The dark line represents the model-free 

volatility expectation and the dotted line the ATM implied volatility. It is seen that 

these two volatility measures move closely with each other and that the ATM implied 

volatility tends to be slightly lower than the model-free volatility expectation.  

 

To implement regression analysis for option life forecasts, both the model-free 

volatility expectation and the ATM implied volatility on the trading date that follows 

the previous maturity date are selected, so that non-overlapping samples of volatility 
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expectations are obtained. We are able to use sets of 49 monthly observations, with 

maturity days from January 1996 to January 2000, for 129 of the 149 firms. For each 

of the remaining 20 firms, the number of observations is 46, 47 or 48 because of the 

occasional illiquidity of option trading for some firms. To match the horizon of all the 

variables in the OLS regressions with the one-month horizon of the options 

information, realized volatility measures and historical volatility forecasts are required 

for the remaining lives of the options.  

 

Realized volatility 

 

The annualized realized volatility from a day t  until the option’s maturity date T  is 

calculated by applying the well-known formula of Parkinson (1980) to daily high and 

low stock prices, such that:  
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where th  and tl  are, respectively, the highest and lowest stock price for day t , and 

H  is the number of days until the options expire. Parkinson (1980)’s estimator is 

expected to be a more accurate measure of realized volatility than the sum of daily 

stock returns, because intraday prices theoretically contain more volatility information 

than daily closing prices.  

 

Historical volatility 

 

In regression analysis, historical forecasts of volatility are evaluated using the 

GJR(1,1)-MA(1) model. The historical information up to the observation day t  



 26

provides the conditional variance 1+th  for day 1+t . The forecast of the aggregate 

variance until the expiry time T, whose square root represents the historical volatility 

forecast, Hisσ , in the regressions, is given by:  

[ ]∑
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H
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tjtt IhEh

2
1 |                                               (8), 

where H  is the forecast horizon and tI  is the historical information up to day t . For 

the GJR(1,1) model, the annualized historical volatility forecast simplifies to: 
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where βααφ ++= −
2
1  and 

φ
ωσ
−

=
1

2  are respectively equal to the persistence 

parameter and the unconditional variance of the returns. 

 

The parameters of the ARCH models used to define the historical forecasts are 

estimated by maximizing the log-likelihood of a set of n returns that do not go beyond 

time t . Ninety of the 149 firms have continuous price histories from January 1988 

until January 2000. For these firms, we initially use 2024=n  returns for the trading 

days between 4 January 1988 and 4 January 1996, as our first forecasts are made on 4 

January 1996; the subsequent forecasts use parameters estimated from the 2024 most 

recent returns. For each of the other firms, whose histories commence after January 

1988, we use all the daily returns until the observation day t (although we stop adding 

to the historical sample if n reaches 2024). 

 

4.3 Descriptive Statistics 
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Table 1 presents the summary statistics for daily estimates of model-free volatility 

expectation, ATM implied volatility and the difference between them. Statistics, 

including mean, standard deviation, maximum and minimum, are first obtained for 

each firm from time series of volatility estimates. Then the cross-sectional mean, 

lower quartile, median and upper quartile values of each statistic, across the 149 

firms, are calculated and displayed in Table 1.  

 

On average the model-free volatility expectation is higher than the ATM implied 

volatility although occasionally the latter is higher than the former. This also occurs in 

the study by Jiang and Tian (2005) on S&P 500 index options. We therefore conclude 

that the squared ATM implied volatility tends to be a downward biased measure of 

the risk-neutral expected variance. The null hypothesis, that the ATM implied 

volatility is an unbiased estimate of the model-free volatility expectation, is rejected 

for each of the 149 firms, at the 1% significance level using Student’s t  statistic. 

 

The numbers in Panel D are the cross-sectional statistics of the correlations between 

daily MFσ  and ATMσ  for 149 firms. The two volatility estimates are highly correlated, 

with the mean and median respectively equal to 0.926 and 0.940. The high values 

reflect the similar information that is used to price ATM and OTM options.  

 

Table 2 shows the summary statistics for non-overlapping volatility estimates used in 

the option life forecasts. The numbers, again, are the cross-sectional statistics 

including mean, lower quartile, median and upper quartile, calculated from time-

series statistics. The patterns of model-free volatility expectation and ATM implied 

volatility are overall similar to those of daily estimates presented in Table 1. We also 
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show the summary statistics of variance estimates in Panel B, because the model-free 

volatility expectation obtained as the square root of risk-neutral variance expectation 

is theoretically higher than the risk-neutral expectation of volatility, according to 

Jensen’s inequality. Regressions involving volatility thus might be affected if the 

upward bias is large.  

 

The realized volatility measured by daily high and low prices is lower than the other 

volatility estimates. Parkinson (1980)’s measure of realized volatility is derived under 

the assumption of continuous trading. Discrete trading both in time and in price can 

reduce the efficiency of the volatility estimate and induce a downward bias, stated in 

Garman and Klass (1980). In addition, the reported skewness and excess kurtosis 

statistics in Table 2 reveal that the natural logarithm of volatility is closest to a 

Normal distribution. Thus regressions that explain the logarithm of volatility may be 

statistically more reliable than those that explain volatility or variance.   

 

Table 3 presents the cross-sectional mean, lower quartile, median and upper quartile 

values of the correlation coefficients, which are calculated using time-series of non-

overlapping volatility estimates for each firm. Overall the ATM implied volatility 

provides the highest correlation values with the realized volatility and the historical 

volatility the lowest. The correlations of model-free volatility expectation with 

realized volatility are slightly lower than, but very close to, those of ATM implied 

volatility. The highest correlations statistics are between model-free estimates and 

ATM estimates in all panels. 
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5 Results  

  

This section provides the results of both one-day-ahead forecasts and option life 

forecasts for 149 sample firms. For each forecast horizon, estimated coefficients for 

each model, as well as comparisons across different sets of information, are discussed. 

 

5.1 One-day-ahead forecasts from ARCH specifications 

 

Estimates of parameters 

 

Table 4 provides the summary statistics of the sets of 149 point estimates (their mean, 

standard deviation, lower quartile, median, and upper quartile) from the three ARCH 

specifications defined by Equation (5). Results are shown in Panel A for the 

GJR(1,1)-MA(1) model, in Panel B for the model that only uses the information 

provided by the model-free volatility expectation, and in Panel C for the model that 

uses the information provided by the ATM implied volatility alone. The column 

named “10%/5%/1%” contains the percentages of the estimates out of 149 that are 

significantly different from zero at the 10%, 5% and 1% levels. 

 

The first model is the standard GJR(1,1)-MA(1) model, which uses previous stock 

returns to calculate the conditional variance. The value of α  measures the symmetric 

impact of new information (defined by tε ) on volatility while the value of −α  



 30

measures the additional impact of negative information (when 0<tε ) on volatility. 

Approximately 75% of all firms have a value of −+αα  that is more than twice the 

estimate of α , indicating a substantial asymmetric effect for individual stocks.  

 

For the majority of firms, the estimates of α  and −α  are not significantly different 

from zero at the 5% level. This is probably a consequence of the relatively short 

sample period. The volatility persistence parameter, assuming returns are 

symmetrically distributed, is βαα ++ −5.0 . The median estimate of persistence 

across 149 firms equals 0.94.  

 

The second model includes only the information contained in the time series of 

model-free volatility expectations, 1, −tVEσ . The series 1, −tVEσ  is filtered by the 

function )1( Lγβγ − . For half of the firms, the estimates of γ  are between 0.48 and 

0.85; also, 50.3% of the estimates are significantly different from zero at the 5% level. 

In contrast, most of the estimates of γβ  are near zero. This suggests that a conditional 

variance calculated from the model-free volatility expectation given by the latest 

option prices can not be improved much by using older option prices. 

 

The third model uses only the information contained in the ATM implied volatility 

series, 1, −tATMσ , to calculate the conditional variances. The interquartile range for δ  

is from 0.62 to 1.01 and 42.3% of the estimates are significantly different from zero at 

the 5% level. More than half of the estimates of the lag coefficient, δβ , are zero and 

few of them are far from zero. On average, δ  exceeds γ  and δβ  is less than γβ . 
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The total weight in the conditional variance equation given to the model-free volatility 

expectations and the ATM implied volatilities are respectively defined by the 

quantities )1( γβγ −  and )1( δβδ − .  A higher value of these quantities may imply 

the information provided is more relevant to the conditional variance movements, or it 

may also indicate a lower level of the volatility estimates. Figure 3 is a scatter 

diagram of these two variables for the 149 firms. It is seen that there is a strong 

positive correlation between these two variables.  Most points are closer to the x-axis 

than to the y-axis because )1( δβδ −  is usually higher than )1( γβγ − .  

 

Comparisons of log-likelihoods 

 

A higher log-likelihood value indicates a more accurate description of the conditional 

distributions of daily stock returns. We use HisL , MFL  and ATML  to represent the log-

likelihoods of the three models defined after Equation (5). The mean of ATML , 2144, 

is slightly higher than the means of HisL  and MFL . At the same time, the values of 

ATML  are a little more dispersed across firms than the values of HisL  and MFL . 

Overall, there is no evidence showing that one method is systematically better than 

the others for all of our sample firms. 

 

In Table 5, the frequency counts that show how often each of the three ARCH 

specifications has the highest log-likelihood for the observed daily returns are 

presented in the left block. More than a third of the firms (35.6% or 53 firms) have a 

log-likelihood for the GJR(1,1)–MA(1) model, HisL , that is higher than both MFL  and 



 32

ATML , which are obtained from the options’ information. For the 64.4% (96 firms) 

whose log-likelihoods are maximized using option specifications, the ATM 

specification (36.9%) is the best more often than the model-free volatility expectation 

(27.5%). This is an evidence for the superior efficiency of ATM option implied 

volatilities when estimating individual stock volatility.  

 

The high frequency for the historical specification is contrary to the studies on options 

written on stock indices, which reach a consensus that option prices perform much 

better than ARCH models estimated from daily returns. However, our results are 

consistent with the in-sample conclusions of Lamoureux and Lastrapes (1993), who 

show that the GARCH(1,1) model has a slightly higher log-likelihood than the model 

that incorporates ATM implied volatilities, for all the 10 U.S. firms in their sample.  

 

There are two reasons why the GJR model performs the best for so many firms. 

Firstly, the key difference between our data for individual stock options and the stock 

index options is that the latter are much more liquid than the former. The illiquidity of 

individual stock options may cause the inefficiency of volatility expectations. When 

we select the 30 firms with the highest average option trading volume, the historical 

volatility performs the best for only 2 firms; model-free volatility expectation for 11 

and ATM implied volatility for 17 firms. The interquartile range for γ  (δ ) is from 

0.64 to 1.87 (from 0.81 to 1.03) and 73.3% (76.7%) of the estimates are significantly 

different from zero at the 5% level. The means across these 30 firms of HisL , MFL  and 

ATML  are respectively 2203, 2213 and 2216.  
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Secondly, our ARCH specifications and the models in Lamoureux and Lastrapes 

(1993) are estimated with a horizon of one day, while volatility estimates from option 

prices represent the expected average daily variation until the end of the option’s life. 

The mismatch between the estimation horizon and the option’s time to maturity may 

reduce the relative performance of both model-free volatility expectation and ATM 

implied volatility when they are compared with the GJR (1,1) model.  

 

5.2 Option life forecasts from OLS regressions 

 

The regression results are for non-overlapping observations, defined so that the 

estimation horizon is matched with the option’s time to maturity. Panel A, B and C of 

Table 6, respectively, report the results of both univariate and encompassing 

regressions that explain volatility, variance and the logarithm of volatility, 

respectively. The realized volatility is defined after Equation (7)7. As before, Table 6 

shows the mean, median, lower and upper quartile of the point estimates across 149 

firms. The two numbers in parentheses for each parameter estimate are the 

percentages of firms whose estimates are significantly different from zero at the 10% 

and 5% levels. The last three columns show the summary statistics for the regression 

explanatory powers, the adjusted explanatory powers and the sum of squared errors. 

 

                                                 
7 We have also estimated the regressions when realized volatility is measured by the sum of daily 

squared returns, such that: ∑
=

+=
H

i
itTtRE r

H 1

2
,,

252σ , where tr  is the return for day t , calculated 

using closing stock prices, and H  is the number of days between t  and the option expiry day. The 
results are similar to the results from Equation (6) but with lower average explanatory powers.  
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We begin our discussion with the results of the univariate regressions in Panel A of 

Table 6.  The null hypotheses 0=Hisβ , 0=MFβ  and 0=ATMβ  are separately 

rejected for 71.1%, 89.9% and 92.6% of all firms at the 10% level. The values of 2R  

are highest for the ATM implied volatility (mean 0.281), but the values for the model-

free volatility expectation are similar (mean 0.272); the values for historical volatility, 

however, are much lower (mean 0.166). This evidence suggests that volatility 

estimates extracted from option prices are much more informative than historical 

daily stock returns when the estimation horizons match the lives of the options. 

 

We next consider the encompassing regressions with two independent variables in 

Panel A of Table 6. The bivariate regression models that include the historical 

volatility variable increase the mean adjusted 2R  values slightly from the univariate 

levels for option specifications; from 0.265 to 0.281 for the ATM implied volatility 

and from 0.256 to 0.273 for the model-free volatility expectation. For these bivariate 

regressions, only a small number of firms reject the null hypothesis 0=Hisβ  at the 

5% level (34 for Hisσ  and MFσ , and 35 for Hisσ  and ATMσ ). Therefore for most firms 

it can not be rejected that the historical volatility of the underlying asset is redundant 

when forecasting future volatility, which may be a consequence of the informative 

option prices and/or the small number of forecasts that are evaluated. 

 

The bivariate regressions involving the model-free volatility expectation and the ATM 

implied volatility have a mean value of adjusted 2R  equal to 0.274, which is 

fractionally less than that for the bivariate regressions involving the historical and the 

ATM volatilities. This can be explained by the very high correlation between the 
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model-free volatility expectation and the ATM implied volatility. For most firms, 

both the null hypotheses 0=MFβ  and 0=ATMβ  can not be rejected, showing that we 

can not decide that one option measure subsumes all the information contained in the 

other.  

 

The regression involving all three volatility estimates has a mean adjusted 2R  equal 

to 0.286. The mean values of Hisβ , MFβ  and ATMβ  are respectively 0.058, 0.201 and 

0.408, suggesting that the ATM forecasts are the most informative. 

 

The volatility variables in the regressions are replaced by variance and by logarithms 

of volatilities in Panel B and Panel C of Table 6. The comparisons between different 

specifications provide the same conclusions as those deduced from volatility 

regressions in Panel A. The variance regressions have lower values of 2R  and, 

therefore, fewer firms with significant coefficient estimates. However, the regressions 

that explain the logarithm of volatility generate higher values of 2R  and more firms 

with significant coefficient estimates. The differences are expected from the summary 

statistics in Table 2, which shows that variance estimates have higher variations than 

volatility estimates. Regressions of logarithms of volatilities are less affected by 

extreme observations.  

 

Comparisons of the explanatory powers of univariate regressions 

 

We focus on the results of the volatility regressions in Panel A of Table 4.6, as the 

variance regressions and the logarithmic volatility regressions produce similar 
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conclusions. Firstly, from univariate regressions, we find that the ATM implied 

volatilities on average result in the highest 2R  values and the historical volatilities the 

lowest. Secondly, in the bivariate regressions, the statistics of the adjusted 2R  values 

are always higher than those in univariate regression. For 75 firms, the adjusted 2R  

of the bivariate regression involving both MFσ  and Hisσ  is higher than that of the 

univariate regression with only MFσ . Similarly, for 71 firms, the adjusted 2R of the 

regression with both ATMσ  and Hisσ  is higher than that with only ATMσ . Thirdly, the 

highest mean adjusted 2R  occurs for the encompassing regression including all three 

volatility estimates. Therefore, we conclude that on average every volatility estimate 

contains some additional information beyond that provided by the other estimates. 

None of historical volatility, model-free volatility expectation or ATM implied 

volatility can subsume all the information in the others.  

 

The right block of Table 5 provides the frequency counts that show how often each of 

the three univariate forecasts has the highest value of 2R  in volatility regressions. 

There are important differences between the frequencies for one-day-ahead forecasts 

and in option life forecasts shown in Table 5. Only 15.4% (i.e. 23) of the firms have 

historical volatility ranking highest in the option life forecasts, compared with 35.6% 

in the left block. Both the model-free volatility expectation and the ATM implied 

volatility rank the highest more often in the right block than in the left block. The 

ATM implied volatility has the best regression results for 47.7% (i.e. 71) of the 

sample firms, while the model-free volatility expectation performs the best for 36.9% 

(i.e. 55 firms). Thus, only when the estimation horizon is matched do we find that the 

option prices are clearly more informative than the historical daily returns. 
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6 Cross-sectional comparisons 

 

For both one-day-ahead forecasts and option life forecasts, we can not find any one 

volatility estimate, among historical volatility, model-free volatility expectation and 

ATM implied volatility, that is consistently more informative than the others for most 

of our sample firms. The liquidity of option trading can partially explain why some 

firms appear to have more informative option prices (relative to historical forecasts) 

while the others do not. However, it is hard to discover why ATM implied volatility 

outperforms the model-free volatility expectation for nearly half of the sample firms; 

this is true even for the firms having the more actively traded options.  

 

Theoretically, the model-free volatility expectation is superior to Black-Scholes ATM 

implied volatility, as it is defined to contain the information from a complete set of 

option prices and is model-independent. In this section, we select some firm specific 

variables and try to discover the properties of the firms for which one prediction 

method is better than the others. 

 

To explain the different performance of volatility estimates from option prices relative 

to historical forecasts, as stated before, the firm’s option trading liquidity is one key 

factor. In the IvyDB Dataset, we are provided with the option trading volume, which 

is the number of option contracts traded in the market, but without the exact 

transaction prices. We choose to use this volume data as a measure of option liquidity 

although it might be the results of high or low option transaction prices and thus is an 



 38

approximate measure. In addition, we also calculate the firm’s average stock trading 

volume and the firm’s average market capitalization, because firms with more liquid 

stock trading and with larger size tend to have more liquid option trading. Therefore, 

we conjecture that firms with option prices more informative than historical 

volatilities have higher average values of option trading volume, stock trading volume 

and market capitalization than the firms with historical volatilities more informative 

than option prices.  

 

We consider two types of explanations for the relative performance of model-free 

volatility expectation and ATM implied volatility. Firstly, we define appropriate 

variables that summarize the available market option prices, which might influence 

the implementation of the model-free volatility expectation. According to the 

simulation tests in Jiang and Tian (2005, 2007), the estimation error of the model-free 

volatility expectation is higher when the range of available strike prices is small 

and/or when the distance between each two strike prices is large. We estimate both 

the range of available strike prices and the average interval between each two 

consecutive strike prices8 using the moneyness scale to measure theses intervals.  We 

also consider the average number of market available strike prices because, with more 

strike prices, we may extract more information and thus the constructed implied 

volatility curve is more reliable.  

 

                                                 
8 According to the contract specifications of option contracts written on individual stocks by the CBOE, 
the strike price intervals are generally 2.5 when the strike price is between $5 and $25, 5 when the 
strike price is between $25 and $200, and 10 when the strike price is over $200. The discretization 
errors in the numerical integrations in our estimation of model-free volatility expectation are reduced 
because we use a large number of interpolated option prices with tiny intervals between each two 
traded. The average interval between market available strike prices included here actually assesses the 
reliability of the estimation of the implied volatility curve. 
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Secondly, the relative option liquidity of ATM or near-the-money options to OTM 

options may be relevant. The information efficiency of model-free volatility 

expectation relies on the efficiency of OTM option prices while ATM implied 

volatility represents only the ATM options. If most option trading is concentrated on 

ATM options, the measure of model-free volatility expectation might be influenced 

because the option prices used to derive it might not reflect the true market 

expectations of rational investors. Therefore we estimate the ratio between the trading 

volume of ATM options and all option trading volume and conjecture that the firms 

with ATM implied volatility outperforming model-free volatility expectation tend to 

have a higher average value of the ratio.  

 

With a similar motivation, we also include the ratio between the trading volume of 

intermediate delta options over all option trading volume, where intermediate delta 

options are defined by us as the options with delta within the interquartile range of 

Black-Scholes delta values, which is  [0.25 rTe− , 0.75 rTe− ]. When the relative 

trading activity of these options is high, there is relatively less or no trading in the 

strike prices that are far away from ATM. Therefore, the model-free volatility 

expectation, which includes all strike prices, might then lose its advantage and thus 

the ATM implied volatility concentrated on only one central strike price might tend to 

perform better.  

 

The eight selected firm specific variables and how we estimate them are summarized 

in Table 7. The means and standard deviations of each variable across 149 firms are 

presented in Panel A of Table 8. In Panel B of Table 8, we consider the 16 firms for 

which the historical volatility appear to be more informative than option prices under 
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both one-day-ahead forecasts and option life forecasts, in the group called “His>OP”. 

The symbol “OP” refers to both model-free volatility expectation and ATM implied 

volatility, and the group of “His>OP” includes the firms satisfying both “His>MF” 

and “His>ATM”. Based on similar criteria, there are 73 firms satisfying “OP>His”, 

which is equivalent to the criteria of “MF>His” or “ATM>His” in both one-day-ahead 

forecasts and option life forecasts. 

 

First of all, as we expected, the means of variables representing or proxying option 

liquidity, including option trading volume, stock trading volume and firm size, in the 

group “His>OP” are all lower than those in the group “OP>His”. We perform the 

Student’s t  test with the null hypothesis that the mean in group “His>OP” is equal to 

or higher than the mean in group “OP>His” and find that the null hypothesis is 

strongly rejected for each of these three variables. The t -test statistics are –5.08 

(option volume), -4.03 (stock volume) and –2.75 (firm size). 

 

Secondly, the same null hypothesis is also decisively rejected for the average number 

of strike prices, with a t -test value equal to –5.03. When there are more market 

available strike prices, the estimation of model-free volatility expectation is likely to 

be improved. Moreover, the CBOE issues new strike prices and increases the number 

of strike prices when the underlying asset price varies beyond the existing strike 

prices range. So when the number of strike prices increases, options may better and 

more quickly capture the variation in stock prices movements, than historical 

forecasts that are based upon only the autocorrelation property of daily volatilities. 
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In Panel C of Table 8, we compare the firms satisfying “MF>ATM” and the firms 

satisfying “ATM>MF” for both one-day-ahead forecasts and option life forecasts. The 

selections of firms consider only the comparisons between model-free volatility 

expectation and ATM implied volatility, by ignoring the ranking of historical 

volatility. There are 37 firms in the group “MF>ATM” and 60 in the group 

“ATM>MF”, showing again that the ATM implied volatility performs better than the 

model-free volatility expectation for more firms under both forecast horizons.  

 

In the one-sided hypothesis tests, the student t  statistics are not highly significant for 

most of the variables. The −p values of average strike prices interval and firm size 

are slightly lower than the 5% significance level. The firms in the group “ATM>MF” 

have a higher average firm size than that of the firms in the group “MF>ATM”.  

Opposite to what we expected, the average strike price interval for the firms with the 

model-free volatility expectation performing better is slightly higher. This might 

reflect a wider strike price range for these firms. It is possible when the distribution of 

market available strike prices is more dispersed, that the theoretical advantages of the 

model-free volatility expectation will be more likely to be detected.  

 

We can not find evidence that the relative trading volume of ATM options or the ratio 

of intermediate delta options to all options can explain the comparisons between ATM 

implied volatility and model-free volatility expectation. A high relative trading for 

ATM options or intermediate delta options might occur when there is illiquid trading 

for all options. In order to discover for which kind of firms model-free volatility 

expectation is more informative than ATM implied volatility, for each firm, we also 

estimate some other variables, including realized volatility over the sample period, 
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average risk-neutral skewness9 and Beta10. However, the average level of any of these 

variables for firms with model-free volatility expectations more informative than 

ATM implied volatilities is not significantly different from the average level for the 

firms that have ATM implied volatilities performing better.  

 

From the cross-sectional analysis, it is obvious that the relative performance of option 

prices and historical forecasts when forecasting volatility for individual stocks is 

highly determined by the liquidity of option trading. As for the comparisons between 

model-free volatility expectation and ATM implied volatility for individual stocks, it 

is hard to identify the key effective factors. There are two possible explanations of the 

relatively poor performance of model-free volatility expectation, which can not be 

verified using our available data. Firstly, the individual stock options data might 

contain measurement errors from nonsynchronous trading of option and stocks, bid-

ask spread etc, with different levels for different strike prices. The model-free 

volatility expectation calculated as a combination of option prices across all strikes, 

contains more noise in total than ATM implied volatility that is from the ATM 

options alone. This may also explains why the explanatory powers in our regressions 

for option life forecasts are lower than those in some existing literature on stock index 

options that contain less measurement errors. 

 

Another explanation may be that the trading of individual stock options, especially the 

OTM options, is not sufficient to reflect the advantages of the model-free volatility 

expectation over ATM implied volatility. Even for the firms with the highest option 

                                                 
9 The measures of risk-neutral skewness are estimated according to Bakshi, Kapadia and Madan (2003). 
The time-series average of daily measures is used for each firm.  
10 Beta for each firm is calculated as the coefficient estimate when regressing the firm’s daily stock 
returns, from January 1996 to December 1999, on the daily returns of the S&P 100 index.  
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trading volume, the liquidity of their options are still far less than that of the stock 

indices or exchange rate options. Illiquidity might also be the reason why we can not 

find significant results when using the firm specific variables, such as relative option 

trading volume, to explain the performance of the model-free volatility expectation. 

 

7 Conclusion 

 

The main contribution of this chapter is that, for the first time in the existing 

literature, we compare the information content of three volatility estimates, namely 

the historical forecasts, the newly-developed model-free volatility expectation and the 

ATM implied volatility, for each of a large number of U.S. individual stocks. 

 

For the majority of our sample firms, the three volatility estimates are all shown to 

contain relevant, but not all, information about the variation of underlying asset 

returns. There is a consensus from previous studies about the informational efficiency 

of options written on stock indices and foreign exchange rates that option prices are 

more informative than historical daily stock returns when estimating and predicting 

the volatility of underlying assets. Our analysis of 149 firms shows that, however, a 

different estimation conclusion applies to options for individual firms. For one-day-

ahead estimation, more than a third of our firms do not have volatility estimates, 

extracted from option prices, that are more accurate than those provided by a simple 

ARCH model estimated from daily stock returns. When the prediction horizon 

extends until the expiry date of the options, the historical volatility becomes less 

informative than either the ATM implied volatility or the newly-developed model-free 
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volatility expectation for 126 out of 149 firms. Our results also show that both 

volatility estimates from option prices are more likely to outperform historical returns 

when the firm has higher average option trading volume.  

 

The interest shown in the model-free volatility expectation is largely due to its 

property of model independence. We use a quadratic function of delta to estimate the 

implied volatility curve and then interpolate a large number of option prices to 

approximate the integral function used to estimate the model-free volatility 

expectation. Although the model-free volatility expectation has been demonstrated 

firmly to be the most accurate predictor of realized volatility by Jiang and Tian (2005) 

for the S&P 500 index, it only outperforms both the ATM implied volatility and the 

historical volatility for about one-third of our sample firms. In contrast, the ATM 

implied volatility is the method that most often performs the best. It is also interesting 

to find that for those firms with ATM implied volatility outperforming model-free 

volatility, the relative trading volume of ATM options are not significantly higher 

than that of the firms with model-free volatility expectation performing better.  

 

The relatively poor performance of the model-free volatility expectation might be 

explained by the overall illiquidity of the individual stock option market. That is why 

we can not draw significant conclusions when using relative option trading volume to 

explain for which firms the model-free volatility expectation tends to outperform the 

ATM implied volatility. Another possible explanation is that the OTM option prices 

contain measurement error or are mispriced and, therefore, the model-free volatility 

expectation, which is a combination of option prices across all strikes, is 

outperformed by the information provided by ATM options alone. A third explanation 
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may be that option prices for all strikes can not be inferred reliably from a handful of 

traded strikes. So the theoretical predomination of model-free volatility expectation 

over ATM implied volatility is not exhibited for our individual stock options. 
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Figure 1 Distribution of the average number of daily available strike 
prices for 149 firms 
 
This figure shows the frequency counts of firms having different number of option 
observations during the sample period from January 4, 1996 to December 31, 1999. The x-
axis is the average number of daily available strike prices for firm i , 

iN , defined as the total 
number of option observations for firm i  during the sample period divided by the number of 
trading days. The y-axis is the number of firms. 
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Figure 2 Examples of the model-free volatility expectation and the ATM 
implied volatility  
 
The figure plots the time series of daily estimates of model-free volatility expectation and 
ATM implied volatility over the sample period from January 1996 to December 1999.  
 
Panel A: Time series plot for General Electric 

 
Panel B: Time series plot for IBM 
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Figure 3 Comparison of the estimated values of 
γβ

γ
−1

 and 
δβ

δ
−1

 for 149 

firms 
 
For each firm, 

γβ
γ
−1

 and 
δβ

δ
−1

 are, respectively, obtained from the estimates of the ARCH 

specification using information provided by the model-free volatility expectation only and the 
estimates of the model using information provided by the ATM implied volatility only. The 
straight line is the 45-degree line. 
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Table 1 Summary statistics for daily volatility estimates 
 
The table contains the summary statistics for daily volatility estimates obtained from options, 
from January 1996 to December 1999. Numbers are cross-sectional statistics calculated from 
time series statistics, for a cross-section of 149 firms. The mean, qL , Median and qU  are, 
respectively, the mean, lower quartile, median and upper quartile values of each statistic 
across 149 firms. MFσ  and ATMσ  are the daily estimates of model-free volatility 
expectation and ATM implied volatility. The last panel shows the cross-sectional statistics of 
the firms’ correlation coefficients between MFσ  and  ATMσ . 
 

  Mean qL  Median qU  
       

Panel A: MFσ  

Mean  0.523 0.371 0.521 0.646 
Std. Dev.  0.123 0.078 0.106 0.131 
Max  1.538 0.826 1.176 1.527 
Min  0.316 0.222 0.311 0.403 

 

Panel B: ATMσ  

Mean  0.486 0.351 0.484 0.610 
Std. Dev.  0.099 0.072 0.094 0.114 
Max  1.093 0.755 1.023 1.278 
Min  0.296 0.205 0.285 0.381 

 

Panel C: ATMMF σσ −  

Mean  0.036 0.024 0.032 0.043 
Std. Dev.  0.051 0.026 0.035 0.048 
Max  0.634 0.218 0.301 0.415 
Min  -0.105 -0.132 -0.067 -0.042 
      

Panel D: Correlation coefficient between MFσ  and ATMσ  

Correlation  0.926 0.907 0.940 0.960 
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Table 2 Summary statistics for non-overlapping volatility estimates 
 
The table contains the summary statistics for non-overlapping volatility estimates for 
regression analysis from January 1996 to December 1999. Numbers are cross-sectional 
statistics calculated from time series statistics, for a cross section of 149 firms. The qL , Med 
and qU  are, respectively, the lower quartile, median and upper quartile values of each 
statistic across 149 firms. MF, ATM, His and RE represent respectively the annualized values 
of model-free volatility expectation, at-the-money implied volatility, historical forecast from 
GARCH model and realized volatility calculated from Parkinson (1980)’s formula.  
 
 MF ATM HIS RE 
 qL  Med qU  qL  Med qU  qL  Med qU  qL  Med qU  
             

Panel A: volatility 
Mean 0.37 0.51 0.64 0.35 0.49 0.61 0.32 0.50 0.60 0.29 0.42 0.54 
Std.Dev. 0.07 0.09 0.11 0.06 0.09 0.11 0.05 0.08 0.11 0.09 0.11 0.15 
Skew 0.43 0.78 1.12 0.38 0.70 1.10 0.69 1.28 2.05 0.60 1.03 1.45 
Exc. Kurtosis -0.37 0.25 1.62 -0.61 0.20 1.52 0.53 2.71 5.89 0.08 1.21 2.86 
Max 0.59 0.80 0.98 0.56 0.71 0.90 0.52 0.73 0.94 0.57 0.80 0.99 
Min 0.25 0.36 0.45 0.23 0.34 0.43 0.22 0.34 0.46 0.16 0.22 0.31 
             

Panel B: variance 
Mean 0.14 0.27 0.42 0.13 0.24 0.38 0.11 0.26 0.36 0.09 0.19 0.31 
Std.Dev. 0.06 0.10 0.17 0.05 0.08 0.14 0.04 0.07 0.13 0.06 0.12 0.19 
Skew 0.77 1.18 1.77 0.68 1.09 1.70 1.14 1.93 2.84 1.20 1.75 2.58 
Exc. Kurtosis 0.23 1.10 4.53 -0.05 1.12 3.45 1.56 5.14 10.48 1.36 4.01 8.23 
Max 0.35 0.64 0.97 0.31 0.51 0.81 0.27 0.54 0.89 0.33 0.65 0.99 
Min 0.06 0.13 0.21 0.05 0.11 0.18 0.05 0.11 0.21 0.03 0.05 0.10 
             

Panel C: natural logarithm of (100 ×  volatility) 
Mean 3.58 3.93 4.14 3.53 3.88 4.09 3.46 3.89 4.09 3.33 3.69 3.96 
Std.Dev. 0.15 0.17 0.21 0.15 0.17 0.21 0.11 0.16 0.23 0.23 0.26 0.30 
Skew 0.07 0.34 0.66 0.00 0.29 0.61 0.22 0.75 1.49 -0.02 0.26 0.60 
Exc. Kurtosis -0.65 -0.24 0.43 -0.73 -0.28 0.30 -0.07 1.16 3.23 -0.42 -0.04 0.52 
Max 4.09 4.38 4.59 4.02 4.27 4.50 3.95 4.29 4.55 4.04 4.39 4.60 
Min 3.20 3.59 3.82 3.15 3.51 3.76 3.09 3.51 3.83 2.77 3.08 3.43 
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Table 3 Summary statistics of the correlation matrices 

 
The table presents the summary statistics of the correlation matrices calculated for the sample 
period from January 1996 to December 1999. Correlation coefficients for each firm are 
calculated for the non-overlapping observations of volatility estimates. The mean, qL , Med 
and qU  are respectively the cross-sectional mean, lower quartile, median and upper quartile 
of the correlation coefficients of 149 firms. MFσ , ATMσ , Hisσ  and REσ  are , respectively, 
the model-free volatility expectation, ATM implied volatility, historical volatility and realized 
volatility calculated from Parkinson (1980)’s formula. Numbers are stated as percentages. 
 

Panel A: correlation matrices of volatility estimates 

 MFσ   ATMσ   Hisσ  
               

 Mean qL  Med qU   Mean qL  Med qU   Mean qL  Med qU  
               

ATMσ  93.7 92.3 95.2 97.1           

Hisσ  54.7 37.3 57.6 74.5  56.2 41.2 57.7 74.7      

REσ  49.2 37.3 51.6 62.7  50.2 37.7 51.6 62.1  34.4 19.1 34.3 50.0 
               

Panel B: correlation matrices of variance estimates 

 2
MFσ   2

ATMσ   2
Hisσ  

               

 Mean qL  Med qU   Mean qL  Med qU   Mean qL  Med qU  
               

2
ATMσ  93.3 92.3 95.2 97.1           
2
Hisσ  53.1 37.0 55.4 75.8  54.6 39.9 56.6 74.6      
2
REσ  47.1 34.1 48.7 58.7  47.8 34.9 47.9 60.3  31.0 15.9 31.2 47.9 

               

Panel C: correlation matrices of natural logarithm of  (100 × volatility) 

 )100ln( MFσ   )100ln( ATMσ   )100ln( Hisσ  
               

 Mean qL  Med qU   Mean qL  Med qU   Mean qL  Med qU  
               

)100ln( ATMσ  93.8 92.0 95.1 96.9           
)100ln( Hisσ  55.3 38.1 58.9 73.4  56.7 42.4 60.0 74.5      
)100ln( REσ  49.9 38.1 51.3 62.4  51.2 39.4 53.3 62.9  36.3 21.6 36.8 51.9 

               

 
 
 
 

 

 

 
 
 
 
 
 
 
 



 57

Table 4 Summary statistics of ARCH parameter estimates across 149 
firms  
 
Daily stock returns tr  are modelled by the ARCH specification: tttr εψεμ ++= −1 , 

ttt zh=ε , ),.(d.i.i~zt 10 , 
LLL

sh t,ATMt,MFttt
t

δγ β
δσ

β
γσ

β
εααεω

−
+

−
+

−
++

= −−−−
−

−

111
 

2
1

2
1

2
11

2
1 , ts  is 1 if 0≤tε , otherwise 

ts  is zero. MFσ  and ATMσ  are respectively the daily measure of model-free volatility 
expectation and ATM implied volatility. Parameters are estimated by maximizing the quasi-
log-likelihood function . Panel A contains the results for the GJR (1,1)-MA (1) model; Panel 
B and Panel C for models that use information provided by model-free volatility expectation 
and ATM implied volatility respectively. Cross-sectional statistics including mean, standard 
deviation, lower quartile ( qL ), median and upper quartile ( qU ) across 149 firms for each 
parameter are presented. Numbers under the column “10%/5%/1%” are the percentages of 
estimates which are significantly different from zero at the 10%, 5% and 1% levels. 
Inferences are made through t-ratios constructed from the robust standard errors of Bollerslev 
and Wooldridge (1992). HisL , MFL  and ATML represent the maximized loglikelihood values of 
each model. 
 

 Mean Std. Dev. qL  Med qU  10%/5%/1% 
       

Panel A: estimates of GJR (1,1)-MA (1) model 
310×μ  0.91 0.96 0.40 0.85 1.42 (24.2/11.4/8.7) 

θ  0.00 0.06 -0.04 0.00 0.04 (27.5/16.1/11.4) 
510×ω  17.61 28.93 1.57 5.91 17.89 (74.5/63.8/43.6) 

α  0.05 0.07 0.00 0.03 0.06 (32.2/20.1/8.1) 
−α  0.12 0.20 0.04 0.08 0.13 (54.4/43.0/25.5) 

β  0.77 0.23 0.66 0.86 0.93 (93.3/93.3/90.6) 
Persistence 0.87 0.18 0.81 0.94 0.98  

HisL  2141 340 1860 2083 2438  
       

Panel B: estimates of ARCH specification that uses model-free volatility expectation only 
310×μ  0.77 0.92 0.33 0.73 1.22 (24.2/12.8/6.0) 

θ  0.01 0.05 -0.03 0.00 0.05 (24.8/17.4/9.4) 
510×ω  10.35 25.16 0.00 0.49 10.15 (2.0/0.7/0) 

γ  0.65 0.26 0.48 0.71 0.85 (61.1/50.3/39.6) 

γβ  0.19 0.26 0.00 0.03 0.34 (8.7/7.4/6.7) 

( )γβγ −1  0.80 0.19 0.72 0.83 0.90  

MFL  2143 339 1872 2075 2454  
       

Panel C: estimates of ARCH specification that uses ATM implied volatility only 
310×μ  0.77 0.91 0.35 0.71 1.23 (20.8/11.4/6.7) 

θ  0.01 0.05 -0.03 0.01 0.05 (26.2/15.4/7.4) 
510×ω  9.41 22.27 0.00 0.00 7.27 (0.7/0/0) 

δ  0.81 0.29 0.62 0.88 1.01 (57.0/42.3/28.2) 

δβ  0.14 0.24 0.00 0.00 0.20 (6.0/4.0/3.4) 

( )δβδ −1  0.92 0.22 0.84 0.96 1.04  

ATML  2144 340 1870 2078 2453  
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Table 5 Frequency counts for the variables that best describe the volatility 
of stock returns 
 
The figures are the numbers and the percentages (out of 149) of firms that satisfy the 
orderings in the first column. For one-day-ahead forecasts, frequency counts are based on the 
maximized log-likelihood values of the ARCH specifications that use historical daily returns, 
model-free volatility expectation and ATM implied volatility, respectively. The higher the 
log-likelihood value, the better the volatility estimate is. For option life forecasts, the 
frequency counts are based on the explanatory powers of the univariate regressions that 
contain historical volatility, model-free volatility expectation and ATM implied volatility, 
respectively. The higher the explanatory power, the better the volatility estimate is. His, MF 
and ATM respectively represent the historical forecast, the model-free volatility expectation 
and the ATM implied volatility. 
 

  For one-day-ahead forecasts  For options’ life forecasts 
       
His is the best  53 35.57%  23 15.44% 
His>MF>ATM  21 14.09%  9 6.04% 
His>ATM>MF  32 21.48%  14 9.40% 
       
MF is the best  41 27.52%  55 36.91% 
MF>ATM>His  38 25.50%  51 34.23% 
MF>His>ATM  3 2.01%  4 2.68% 
       
ATM is the best  55 36.91%  71 47.65% 
ATM>MF>His  49 32.89%  60 40.27% 
ATM>His>MF  6 4.03%  11 7.38% 
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Table 6 Summary statistics of estimates across 149 firms for univariate 
and encompassing regressions  
 
The table contains the results of both univariate and multivariate OLS regressions. Panel A 
presents the results of the regressions for volatility, with the general specification such that:  

TtRE ,,σ = 0β + TtHisHis ,,σβ + MFβ TtMF ,,σ + TtATMATM ,,σβ + Tt ,ε ; 
Panel B for variance with the specification:  

2
,, TtREσ = 0β + TtTtATMATMTtMFMFTtHisHis ,

2
,,

2
,,

2
,, εσβσβσβ +++ ; 

and Panel C for the logarithm of volatility with the specification:  
( )TtRE ,,100ln σ = 0β + ( )TtHisHis ,,100ln σβ + MFβ ( )TtMF ,,100ln σ + ATMβ ( )TtATM ,,100ln σ + Tt ,ε , 

where REσ , MFσ , ATMσ  and Hisσ  respectively refer to the realized volatility calculated from 
Parkinson (1980)’s formula, model-free volatility expectation, at-the-money option implied 
volatility and historical forecast from GARCH model. The regressions are estimated for each 
out of 149 firms and then the cross-sectional summary statistics, including mean, lower 
quartile ( qL ), median (Med), upper quartile ( qU ), for each coefficient estimate are presented. 

Numbers in parentheses are the percentages of firms whose the estimates are significantly 
different from zero at the 10% and the 5% levels. Inferences are made through the standard 
errors computed following a robust procedure taking account of heteroscedasiticity [White 
(1980)]. SSE is the sum of squared error of the regression. 
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Table 6 Summary statistics of estimates across 149 firms for univariate 
and encompassing regressions  
 
Panel A: results of volatility regressions 

  0β  Hisβ  MFβ  ATMβ  2R  2.Radj  SSE 

         
His Mean 0.203 0.505   0.166 0.148 0.669 
 qL  0.046 0.271   0.040 0.020 0.252 
 Med 0.158 0.504   0.117 0.099 0.542 
 qU  0.307 0.761   0.250 0.234 0.941 
  (57.7/49.0) (71.1/61.7)      
         

MF Mean 0.120  0.601  0.272 0.256 0.573 
 qL  0.037  0.465  0.139 0.121 0.212 
 Med 0.096  0.617  0.266 0.250 0.461 
 qU  0.179  0.750  0.393 0.380 0.835 
  (40.9/29.5)  (89.9/86.6)     
         

ATM Mean 0.101   0.680 0.281 0.265 0.572 
 qL  0.008   0.503 0.142 0.124 0.202 
 Med 0.089   0.693 0.266 0.250 0.447 
 qU  0.179   0.855 0.386 0.373 0.825 
  (36.9/26.8)   (92.6/90.6)    
         

His+MF Mean 0.108 0.113 0.526  0.303 0.273 0.550 
 qL  0.006 -0.065 0.317  0.163 0.127 0.198 
 Med 0.071 0.098 0.552  0.281 0.250 0.434 
 qU  0.162 0.330 0.711  0.427 0.402 0.777 
  (25.5/17.4) (30.9/22.8) (75.2/64.4)     
         

His+ATM Mean 0.104 0.065  0.621 0.311 0.281 0.548 
 qL  -0.006 -0.096  0.430 0.176 0.140 0.192 
 Med 0.070 0.081  0.599 0.299 0.268 0.436 
 qU  0.144 0.324  0.830 0.417 0.392 0.770 
  (24.2/14.8) (28.9/23.5)  (79.9/70.5)    
         

MF+ATM Mean 0.102  0.239 0.425 0.304 0.274 0.552 
 qL  0.009  -0.163 -0.003 0.166 0.129 0.198 
 Med 0.090  0.149 0.528 0.290 0.259 0.430 
 qU  0.180  0.618 0.926 0.415 0.389 0.789 
  (37.6/26.8)  (20.1/16.8) (28.9/22.8)    
         

His+MF+ATM Mean 0.107 0.058 0.201 0.408 0.331 0.286 0.531 
 qL  0.003 -0.104 -0.203 -0.077 0.195 0.141 0.186 
 Med 0.070 0.077 0.151 0.479 0.316 0.270 0.412 
 qU  0.157 0.297 0.536 0.820 0.454 0.418 0.764 
  (22.8/13.4) (26.8/20.8) (9.5/12.1) (25.5/17.4)    
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Table 6 Summary statistics of estimates across 149 firms for univariate 
and encompassing regressions (Cont.) 
 
Panel B: results of variance regressions 

  0β  Hisβ  MFβ  ATMβ  2R  2.Radj  SSE 
         
His Mean 0.126 0.422   0.142 0.124 0.022 
 qL  0.021 0.181   0.028 0.007 0.003 
 Med 0.070 0.404   0.097 0.078 0.012 
 qU  0.193 0.658   0.230 0.213 0.030 
  (61.7/53.7) (63.8/54.4)      
         

MF Mean 0.064  0.518  0.253 0.237 0.018 
 qL  0.010  0.359  0.116 0.097 0.002 
 Med 0.045  0.518  0.237 0.221 0.010 
 qU  0.102  0.653  0.345 0.331 0.025 
  (45.6/33.6)  (86.6/79.2)     
         

ATM Mean 0.055   0.629 0.259 0.243 0.018 
 qL  0.000   0.422 0.122 0.103 0.002 
 Med 0.034   0.614 0.230 0.213 0.010 
 qU  0.089   0.780 0.364 0.351 0.025 
  (39.6/33.6)   (89.9/83.2)    
         

His+MF Mean 0.068 0.051 0.475  0.286 0.255 0.018 
 qL  0.006 -0.121 0.266  0.152 0.115 0.002 
 Med 0.035 0.059 0.472  0.272 0.240 0.010 
 qU  0.100 0.288 0.624  0.412 0.386 0.025 
  (29.5/20.1) (30.9/22.1) (71.1/56.4)     
         

His+ATM Mean 0.066 0.003  0.601 0.291 0.260 0.018 
 qL  -0.001 -0.142  0.342 0.149 0.112 0.002 
 Med 0.029 0.041  0.553 0.279 0.248 0.010 
 qU  0.092 0.256  0.784 0.415 0.390 0.024 
  (27.5/20.8) (28.9/20.1)  (75.2/64.4)    
         

MF+ATM Mean 0.055  0.226 0.375 0.288 0.257 0.018 
 qL  0.001  -0.135 -0.121 0.148 0.110 0.002 
 Med 0.036  0.233 0.338 0.263 0.231 0.010 
 qU  0.098  0.553 0.824 0.415 0.390 0.024 
  (43.6/32.9)  (22.8/16.1) (29.5/21.5)    
         

His+MF+ATM Mean 0.067 -0.001 0.199 0.378 0.317 0.271 0.017 
 qL  0.003 -0.174 -0.173 -0.049 0.176 0.122 0.002 
 Med 0.036 0.039 0.232 0.387 0.302 0.255 0.009 
 qU  0.157 0.297 0.536 0.820 0.441 0.404 0.023 
  (22.8/13.4) (26.8/20.8) (9.5/12.1) (25.5/17.4)    
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Table 6 Summary statistics of estimates across 149 firms for univariate 
and encompassing regressions (Cont.) 
 
Panel C: the results of logarithm volatility regressions 

  0β  Hisβ  MFβ  ATMβ  2R  2.RAdj  SSE 

         
His Mean 1.344 0.620   0.179 0.162 0.059 
 qL  0.250 0.378   0.050 0.030 0.044 
 Med 1.288 0.618   0.136 0.117 0.053 
 qU  2.312 0.889   0.270 0.254 0.067 
  (48.3/44.3) (75.2/69.8)      
         

MF Mean 0.834  0.731  0.278 0.262 0.052 
 qL  0.170  0.594  0.145 0.127 0.038 
 Med 0.764  0.749  0.263 0.247 0.047 
 qU  1.374  0.887  0.390 0.377 0.064 

  (33.6/24.8)  (91.9/88.6)     
         

ATM Mean 0.713   0.775 0.290 0.275 0.051 
 qL  0.016   0.601 0.155 0.137 0.037 
 Med 0.673   0.777 0.284 0.268 0.047 
 qU  1.310   0.960 0.396 0.383 0.061 
  (31.5/22.8)   (92.6/90.6)    
         

His+MF Mean 0.607 0.182 0.613  0.308 0.278 0.049 
 qL  -0.179 -0.016 0.372  0.175 0.140 0.036 
 Med 0.501 0.187 0.645  0.290 0.259 0.046 
 qU  1.145 0.418 0.812  0.424 0.399 0.062 
  (18.8/12.1) (30.9/24.8) (75.8/67.1)     
         

His+ATM Mean 0.601 0.127  0.680 0.319 0.289 0.049 
 qL  -0.257 -0.074  0.477 0.180 0.144 0.036 
 Med 0.412 0.154  0.692 0.307 0.277 0.045 
 qU  1.125 0.389  0.873 0.425 0.401 0.058 
  (20.8/14.8) (30.2/21.5)  (78.5/73.2)    
         

MF+ATM Mean 0.714  0.252 0.519 0.311 0.281 0.049 
 qL  -0.025  -0.254 0.092 0.170 0.133 0.036 
 Med 0.631  0.214 0.576 0.302 0.271 0.046 
 qU  1.399  0.676 1.053 0.425 0.400 0.060 
  (31.5/23.5)  (18.8/11.4) (32.9/23.5)    
         

His+MF+ATM Mean 0.067 0.118 0.197 0.483 0.336 0.292 0.047 
 qL  0.003 -0.086 -0.280 0.049 0.196 0.142 0.035 
 Med 0.036 0.153 0.138 0.572 0.330 0.285 0.044 
 qU  0.157 0.363 0.599 0.983 0.453 0.415 0.057 
  (22.8/13.4) (26.2/18.1) (14.1/9.4) (29.5/18.1)    

 
 
 
 



 63

Table 7 Summary of the firm specific variables 
 
The table contains the definitions and estimation methods of the firm specific variables that 
we use to investigate the properties of firms whose historical volatility, model-free volatility 
expectation or ATM implied volatility performs the best in measuring realized volatility. All 
variables for each firm are the time-series mean of daily measures from January 1996 to 
December 1999. In the calculation of option-related variables, only the options used in our 
study are included. Moneyness is defined as the option strike price over forward price that has 
the same time to maturity as options. The last column shows the objective that the specific 
variable is used to explain. OP refers to both model-free volatility expectation, MF, and ATM 
implied volatility, ATM, that are based upon option prices and His is historical volatility. 
 
Variables  How to measure…  To explain… 

     
Log(TV_OP)  The natural logarithm of the firm’s average 

option trading volume.  
 OP VS His 

     
Log(TV_Stock)  The natural logarithm of the firm’s average 

stock trading volume.  
 OP VS His 

     
Log(FirmSize)  The natural logarithm of the firm’s average 

firm size in 1000 dollars, where daily firm 
size, or market capitalization, is calculated 
as the number of shares outstanding in the 
market multiplied by the stock closing 
price. 

 OP VS His 

     
Moneyness Range  The average of daily option moneyness 

ranges, which is the daily maximum 
moneyness minus the minimum 
moneyness.  

 MF VS ATM 

     
Number of Strike Prices  The average number of available option 

strike prices.  
 MF VS ATM 

     
Average Strike Prices Interval   The average interval between each two 

adjacent strike prices, in moneyness. 
 MF VS ATM 

     
TV_ATM/TV_ALL  The ratio between the ATM option trading 

volumes over all option trading volumes. 
 MF VS ATM 

     
TV_IntermediateDelta/TV_ALL  The ratio between the trading volumes of 

intermediate delta options over all trading 
volumes, where intermediate delta options 
are defined as the options with delta within 
the interquartile range for Black Scholes 
delta values. 

 MF VS ATM 
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Table 8 Summary statistics of the firm specific variables for firms in different groups 
 
The table contains the sample means and standard deviations (shown in parentheses) of the selected firm specific variables for the firms satisfying the orders 
in the first column. MF, ATM and His refer to model-free volatility expectation, ATM implied volatility and historical volatility. The symbol “OP” includes 
both MF and ATM calculated from option prices. Panel B shows the statistics for the firms with OP performing better than His in both one-day-ahead and 
option life forecasts, and the statistics for the firms with His performing better than OP in both one-day-ahead and options’ life forecasts. Panel C shows the 
statistics for the firms with MF performing better than ATM in both one-day-ahead and options’ life forecasts, and the statistics for the firms with ATM 
performing better than MF in both one-day-ahead and option life forecasts. The t  statistics in Panel B and Panel C are the Student’s t  for the one-sided 
hypothesis tests of the differences between the means of variables in the upper group and of those in the lower group. The −p  value for each Student’s t  
statistic is reported. 
 

 No. of 
firms  Ln(TV_OP) Ln(TV_ 

Stock) Ln(FirmSize) Moneyness 
Range 

Number of  
Strike Prices 

Average Strike 
Prices Interval 

TV_ATM/ 
TV_ALL 

TV_IntermediateDelta 
/TV_ALL 

           

Panel A: for all firms 
 149  6.18 13.92 22.60 0.39 5.44 0.10 0.42 0.62 
   (1.42) (1.07) (1.65) (0.11) (1.54) (0.03) (0.06) (0.07) 

           

Panel B: OP VS His 
           

His>OP 16  5.27 13.19 21.96 0.36 4.63 0.10 0.43 0.60 
   (1.06) (1.17) (1.59) (0.10) (0.57) (0.04) (0.06) (0.09) 

OP>His 73  6.82 14.43 23.17 0.39 5.90 0.09 0.43 0.64 
   (1.29) (0.86) (1.58) (0.12) (1.78) (0.03) (0.06) (0.04) 

           

t  statistics   -5.08 -4.03 -2.75 -1.21 -5.03 1.47 0.06 -1.95 
−p value   0.000 0.000 0.006 0.120 0.000 0.079 0.478 0.034 

           

Panel C: MF VS ATM 
           

MF>ATM 37  6.07 13.87 22.28 0.40 5.14 0.10 0.43 0.63 
   (1.40) (1.03) (1.49) (0.11) (1.18) (0.03) (0.06) (0.06) 

ATM>MF 60  6.20 13.91 22.81 0.37 5.35 0.09 0.42 0.62 
   (1.31) (1.05) (1.58) (0.10) (1.12) (0.03) (0.06) (0.08) 

           

t  statistics   -0.43 -0.19 -1.66 1.37 -0.87 1.71 0.65 0.89 
−p value   0.336 0.424 0.050 0.088 0.194 0.045 0.260 0.188 

 


