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The theoretical relationship between the risk-neutral density (RND) of the euro/
pound cross rate and the bivariate RND of the dollar/euro and the dollar/pound
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INTRODUCTION

Option markets provide important information about market expectations
for foreign exchange rates. The future volatility of rates can be predicted by
inverting a pricing formula and these predictions are known to be generally
superior to forecasts obtained by estimating time series models from historical
rates (Jorion, 1995; Pong, Shackleton, Taylor, & Xu, 2004). Risk managers and
policy makers use implied volatilities but they are also interested in the addi-
tional information provided by probability densities for future rates. In particu-
lar, the most prominent users of option-based density expectations are central
banks (Bliss & Panigirtzoglou, 2002; Séderlind & Svensson, 1997).

Many numerical methods can be used to convert a set of option prices into
a univariate risk-neutral density (RND) and these are routinely applied to dol-
lar exchange rates (Campa, Chang, & Reider, 1998; Jondeau & Rockinger,
2000; Malz, 1996, 1997). A manager, a trader, or a central banker concerned
about the euro/pound cross rate may find, however, that these univariate meth-
ods are infeasible. The estimation and analysis of RNDs for exchange cross
rates is a difficult problem because cross-rate options have low liquidity and are
traded over-the-counter (OTC), at prices that are not usually available to
researchers. The contrast between the abundance of dollar option prices and
the paucity of non-dollar option prices suggests that the most constructive way
to learn about market expectations for cross rates may involve exploiting the
triangular relationship between cross rates and a pair of dollar rates (Bennett &
Kennedy, 2004).

The primary contribution of this study is a complete methodology for esti-
mating cross-rate RNDs from which cross-rate options can be priced. Our
methods are illustrated for options on the euro/pound rate and they rely on
prices from the highly liquid option markets for the dollar/pound and the dol-
lar/euro rates. We are the first to use the triangular relationship between three
currencies to infer the correct cross-rate RND from the bivariate density of
the two dollar exchange rates. This bivariate density is given by the product
of three terms: the two marginal densities for the dollar rates and a copula
function that quantifies their dependence.

The second contribution of this study is advice about selecting the copula
function, which is based upon comparing our derived cross-rate RNDs with
those implied by OTC RNDs. The cross-rate RNDs that we derive can be used
by banks, international businesses, and central bankers to assess market expec-
tations, to measure risks, and to value options, without relying on OTC mar-
kets, which may be either non-existent or illiquid.

Bikos (2000), Rosenberg (2003), and Bennett and Kennedy (2004) also
investigate cross-rate densities, their option prices, and the implied dependence
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between dollar exchange rates. Bikos (2000) uses option prices for all three
exchange rates to estimate the dependence between dollar rates. Rosenberg
(2003) shows how the bivariate density can be estimated non-parametrically,
using a copula function that is estimated from historical exchange rates. As we
explain in the following section, his cross-rate density is not risk-neutral because
a required change of numeraire from dollars (for the bivariate density) to a for-
eign currency (for the cross-rate density) is overlooked. Bennett and Kennedy
(2004) provide some related theoretical results for quanto options, which have
dollar payoffs that are contingent upon cross rates.

Our empirical results are all for the dollar, pound, and euro currencies.
We compare the option prices for cross rates quoted by a bank with those that we
derive from dollar option prices. Our derived prices depend on a source, a cop-
ula function, and its dependence parameter. We compare the results for dollar
option prices obtained from two sources: the OTC market and the Chicago
Mercantile Exchange (CME). We compare results for five widely used copula
functions, namely the Clayton, Frank, Gaussian, Gumbel, and Plackett copu-
las. For each copula function, we fix the dependence parameter by using either
the at-the-money (ATM), OTC cross-rate price or the recent historical record
of exchange rates. We find first that the publicly available CME source gives
essentially the same results as the OTC source, second that the Frank,
Gaussian, and Gumbel copulas provide the most satisfactory option prices, and
third that historical correlations are on average lower than those implied by
cross-rate, OTC option prices.

This article continues with three theoretical sections, followed by three
empirical sections. The following section derives the relationship between the
RND for the cross rate and the bivariate RND for two dollar exchange rates,
using risk-neutral measures determined by the numeraires of payoffs. An intro-
duction to copula functions is then provided; these are used to characterize the
relationship between the bivariate RND and the marginal RNDs for the dollar
rates. The third theoretical section summarizes three standard methods for
estimating marginal RNDs. The empirical framework, the data, and the empir-
ical results are then presented. Finally, conclusions are stated.

THE RISK-NEUTRAL DENSITY FORMULA FOR
CROSS RATES

Our first objective is to produce formulae for the cross-rate RND and the prices
of cross-rate options by using the prices of dollar-denominated assets. Option
payoffs depend on the rates of exchange between dollars ($, USD), pounds
(£, GBP), and euros (€, EUR) in our three-currency framework. We denote the
dollar price of one pound at time t by $¥* and likewise the dollar price of one
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euro at the same time is denoted by S¥€. The cross-rate price of one pound in
euros is then given by S&/* = ¥t /S%€,

At time zero we assume that there is a complete market for $/£ European
call options, priced in dollars, which expire at time T. This implies the exis-
tence of a unique RND for S}/* that we denote by f(y); the dollar subscript
emphasizes that the numeraire of asset payoffs is dollars. Likewise, there is an
RND for S¥€ that we denote by fs(z). We also assume that it is possible to
define a bivariate RND for (S¥%, S¥/€), denoted by f,(y, z), which can be used
to price dollar payoffs that are contingent on these two exchange rates; we
defer discussion of the construction of f,(y, z) until the following section.

Now consider an European option to buy £ 1 for €X at time T. This is
identical to an option to exchange XS$/* dollars for S/* dollars at time T. Hence
its dollar payoff equals max(S$* — XS$/€, 0) and its fair price in dollars at time
zero is

Cy(X) = e "TEQ[max(SY/* — XS¥/€, 0)] )

= e“TJ J max (y — Xz, 0) fs(y, z) dydz.

0 0

Here Qq is the risk-neutral measure for the $ numeraire and rq is the dol-
lar risk-free rate. The fair price of the same option in euros is therefore

Ce(X) = C4(X)/Sy/*

5 % o (2)

= (er‘T/SB/€)J J max(y — Xz, 0) f(y, z) dydz.
o Jo

This must equal the following discounted expected payoff, which employs
the risk-neutral measure Qg for the euro numeraire:

Ce(X) = e "TE%[max(S¥*—X, 0)]

= e_’"é’fm(x — X)fe(x) dx. ®)
X

Here r¢ is the euro risk-free rate and fo(x) is the RND for one pound
priced in euros.

A specific formula for the cross-rate RND defined by Equation (3) is given
by using the well-known result of Breeden and Litzenberger (1978):

reT 82C€ (X)

Ix?

fe(x> =e

in conjunction with Equation (2) to obtain
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_ 1
F?;/’% Ox?

felx) {J J max(y — xz, 0)fs(y, z)dydz |. (4)
0 70

where F/€¢ = §¥€e"s el is the forward price, at time zero, to exchange one
euro for dollars at time T. Equation (4) simplifies, as shown in Appendix A, to
give the RND of the cross rate as the following single integral:

fex) =:Iﬁigj 2f(xz, 2) d. (5)
0 0

Cross-rate option prices can be calculated either from the two single inte-
grals defined by Equations (3) and (5), or from the double integral in Equation
(2), which is the same as

Co(X) = eréTF:/€ J (x — x>{ J 2z, z)dz} dx. (6)
X 0

It is easy to check the three necessary conditions for the function in (5) to
be an RND. First, the function is obviously non-negative. Second, the substitu-
tion y = xz (with dy = zdx) can be used to show that the function integrates to
one and is therefore a density:

ka&=ﬁ;fﬁfmmaw%z

0

1 : B h
- ij J 2fy (0, 2) dydz = ES[SY€I/Fy/€ = 1.
0 Jo Yo

Third, the same substitution establishes that the expectation of the spot cross
rate at time T is the forward cross rate, and hence the density is risk-neutral:

1
= 7F3/€

Lo
=F$/€J J ¥fs(y, z)dydz (8)

- EQ*[S¥/£]/F3/€ _ F(ﬂ)S/E/FS/€ — F%/,E.

mefg(x)dx ijmxzzfss(xz, z)dxdz
0 o Jo

We provide the above checks because our RND for the cross rate is not the
same as the density derived in Rosenberg (2003). His density, in our notation, is

ﬂm=J%W@k. (9)
0
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This is the density of the cross rate with respect to the risk-neutral measure
for the dollar numeraire, i.e. Qg. Thus, (9) is only appropriate for the valuation
of claims that have dollar payoffs (e.g. the quanto options valued by Bennett &
Kennedy, 2004). Consequently, the Rosenberg density is not in general a cross-
rate RND and hence it should not be used to price cross-rate options. Indeed, a
random variable whose density is given by (9) has expectation

fozfsg(:xz, z)dzdx = ffifﬁg(y, z)dydz

N I W
= sy ] 7 sy T Rye T

whenever Cov®5(S$/€, S£/S%€) # 0.

THE CONSTRUCTION OF BIVARIATE RNDs

To price cross-rate options, using the cross-rate RND given by (5), we first need to
obtain the bivariate RND of the two dollar-denominated exchange rates, denot-
ed by f¢(y, z). We use copula functions in this article to convert the two mar-
ginal densities, fi(y) and f((z), into the bivariate density f(y, z).

Copula methods are covered in the textbooks by Joe (1997), Nelsen
(1999), and Cherubini, Luciano, and Vecchiato (2004). There are many recent
applications in finance research to subjects such as credit risk (Li, 2000), port-
folio allocations (Hennessy & Lapan, 2002), the pricing of multivariate contin-
gent claims (Rosenberg, 2003), and the dependence between European markets
(Bartram, Taylor, & Wang, 2007).

Definitions

Copula functions, denoted C(u, v), are the bivariate cumulative distribution
functions (c.d.f.) of random variables U and V whose marginal distributions are
uniform from zero to one. Employing a copula function permits modeling of
dependence by using marginal densities to construct bivariate densities that are
consistent with the univariate marginals.

Let H be the bivariate c.d.f. for random variables Y and Z, with respective
marginal cumulative functions F and G that are both continuous. By Sklar’s
Theorem, there exists a unique copula function C such that

H(y,z) = C(F(y), G(z)) for all y and z.
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The bivariate density for (Y, Z) is given by
h(y,z) = c(F(y), G(z)) X fly) X g(z) (11)

where c(u, v) = 0*C(u, v)/(dudv) is the density corresponding to the c.d.f.
C(u, v) and f and g are the marginal densities of Y and Z.

The correlation between the uniform random variables U = F(Y) and V =
G(Z) is a useful parameter for measuring the dependence between Y and Z. This

correlation defines Spearman’s “p” for the variables Y and Z, denoted by py:

ps(Y, Z) = cor(U, V) = (E[UV] — ) /5.

Spearman’s p is obviously invariant to increasing transformations of Y and
Z. In particular, pg(Y, Z) = pg(U, V).

Specific Copula Functions

Although several parametric copula functions have been applied in statistical
literature, only a few of them have flexible dependence properties and are
hence appropriate for financial applications (Joe, 1997). We focus on five cop-
ula functions, which include all of the parametric copulas suggested by
Cherubini et al. (2004) and which permit a wide range of possible dependence
structures between two prices of financial assets. To the best of our knowledge,
firstly we consider almost all the single-parameter copulas investigated in prior
financial applications and secondly each prior application considers at most
three of our five functions.

Each of the copula functions has a single' parameter, which determines the
magnitude of the dependence. We make empirical comparisons between
the Clayton, Frank, Gaussian, Gumbel, and Plackett copulas. All of these cop-
ulas can display either positive or negative dependence. The contours of the
bivariate densities for Y and Z are shown on the left of Figure 1, when
Spearman’s p equals 0.5 and the marginal distributions are standard normal;
then h(y,z) = c(®(y), P(z))p(y)Pp(z) with ¢(-) and P(-) representing the
density and the c.d.f. of the standard normal distribution. The corresponding
copula densities are shown on the right of Figure 1; the plotted variable is
c(®(y), ®(z)), which characterizes the dependence between Y and Z.

The dependence structure is symmetric? and tail-independent?® for the
Frank, Gaussian, and Plackett copulas. Although the Gumbel copula has asym-
metry and upper-tail dependence, the Clayton copula has asymmetry and
'One parameter is sufficient to model dependence. Multi-parameter copulas, such as the Student copula, are
not investigated in this study because we rely on a single cross-rate option price when option information is
used to infer the magnitude of the dependence between two exchange rates.

%A copula C is symmetric if (U, V) and (1—U, 1—V) have the same c.d.f.
3A copula is tail-independent if P(U > a|V > a) and P(U < b|V < b) both converge to zero as a — 1 and b — 0.
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lower-tail dependence that has been used to model the dependence of equity
prices (e.g. Cherubini and Luciano, 2002). Equations for all the copula func-
tions are given in Appendix B.

Estimation of the Dependence Parameter

If the market price of one cross-rate option is available, typically the ATM
option, then we can use numerical methods to obtain the implied estimate of
the dependence parameter by equating the market price with the theoretical
price given by (6). Otherwise, we can use a historical record of intraday dollar-
denominated currency returns for two exchange rates to calculate their realized
correlation, using the method of Andersen, Bollerslev, Diebold, and Labys
(2001). By assuming that the historical correlation equals the risk-neutral cor-
relation in the future, we can estimate Spearman’s p for the risk-neutral
Gaussian copula (see Appendix B). The dependence parameters for the other
four copulas can then be obtained by constraining these copulas to have the
same value for Spearman’s p. We discuss the empirical relationship between
the historical and risk-neutral correlations in the penultimate section.

When using intraday returns to estimate realized volatility or correlations,
the choice of frequency is a tradeoff between selecting a high frequency and
avoiding market microstructure effects. For our data, we find that the first-lag
autocorrelations of the five-minute returns are significantly negative, which
probably reflects microstructure effects. Consequently, we use 30-minute
returns instead to calculate realized correlations as their first-lag autocorrela-
tions are much lower. Following Andersen et al., the realized correlation coeffi-
cient between two sets of 30-minute returns, {r, ;} and {r,;}, whose latest
return is at the end of day t, is given by the following formulae:

C Ovt nm nm

_ _ 2 _ 2
p, = , Cov, = E’”l,_,"’z,_,' and o7, = Eru (12)
j=1 j=1

01,05,

where 7 is the number of 30-minute intervals in one day and m is the number
of days used for estimation.

METHODOLOGY FOR THE MARGINAL RNDs

Marginal RNDs for the dollar prices of one pound and one euro are required
when we construct their bivariate density using (11) and an appropriate copula
density. Many specifications of univariate RNDs have been proposed, including
lognormal mixtures (Liu, Shackleton, Taylor, & Xu, 2007; Melick & Thomas,
1997; Ritchey, 1990), generalized beta densities (Anagnou-Basioudis, Bedendo,
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Hodges, & Tompkins, 2005; Liu et al., 2007), lognormal-polynomial densities
(Madan & Milne, 1994), multi-parameter discrete distributions (Jackwerth &
Rubinstein, 1996), and densities derived from fitting spline functions to
implied volatilities (Bliss & Panigirtzoglou, 2002). Provided options are traded
for a range of exercise prices that encompass almost all of the risk-neutral dis-
tribution, several flexible density families will provide similar empirical esti-
mates.

In our empirical discussion we focus on the results when each RND is a
generalized beta density of the second kind (GB2). The GB2 density has only
four parameters and many desirable properties: general levels of skewness and
kurtosis are allowed, the shapes of the tails are fat relative to the lognormal den-
sity, and there are analytic formulae for the density, its moments, and the prices
of options. Furthermore, parameter estimation is easy and does not involve any
subjective choices, the estimated densities are never negative, and RNDs can
be transformed analytically into real-world densities. Equations for RND and
real-world densities, moments, and call prices are provided by Liu et al. (2007).
The results for two other widely used RNDs, namely lognormal mixtures and
lognormal-polynomial products, are also discussed later. Definitions, pricing
formulae, and estimation methods for these three densities are given in Taylor
(2005) and in Appendix C.

EMPIRICAL FRAMEWORK

Three steps are followed to obtain empirical estimates of the cross-rate RND
and then the prices of cross-rate options. In the first step, we use market option
prices for two dollar-denominated exchange rates, namely the dollar prices of
one pound and one euro, to estimate their univariate RNDs with respect to the
risk-neutral measure for the dollar numeraire. The two univariate RNDs and a
one-parameter copula function are employed in the second step to obtain their
bivariate RND, again for the dollar numeraire. The third step produces the
cross-rate RND for the euro price of one pound, with respect to the risk-neutral
measure for the euro numeraire. It also provides the prices of cross-rate options.

The cross-rate RND depends both on the choice of the copula function
and the value of its dependence parameter. The parameter is estimated either
from historical data or by matching the theoretical price of the ATM cross-rate
option with its market price. The latter approach requires a numerical method
that repeats the second and third steps until the parameter value is estimated
accurately.

To assess our cross-rate RND and option pricing methodology, we consid-
er one-month and three-month maturities. In addition, we also investigate the
following two questions:
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DATA

(1) Which copula function(s) can model the dependence structure of
exchange rates most satisfactorily?

(2) Is the information used to price cross-rate options efficiently shared across
different markets for options on dollar exchange rates?

The cross-rate option prices generated by our copula formulae are com-
pared with those for OTC cross-rate option prices. The differences between
two sets of prices for the same options are summarized by three statistics: the
Kolmogorov—Smirnov (K-S) statistic, which equals the maximum difference
between two cumulative risk-neutral distribution functions, the average of
the absolute differences between call prices as a ratio of the OTC prices
(G-call), and the average magnitude of the difference between implied volatilities
(G-implied).

The primary data are option prices for the $/£, $/€, and €/£ exchange rates. It
is not possible to obtain useful exchange-traded option prices for the €/£ cross
rate. Some cross-rate settlement prices are available for the CME, but they cor-
respond to almost no trading volume. Consequently, we have to rely on OTC
option prices for the cross rate. Such prices are not in the public domain to the
best of our knowledge. We make use of a confidential file of OTC option price
mid-quotes, supplied by the trading desk of an investment bank, which covers
the period from May to December 2000. The OTC quotes are for all three
exchange rates, recorded at the end of the day in London. There are typically
prices for seven exercise prices, based upon “deltas” equal to 0.1, 0.25, 0.37,
0.5, 0.63, 0.75, and 0.9.

A second source of $/£ and $/€ option prices is provided by CME settle-
ment prices for options on currency futures contracts. These options are
American. Their early exercise premia are estimated from the pricing approxi-
mation of Barone-Adesi and Whaley (1987), which allows us to deduce appro-
priate prices for European options. The average number of exercise prices for
which there are option prices is 21 for the $/£ rate and 24 for the $/€ rate.

Our primary and secondary sources provide option prices for several exer-
cise prices. We also study ATM prices from a third source for a longer period,
until December 2007, but our supplier (namely Olsen and Associates) does not
provide a useful number of out-of-the-money prices.

Figure 2 shows $/€ and €/£ exchange rates from May to December 2000.
It also displays the three-month, ATM implieds for these rates during this peri-
od. The averages of the ATM implieds are 9.8, 13.4, and 11.0%, respectively, for
the $/£, $/€, and €/£ rates during the eight-month period. Implied volatility
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FIGURE 2

Time series of exchange rates and ATM implied volatilities for dollar/euro and pound/euro rates.
Dollar/euro and pound/euro exchange rates and the three-month, ATM implied volatilities for these
rates are shown from May to December 2000. ATM, at-the-money.

was lower, on average, during the subsequent seven-year period from 2001 to
2007; the corresponding averages for the longer period are 8.1, 9.4, and 6.4%.

We generate both one-month and three-month RNDs. We obtain densities
from the one-month OTC option prices for the first and third Tuesday of every
month from May to October 2000. Thus our one-month results are based upon
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12 cases. Because options traded at the CME have fixed expiry dates, on the
Fridays preceding the third Wednesdays of the contract months, it is impossible
to match them with OTC options whose expiry dates are two business days
before the forward dates. Therefore, we define matching CME option prices
from the prices of the two nearest-to-expiry contracts that are more than one
week from expiry. These matching prices are obtained by assuming that the
implied volatilities have a linear term structure. * There is less usable OTC data
for the generation of the three-month densities. We use the three-month
option prices on 12 June, 12 September, and 13 December 2000, from both
the OTC source and the CME.

The OTC data and our processing of the CME data provide us with
implied volatilities. The required one- and three-month forward rates, when
the CME closes a few hours after the OTC quotes are recorded, are provided
by the standard no-arbitrage equation that relates forward rates to spot prices
and domestic and foreign interest rates. These forward rates are the expecta-
tions of the RNDs.

We also use the prices of $/£ and $/€ recorded every 30 minutes in the
OTC markets to calculate one-month and three-month realized correlation
coefficients for their returns from (12). Daily spot exchange rates and risk-free
euro currency interest rates are obtained from Datastream.

EMPIRICAL RESULTS

Our empirical implementation uses two types of information to estimate the
dependence parameter of the copula function. First we use the prices of ATM
cross-rate options, then we assess the alternative strategy of relying on histori-
cal data to provide correlation estimates. Initially, we assume that all the mar-
ginal RNDs have GB2 distributions and subsequently we compare the GB2
results with those for other marginal RNDs. We also discuss a practical method
for selecting the copula function. Finally, we consider possible explanations for
a correlation risk premium revealed by our calculations.

When the Prices of ATM Cross-Rate
Options Are Used

The properties of €/£ cross-rate RNDs derived from OTC cross-rate option
prices are shown in the first column of Table I and also in the first column of

*The term structure of the implied volatility of FX options is not flat and its slope changes frequently (Xu &
Taylor, 1994). For a selected exercise price, we approximate the CME implied volatility for an option that
expires at time T by v = v, + (v, — v\)(T — T})/(T, — T,) where v, and v, are the implied volatilities of the
two near-to-expiry contracts, which have times T, and T, until expiry.
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TABLE |
Summary Statistics for Euro/Pound RNDs Obtained from Over-the-Counter
Option Prices, Including One Cross-Rate Option Price

Copula Vanilla Gaussian Frank Plackett Clayton Gumbel

Panel A: Averages for one-month RNDs

N 12 12 12 12 12 12
plo 0.5609 4.2876 6.5994 1.2764 1.5721
Mean 1.6399 1.6399 1.6399 1.6399 1.6399 1.6399
Variance 0.0030 0.0029 0.0031 0.0032 0.0030 0.0030
Skewness 0.2295 0.1089 0.1597 0.1824 —0.1975 0.3467
Kurtosis 4.2845 3.7081 4.9407 5.2758 4.5067 4.2712
K-§% 0.0140 0.0156 0.0213 0.0292 0.0119
G-call® 0.0436 0.0325 0.0411 0.0645 0.0336
G-implied® 0.0028 0.0026 0.0033 0.0053 0.0024
Panel B: Averages for three-month RNDs

N 3 3 3 3 3 3
plo 0.6580 5.4663 9.2415 1.7650 1.7570
Mean 1.6207 1.6207 1.6207 1.6207 1.6207 1.6207
Variance 0.0083 0.0079 0.0088 0.0092 0.0085 0.0083
Skewness 0.2222 0.2042 0.2990 0.3438 —0.1842 0.5369
Kurtosis 4.3982 3.8037 5.4548 5.9379 4.8147 4.7460
K-§% 0.0120 0.0142 0.0219 0.0326 0.0197
G-call® 0.0316 0.0356 0.0615 0.0625 0.0433
G-implied® 0.0024 0.0022 0.0036 0.0054 0.0036

Note. Average values of summary statistics for euro/pound risk-neutral densities, for various dependence functions. GB2 densities
define the marginal dollar-rate densities and the vanilla cross-rate densities, all obtained from OTC option prices. The Gaussian,
Frank, Plackett, Clayton, and Gumbel copula functions are used when defining the bivariate dollar-rate densities. The dependence
parameters of the copulas are estimated by equating the theoretical at-the-money cross-rate option price with the market price. GB2,
generalized beta density of the second kind; OTC, over-the-counter.

2K-S: Kolmogorov—Smirnov statistic.
bG-call: Average absolute error of call price as a ratio of the vanilla price.
°G-implied: Average absolute error of implied volatility.

Table II. We refer to these as “vanilla” densities as they merely depend upon
cross-rate market prices. Each vanilla density is derived from seven option
prices. The remaining columns of Table I provide summary statistics for further
cross-rate RNDs, each of which is obtained from seven OTC option prices for
both the $/£ and the $/€ rates, a copula function, and the OTC price of the
ATM €/£ option.’ Likewise, the remaining columns of Table Il summarize
cross-rate RNDs obtained from CME option prices for the $/£ and the $/€
rates, a copula function, and the OTC price of the ATM €/£ option.

The summary statistics are averages across densities. For example, each
“Variance” statistic for a set of one-month densities is the average value of 12
variances, 1 for each RND. The statistics in Table I are generally similar to
those in Table 11.

*ATM refers to options whose deltas equal 0.5.
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TABLE 1l
Summary Statistics for Euro/Pound RNDs Obtained from CME Option Prices
and One Cross-Rate OTC Option Price

Copula

Vanilla Gaussian Frank Plackett Clayton Gumbel

Panel A: Averages for one-month RNDs

N 12 12 12 12 12 12
plo 0.5699 4.3911 6.8340 1.2607 1.6990
Mean 1.6399 1.6399 1.6399 1.6399 1.6399 1.6399
Variance 0.0030 0.0029 0.0032 0.0032 0.0030 0.0030
Skewness 0.2295 0.0512 0.0843 0.1024 —0.3470 0.3416
Kurtosis 4.2845 3.8997 5.1075 5.4711 4.6034 4.6467
K-§% 0.0113 0.0198 0.0258 0.0378 0.0096
G-call® 0.0389 0.0241 0.0390 0.0805 0.0253
G-implied® 0.0022 0.0029 0.0040 0.0068 0.0018
Panel B: Averages for three-month RNDs

N 3 3 3 3 3 3
plo 0.6529 5.3352 9.9484 1.6479 1.7738
Mean 1.6207 1.6207 1.6207 1.6207 1.6207 1.6207
Variance 0.0083 0.0079 0.0087 0.0090 0.0082 0.0083
Skewness 0.2222 0.1978 0.2643 0.2943 —0.2906 0.5414
Kurtosis 4.3982 3.7345 5.2226 5.6558 4.2536 4.7209
K-§% 0.0087 0.0091 0.0169 0.0340 0.0105
G-call® 0.0326 0.0231 0.0484 0.0888 0.0460
G-implied® 0.0023 0.0015 0.0031 0.0063 0.0038

Note. Average values of summary statistics for euro/pound risk-neutral densities, for various dependence functions. GB2 densities
define the marginal dollar-rate densities obtained from CME option prices. The vanilla cross-rate densities are obtained from OTC
option prices. The Gaussian, Frank, Plackett, Clayton, and Gumbel copula functions are used when defining the bivariate dollar-rate
densities. The dependence parameters of the copulas are estimated by equating the theoretical at-the-money cross-rate option price
with the market price. GB2, generalized beta density of the second kind; CME, Chicago Mercantile Exchange; OTC, over-the-counter.

2K-S: Kolmogorov—Smirnov statistic.
bG-call: Average absolute error of call price as a ratio of the vanilla price.
°G-implied: Average absolute error of implied volatility.

The means of all sets of 12 one-month densities are identical, because all
the densities are risk-neutral, and likewise for all sets of 3 three-month densities.
The average variances of the RNDs created from the various copula functions
are very similar to those of the vanilla densities. There is more positive skew-
ness in the vanilla densities than in all the sets of copula densities except the
Gumbel density. The average skewness of the RNDs is positive and relatively
high for the Gumbel copula, but low for the Frank, Gaussian, and Plackett cop-
ulas, whereas the averages are negative for the Clayton copula. The kurtosis
averages for all sets of densities exceed three and the averages are fairly similar
for the vanilla densities and those derived using copula functions. Generally,
the cross-rate densities on a particular date are similar. This can be seen in
Figure 3, which shows all the one-month densities formed on 5 September
2000; the cross-rate RNDs generated by the Frank, Gaussian, and Gumbel
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One-month RND on 5 Sep. 2000 from OTC prices

10
8 //\\
~ 6
& / \
2 \\
0 T T T T
1.40 1.50 1.60 1.70 1.80 1.90
x(EUR/GBP)
One-month RND on 5 Sep. 2000 from CME prices
10

(%)
RN
/

1.40 1.50 1.60 1.70 1.80 1.90
x(EUR/GBP)
| Vanilla Gaussian Frank Plackett Clayton Gumbel |
FIGURE 3

Euro/pound RNDs when one cross-rate option price is known. Typical RNDs for the euro/pound rate,
respectively, derived from CME and OTC dollar-rate option prices. GB2 densities define the marginal
dollar-rate densities and the vanilla cross-rate densities. The dependence parameters of the copulas are
estimated by equating the theoretical at-the-money cross-rate option price with the market price. RND,
risk-neutral density; CME, Chicago Mercantile Exchange; OTC, over-the-counter; GB2, generalized
beta density of the second kind.

copulas are slightly nearer to the vanilla density than the densities obtained
from the Clayton and Plackett copulas.

Next consider how near the densities derived from copulas are to the vanil-
la densities. The K-S statistic is an overall measure of the similarity of two den-
sities. The averages of the K-S statistics are always least for the Frank,
Gaussian, and Gumbel copulas and are then always less than 0.02. Similarity
can also be assessed by comparing the option prices generated by different
RNDs, for the options that are not ATM. For both the one-month and the
three-month option contracts, the average absolute difference between a vanil-
la option price and a Frank option price is about 3% of the vanilla option price,
with slightly higher average differences for the Gaussian and Plackett option
prices. The average differences for the Gumbel option prices are also about 3%

Journal of Futures Markets  DOI: 10.1002/fut



340

Taylor and Wang

for the one-month contracts, but are higher for the three-month options. When
implied volatilities are compared, the average absolute difference is less than
the bid—ask spread (typically 0.5%) for all but the Clayton copula. Our compar-
isons show that the Frank, Gaussian, and Gumbel copulas are satisfactory, with
average absolute differences as low as 0.2%; the Plackett copula is fairly satis-
factory but the Clayton copula systematically performs less well.

Figure 4 shows averages of the implied volatility functions for the €/£ cross
rate, across density formation dates, for both OTC and CME dollar-rate data.
These functions are plotted against the OTC option delta. All the copula func-
tions generate volatility smiles. The vanilla densities and the Frank, Gaussian,
and Plackett copulas all produce symmetric smiles. The Gumbel smiles are
slightly asymmetric, but still close to the vanilla smiles, especially for the one-
month contracts. However, the Clayton smiles are highly asymmetric and
hence are unsatisfactory. The curvature (or depth) of the smiles is highest for
the Plackett smiles, and the Frank smiles are deeper than the Gaussian smiles.
Generally, the market volatility smile, defined by the vanilla densities, lies
above the Gaussian smile and below the Frank smile.

Figure 5 compares the average OTC and CME volatility smiles generated
by the Frank and Gaussian copulas. The differences between the OTC and the
CME average smiles are seen to be small, particularly when delta is between 25
and 75%. The differences are all less than the bid—ask spread, even for the
extreme values of delta. We conclude that the cross-rate densities obtained
from the OTC and the CME option prices of dollar exchange rates are similar
so that price information is efficiently shared by these two markets. Figure 5
also emphasizes that the Frank smiles are approximately twice as deep as the
Gaussian smiles.

Our results show that the Frank and Gaussian copula functions are the most
satisfactory when modeling the dependence between the risk-neutral distributions
of the $/£ and the $/€ exchange rates for both the one-month and the three-
month densities. The Gumbel copula function also performs well for the one-
month densities. The deeper smiles produced by the Plackett copula show that it
is less satisfactory. Because the implied volatility pattern of foreign exchange rates
is a smile, rather than a smirk, the highly asymmetric Clayton copula appears to
be unsatisfactory, although it is often used to model the dependence structure of
equity prices satisfactorily (e.g. Cherubini & Luciano, 2002).

When the Prices of ATM Cross-Rate Options
Are Not Used

The previous strategy of estimating the dependence parameter by matching
the theoretical ATM call price with the market price is like using an implied
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Average 1-month Implied Volatility with Gaussian and
Frank Copulas
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FIGURE 5

Implied volatilities for the euro/pound rate from OTC and CME option prices, when one cross-rate
option price is known. Average implied volatilities, derived from OTC and CME option prices and
various copula functions. GB2 densities define the marginal dollar-rate densities and the vanilla cross-
rate densities. The parameters of the copulas are estimated by equating the theoretical at-the-money
cross-rate option price with the market price. CME, Chicago Mercantile Exchange; OTC, over-the-
counter; GB2, generalized beta density of the second kind.

risk-neutral correlation to estimate the dependence parameter. When the ATM
cross-rate market price is either unavailable or considered to be an unfair price,
we can instead use the realized historical correlation to estimate the depend-
ence parameter.

Time series of implied and realized correlation coefficients through
our eight-month sample period in 2000 are shown in Figure 6. These are
correlations between changes in the logarithms of the $/£ and the $/€ rates.
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Implied and Realized Correlation Coefficients
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FIGURE 6

Time series of implied and realized correlation coefficients for the dollar/pound and dollar/euro rates.
Each implied correlation is calculated from the one-month at-the-money implied volatilities of OTC
options on the dollar/pound, dollar/euro, and euro/pound rates. Each realized correlation is calculated
from the previous month of 30-minute returns, obtained from CME dollar/pound and dollar/euro futures
prices. CME, Chicago Mercantile Exchange; OTC, over-the-counter.

The implied correlations are derived directly from the ATM implied volatilities
of $/£, $/€, and €/£ OTC options one month from expiry, whereas the realized
correlations are calculated from the previous month of 30-minute® returns for
the $/£ and the $/€ rates.

It is seen very clearly that the realized correlations are lower than the
implied correlations; we defer discussion of why this occurs until the end of
this empirical section. The immediate consequence of the differences between
the implied and realized correlations is that the differences between the vanilla
and the copula results will increase, for densities, option prices, and implied
volatilities.

The properties of €/£ cross-rate RNDs derived from option prices for the
$/£ and the $/€ rates, a copula function, and the historical correlation are sum-
marized in Tables III and IV, respectively, for densities derived from OTC and
CME prices. These summary statistics can be compared with those presented
in Tables I and II. The densities are guaranteed to remain risk-neutral. The
most obvious difference, which occurs when historical correlations are used, is
that the variances of the cross-rate RNDs increase significantly due to the
lower dependence between the marginal dollar-rate densities. It is now hard to
tell which copula is the most satisfactory, regardless of the criterion, because all
the copula functions produce option prices that are evidently different from the
“The realized correlations are almost unchanged if the frequency of returns is switched from 30 to 60 minutes.

The average realized correlations are 0.45 and 0.49 for these two frequencies and the period covered by
Figure 6.

Journal of Futures Markets  DOI: 10.1002/fut



344

Taylor and Wang

TABLE 11l
Summary Statistics for Euro/Pound RNDs Obtained from Over-the-Counter
Option Prices and the Historical Realized Correlation Coefficient

Copula Gaussian Frank Plackett Clayton Gumbel
Panel A: Averages for one-month RNDs

N 12 12 12 12 12
plo 0.4688 3.1475 4.9331 0.9855 1.4950
Mean 1.6399 1.6399 1.6399 1.6399 1.6399
Variance 0.0034 0.0037 0.0037 0.0034 0.0032
Skewness 0.1213 0.1646 0.1793 —0.1152 0.3246
Kurtosis 3.6955 4.5734 4.8866 4.2726 4.2081
K-§2 0.0287 0.0247 0.0241 0.0349 0.0193
G-call 0.1080 0.1503 0.1365 0.1036 0.0917
G-implied® 0.0090 0.0125 0.0111 0.0101 0.0069
Panel B: Averages for three-month RNDs

N 3 3 3 3 3
plo 0.4845 3.2342 4.9341 1.0087 1.5069
Mean 1.6207 1.6207 1.6207 1.6207 1.6207
Variance 0.0114 0.0125 0.0124 0.0116 0.0108
Skewness 0.2478 0.3183 0.3399 0.0202 0.4686
Kurtosis 3.7751 4.7007 5.0252 4.2224 4.4455
K-§2 0.0486 0.0448 0.0395 0.0460 0.0411
G-call 0.2535 0.3226 0.3055 0.2309 0.2295
G-implied® 0.0195 0.0239 0.0223 0.0201 0.0159

Note. Average values of summary statistics for euro/pound risk-neutral densities, for various dependence func-
tions. GB2 densities define the marginal dollar-rate densities and the vanilla cross-rate densities, all obtained
from OTC option prices. The Gaussian, Frank, Plackett, Clayton, and Gumbel copula functions are used when
defining the bivariate dollar-rate densities. The dependence parameters of the copulas for one-month (three-
month) maturities are estimated from the historical correlation for one month (three months) of 30-minute dollar-
rate returns. GB2, generalized beta density of the second kind; OTC, over-the-counter.

2K-S: Kolmogorov—Smirnov statistics.
bG-call: Average absolute error of call price as a ratio of the vanilla price.
°G-implied: Average absolute error of implied volatility.

vanilla option prices. For example, the average absolute difference between the
copula and vanilla implied volatilities is about 1% for the one-month maturities
and 2% for the three-month maturities when historical correlations are
employed.

One-month cross-rate RNDs formed on a typical date, 18 July 2000, are
shown in Figure 7. The peaks of the copula densities are lower than the vanilla
densities because the copula variances exceed the vanilla variances. Figure 8
shows the averages of the one-month implied volatility functions. All the copula
functions again produce volatility smiles, although the general levels of these
smiles are visibly higher than the vanilla smiles. The previous remarks about
the relative depth and the symmetry of the copula smiles remain valid when the
implied correlation is replaced by the historical correlation.
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TABLE 1V

Summary Statistics for Euro/Pound RNDs Obtained from CME Option

Prices and the Historical Realized Correlation Coefficient

Copula Gaussian Frank Plackett Clayton Gumbel
Panel A: Averages for one-month RNDs

N 12 12 12 12 12
plo 0.4688 3.1475 4.9331 0.9855 1.4950
Mean 1.6399 1.6399 1.6399 1.6399 1.6399
Variance 0.0035 0.0038 0.0038 0.0035 0.0034
Skewness 0.0718 0.1042 0.1147 —0.2385 0.3001
Kurtosis 3.8751 4.7981 5.1415 4.3590 4.5417
K-8 0.0257 0.0243 0.0244 0.0369 0.0186
G-call 0.1052 0.1590 0.1456 0.1017 0.1045
G-implied® 0.0100 0.0140 0.0127 0.0106 0.0086
Panel B: Averages for three-month RNDs

N 3 3 3 3 3
plo 0.4845 3.2342 4.9341 1.0087 1.5069
Mean 1.6207 1.6207 1.6207 1.6207 1.6208
Variance 0.0111 0.0122 0.0120 0.0109 0.0109
Skewness 0.2294 0.2796 0.2944 —0.0765 0.4617
Kurtosis 3.6950 4.5508 4.8499 3.8675 4.4056
K-8 0.0464 0.0425 0.0375 0.0467 0.0413
G-call® 0.2313 0.2927 0.2771 0.1988 0.2319
G-implied® 0.0181 0.0222 0.0207 0.0176 0.0162

Note. Average values of summary statistics for euro/pound risk-neutral densities, for various dependence
functions. GB2 densities define the marginal dollar-rate densities obtained from CME option prices. The vanilla
cross-rate densities are obtained from OTC option prices. The Gaussian, Frank, Plackett, Clayton, and Gumbel
copula functions are used when defining the bivariate dollar-rate densities. The dependence parameters of the
copulas for one-month (three-month) maturities are estimated from the historical correlation for one month
(three months) of 30-minute dollar-rate returns. GB2, generalized beta density of the second kind; CME,

Chicago Mercantile Exchange; OTC, over-the-counter.

2K-S: Kolmogorov—Smirnov statistics.
®G-call: Average absolute error of call price as a ratio of the vanilla price.

°G-implied: Average absolute error of implied volatility.

It is difficult to decide which copula function performs best when histori-

cal data are used to estimate correlations. We do see that the average absolute

differences between copula and vanilla implied volatilities are lowest for the

Gaussian and Gumbel copulas with the latter fitting slightly better. The average

absolute differences of call prices are also comparatively low for these two cop-

ulas, whereas the K-S statistics favor the Gumbel copula. We also see that the

shapes of the vanilla volatility smiles are most similar to those of Frank,

Gaussian, and Gumbel volatility smiles. Therefore, the Gaussian and Gumbel

copulas should perform satisfactorily if the precision of historical correlation

estimates can be improved.
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One-month RND on 18 Jul. 2000 from OTC prices
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FIGURE 7

Euro/pound RNDs when dependence is estimated from historical prices. Typical RNDs for the
euro/pound rate, respectively, derived from CME and OTC dollar-rate option prices. GB2 densities
define the marginal dollar-rate densities and the vanilla cross-rate densities. The dependence parameters
of the copulas are estimated from the historical correlation for one month of 30-minute dollar-rate
returns. RND, risk-neutral density; CME, Chicago Mercantile Exchange; OTC, over-the-counter; GB2,
generalized beta density of the second kind.

Robustness Analysis

Comparisons of different methods for estimating univariate RNDs (e.g. Campa
et al., 1998) have shown that most methods produce similar estimates, provided
options are traded for a range of strike prices that encompass almost all of the
RND. To check if our cross-rate density and option results derived from a
bivariate distribution depend on the GB2 assumption for the marginal RNDs,
we compare our previous results for one-month OTC options when one cross-
rate option price is available with those obtained by assuming either lognormal-
mixture or lognormal-polynomial RNDs for the dollar rates.
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Average 1-month Implied Volatility in OTC
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FIGURE 8

Implied volatilities for the euro/pound rate, when dependence is estimated from historical prices.
Average one-month implied volatilities, derived from OTC and CME option prices and various copula
functions. GB2 densities define the marginal dollar-rate densities and the vanilla cross-rate densities.

The dependence parameters of the copulas are estimated from the historical correlation for one month
of 30-minute dollar-rate returns. CME, Chicago Mercantile Exchange; OTC, over-the-counter; GB2,
generalized beta density of the second kind.

The summary statistics for the cross-rate RNDs derived from the three dis-
tributional assumptions and the five copula functions are shown in Table V.
There are no important differences between the cross-rate RND densities
derived from the three families of marginal densities. Also, the averages of the
K-S statistics, the absolute differences between call prices, and the magnitudes
of the differences between implied volatilities are very similar across distribu-
tional assumptions. Furthermore, these numerical measures of agreement
between densities are very small and negligible when we compare two sets of
cross-rate densities obtained from the same copula but different marginal
RNDs. For example, the largest K-S statistic is only 0.0025 and the largest dif-
ference of average implied volatilities is only 0.02%, whereas Figure 9 illus-
trates the similarities of the cross-rate RNDs and the implied volatilities.
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TABLE V

Summary Statistics for Euro/Pound RNDs with Various
Distributional Assumptions

Copula Gaussian Frank Plackett Clayton Gumbel
Panel A: GB2 densities

N 12 12 12 12 12
plo 0.5609 4.2876 6.5994 1.2764 1.5721
Mean 1.6399 1.6399 1.6399 1.6399 1.6399
Variance 0.0029 0.0031 0.0032 0.0030 0.0030
Skewness 0.1089 0.1597 0.1824 —0.1975 0.3467
Kurtosis 3.7081 4.9407 5.2758 4.5067 4.2712
K-§% 0.0140 0.0156 0.0213 0.0292 0.0119
G-call® 0.0436 0.0325 0.0411 0.0645 0.0336
G-implied® 0.0028 0.0026 0.0033 0.0053 0.0024
Panel B: Lognormal-mixture densities

N 12 12 12 12 12
plo 0.5592 4.2562 6.5222 1.2700 1.5715
Mean 1.6399 1.6399 1.6399 1.6399 1.6399
Variance 0.0028 0.0030 0.0031 0.0030 0.0030
Skewness 0.0903 0.1105 0.1296 —0.1966 0.3345
Kurtosis 3.1101 3.9153 4.2272 3.2493 4.1858
K-§% 0.0155 0.0149 0.0200 0.0304 0.0123
G-call® 0.0474 0.0331 0.0398 0.0712 0.0335
G-implied® 0.0030 0.0025 0.0031 0.0055 0.0024
Panel C: Lognormal-polynomial densities

N 12 12 12 12 12
plo 0.5604 4.2781 6.5766 1.2744 1.5735
Mean 1.6399 1.6399 1.6399 1.6399 1.6399
Variance 0.0028 0.0031 0.0032 0.0030 0.0029
Skewness 0.1023 0.1375 0.1613 —0.2088 0.3331
Kurtosis 3.5256 4.5273 4.8863 4.1847 4.1250
K-§% 0.0130 0.0161 0.0218 0.0292 0.0118
G-call® 0.0445 0.0324 0.0398 0.0671 0.0336
G-implied® 0.0028 0.0026 0.0032 0.0054 0.0024

Note. Average values of summary statistics for euro/pound risk-neutral densities, for various distributional
assumptions and dependence functions. Either GB2, lognormal mixtures, or lognormal-polynomial densities
define the marginal dollar-rate densities and the vanilla cross-rate densities, all obtained from one-month OTC
option prices. The Gaussian, Frank, Plackett, Clayton, and Gumbel copula functions are used when defining the
bivariate dollar-rate densities. The dependence parameters of the copulas are estimated by equating the theo-
retical at-the-money cross-rate option price with the market price. GB2, generalized beta density of the second

kind; OTC, over-the-counter.

2K-S: Kolmogorov—Smirnov statistic.

bG-call: Average absolute error of call price as a ratio of the vanilla price.
°G-implied: Average absolute error of implied volatility.

Therefore, our results are not sensitive to the distributional assumption applied

to the dollar-rate RNDs.

As it is difficult to obtain the prices of OTC cross-rate options, our empir-
ical study only covers the €/£ cross rate. Although our results imply that the
Frank, Gaussian, and Gumbel copulas can model the dependence structure
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Euro/pound RNDs and implied volatilities from OTC option prices with various distributional
assumptions, when one cross-rate option price is known. Typical one-month RNDs and average implied
volatilities for the euro/pound rate derived from OTC dollar-rate option prices with various distribution

One-month RND on 8 Aug.2000 from OTC prices with Various
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FIGURE 9

assumptions and the Gumbel copula function. Either GB2, lognormal mixtures, or lognormal-polynomial

densities define the marginal dollar-rate densities and the vanilla cross-rate densities. The parameters
of the copulas are estimated by equating the theoretical at-the-money cross-rate option price with the
market price. RND, risk-neutral density; OTC, over-the-counter; GB2, generalized beta density of

the second kind.

of the $/£ and the $/€ rates satisfactorily, it is possible that different pairs of
exchange rates are associated with different dependence structures. Therefore,

identifying a way to select a suitable copula function for other pairs of

exchange rates when option prices for their cross rates are not available is an

important issue.

It may be reasonable to assume that the dependence structures of both the

RND and real-world densities come from the same copula families, and thus it

is plausible to infer the appropriate copula function from the historical prices

of the two exchange rates. We have explored this strategy by estimating the
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GARCH-copula dependence model of Bartram et al. (2007). In our implemen-
tation, the returns from each exchange rate are modeled by supposing they
follow an MA(1) process, with the conditional variance specified as GARCH(1, 1)
and the conditional density as Student-t. This model specifies univariate, con-
ditional c.d.f. for each exchange rate from which time series of observed cumu-
lative probabilities can be calculated, say {u,}, for the $/£ rate and {v,} for the
$/€ rate. A time-varying copula parameter, such as p, for the Gaussian copula,
can then be estimated by an equation resembling an autoregressive process.
Like Bartram et al. (2007), we suppose that

pp=w+ dipy T dyp, T 7|”t71_VH|- (13)

The parameters in this equation are estimated by maximizing the log-
likelihood of the bivariate time series {u,,v,}.

We find that the highest log-likelihood for the bivariate data set of $/£ and
$/€ daily returns from 2000 to 2007 is provided by the Gaussian copula. The
differences between the log-likelihood for the Gaussian copula and the log-
likelihoods for the other copulas are 21 for the Gumbel copula, 32 for the
Plackett copula, 97 for the Frank copula, and 217 for the Clayton copula; a
similar ranking of the copulas was reported in a previous version of this article
for the earlier period from 1994 to 2000. The likelihood results are consistent
with the results obtained from the cross-rate vanilla option prices.

Figure 10 shows the time series of p, for the Gaussian copula, calculated
using (13) and the maximum-likelihood parameter values, which are = 0.0215,
b, = 0.9806, ¢, = 0, and y = —0.0428.

Determinants of the Correlation Risk Premium

Figure 6 shows that the implied correlation between returns for the $/£ and the
$/€ rates generally exceeded the realized correlation during 2000. Figure 11
shows that this is also true for the longer and more recent period from 2001 to
2007.” The differences between the implied and realized correlations can be
interpreted as estimates of the correlation risk premium and this premium can
be important.®

Some possible explanations for these differences are biased historical esti-
mates, mispriced ATM cross-rate options, and premia for risks that cannot be
hedged. Firstly, historical estimates may contain bias that can arise from

"We thank the referee for advising us to consider the longer period and how to evaluate empirical explana-
tions for the differences between implied and realized correlations.

8For example, suppose that the volatility of all dollar rates is 10% and that these rates do not have a volatility
risk premium. Then implied and realized correlations equal to 0.6 and 0.5, respectively, provide respective
cross-rate volatilities equal to 8.9 and 10.0%, i.e. they imply an economically significant and negative cross-
rate volatility risk premium.
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FIGURE 10

Time series of the dependence parameter for the Gaussian copula. The time series of
the dependence parameter, p,, for the Gaussian copula is produced for the dollar/pound and
dollar/euro rates from 2000 to 2007.

bid—ask effects and non-synchronous returns. Secondly, the quotes of cross-
rate options may differ from their fundamental prices because of market lig-
uidity and clientele effects. Thirdly, when asset prices follow simple diffusion
processes, the second-moment measures of returns, such as variances and
correlations, do not depend on risk assumptions. Thus, variances and correla-
tions are then the same under the real-world measure P and the risk-neutral
measure Q. However, as suggested by the theoretical work of Branger and
Schlag (2004), when price processes include jump components, the change of
measure will affect variances and correlations and the size of this impact varies
across maturities. Furthermore, if correlations follow a diffusion process then
correlation risk can explain why expected correlations are different under
measures P and Q; see the equity market analysis of Driessen, Maenhout, and
Vilkov (2009).

Let d, denote the correlation difference on day ¢, defined as the three-
month ATM implied correlation minus the realized correlation calculated from
30-minute returns. We attempt to explain the variation in d, by a regression
model, which includes three-month interest rates (denoted by i , i, ic ), the
cross-rate implied volatility (denoted by I,), the historical volatility proxied by
the cross-rate absolute return (denoted by |r,|), and a proxy for cross-rate price
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0.9

0.8

0.7

0.6

0.5

0.4 |

0.3 |

0.2

0.1

0.0 T T T T T T T T T T T T T
o o Al [s2] [s2] < < [Ye] [Te] © © N~
= = = = =~ RS = = = = = =~ ~ =
[aV) e} © [sg] ha I~ w [aV) [e¢] © [s¢] — I~ 1o
o hagy o q hagy N ~ o ~ o q ha q -
~ S~ S =~ -~ S~ =~ S b ey =~ = S~ S
0 e © Al ~ — [co] [s2) (2] < o 0 — (=}
o A o — o o o o o o — o — o

— Implied - Realized
FIGURE 11

Time series of implied and realized correlation coefficients for the dollar/pound and dollar/euro
rates from 2000 to 2007. Each implied correlation is calculated from the three-month at-the-money
implied volatilities of OTC options on the dollar/pound, dollar/euro, and euro/pound rates from May
2000 to December 2007. Each realized correlation is calculated from the 30-minute returns of OTC

dollar/pound and dollar/euro rates during this period. All data are collected from Olsen and Associates.

OTC, over-the-counter.

jumps; the jump proxy is J, = max(RV, — BP,, 0) with RV, and BP, as the real-
ized variance and the bipower variation of 30-minute cross-rate returns
(Andersen, Bollerslev, & Diebold, 2007; Barndorff-Nielsen & Shephard, 2006).
The euro and pound interest rates have approximately opposite coefficients in
our best model; therefore, we specify the model as depending on the interest
rate differential, namely ig, — i ,. We estimate the following regression model:

d=oa+ Bd,_, +Bd,_, + BS(i€,t - iE,t) + B4i$,t + Bs], + Bel, + B7|”t| + g
(14)

with a GARCH(1, 1) specification for the residuals ¢,. As shown in Table VI,
the most significant explanatory variable for the eight-year period from 2000 to
2007 is the interest rate differential, followed by the jump proxy variable. We
conclude that the correlation differences have been higher when euro interest
rates have been high relative to pound interest rates and/or there have been rel-
atively extreme intraday returns, which are evidence of price jumps. We also
find that the explanatory power of the models we have investigated is weak
because R? is always less than 8%.
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TABLE VI
Determinants of the Correlation Risk Premium

Coefficient Estimate Standard Error t-Ratio p-Value
a 0.1514 0.0183 8.2938 0.0000
B4 0.1256 0.0205 6.1255 0.0000
B 0.0659 0.0210 3.1320 0.0017
Bs 0.0409 0.0004 107.3063 0.0000
Bs —0.0052 0.0023 —2.2202 0.0264
Bs 794.9835 70.3352 11.3028 0.0000
Bg 0.0932 0.2484 0.3750 0.7077
B, 3.6760 1.1458 3.2082 0.0013
Adjusted R? 0.0769

The regression model estimated is
di=a+ by + Body o + Ba(’é,t - iz,r> + B4i$,1 + BsJ; + Bel + B7|rr| + &

with a GARCH(1, 1) specification for the residuals &,. Here d, denotes the correlation difference on day ¢, defined as the three-
month ATM implied correlation minus the realized correlation calculated from 30-minute returns. Three-month interest rates for the
dollar, pound, and euro are denoted by i, i, i, respectively. j, and |r;| are, respectively, the cross-rate implied volatility and the
historical volatility proxied by the cross-rate absolute return. J,= max(RV, — BP,, 0) is a proxy for cross-rate price jumps with RV,
and BP, being the realized variance and bipower variation of 30-minute cross-rate returns. ATM, at-the-money.

CONCLUDING REMARKS

This study illustrates practical methods for estimating cross-rate RNDs. We
suppose that there is limited information available about the prices of cross-
rate options, which contrasts with an abundance of information about the
prices of dollar-rate options. The theoretical cross-rate RND is derived from
the bivariate RND for two dollar exchange rates. Cross-rate RNDs can be used
to price any European contingent claim on cross rates and they also provide
insight into market expectations.

Our methods make an assumption about the number of available implied
volatilities for cross-rate options. We find that cross-rate option prices are sen-
sitive to this number, which is assumed to be either one or zero. When there
are no cross-rate option prices we have to rely on historical dollar exchange
rates to quantify the dependence between the two dollar rates. The historical
correlation estimates are positive and on average less than those implied by
option prices.

Our methods use a copula function to provide an empirical approximation
to the function defined by the bivariate RND of the dollar rates divided by the
product of the marginal RNDs. The Frank, Gaussian, and Gumbel copulas
provide satisfactory results, when we compare the cross-rate RNDs obtained
from one cross-rate option price and many dollar-rate option prices with the
densities that can be estimated from seven cross-rate option prices quoted by a
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particular bank. These comparisons show that the cross-rate RND can be esti-
mated equally well from exchange-traded and OTC dollar-rate option prices.

Finally, we offer some advice to practitioners wishing to price cross-rate
currency options. Dollar-rate marginal RNDs can be obtained by several meth-
ods and the selection of the method is probably not particularly important.
Calculation of the bivariate RND of the dollar rates requires a specific copula
function and this choice is important. The Gaussian copula is the only one-
parameter copula function that is ranked highly in all of the comparisons we
have made. The dependence parameter of the Gaussian copula is a critical
number. The empirical analysis suggests that it is best to select this parameter
within a risk-neutral framework; therefore, ideally practitioners should make
use of the ATM cross-rate option price when they calculate the prices of other
cross-rate options.

APPENDIX A

To simplify (4) into (5) it is necessary to simplify the function

h(x) = il

B x>

Hmrma"@ — xz, 0)fs(y, 2) dydz},
0 0

First, let

oo

glx) = J J max(y — xz, 0)fs(y, z) dydz = J [J (y — xz)f$(y,z)dy]dz
o Yo o L

Xz

and replace y by tz. Then dy = zdt and g(x) becomes

glx) = J zz[f (t —x)fdtz,z)dt}dz.

X
Second, differentiate the inner integral twice, obtaining

o

(;?xj (t — x)fs(tz, z)dt = —J fo(tz,z)dt and
Efxzj (t — x)fs(tz, z) dt = fy(xz, z).

Consequently, h(x) simplifies to

hix) = J 2*fg(xz, z) dz.
0
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APPENDIX B
The Gaussian copula is defined by

Clu, vlp) = J ff@,zlp)dydz

—o0 ¥ —oo

with s = ®"'(u) and t = ®'(v); ® is the standard normal c.d.f., and f(-|p)
denotes the standard bivariate normal density with correlation p. The copula
density is

1 1

c(u,v|p) = mexp{_ 201 — p?)

From Kepner, Harper, and Keith (1989), Spearman’s p for this density

1
[s* + 12 — 2pst] + 5 [s2 + tz]}.

equals

ps = (6/m)arcsin(p/2).

The Gaussian copula generates a bivariate normal density if and only if the
marginal densities are normal.
The Plackett copula is defined by a constant cross-product ratio:

PU=uV=v)P(U>uV >v)

P(U=uV>v)P(U>uV =)

with 6 as a positive parameter. Consequently, with n = 6 — 1,
1
C(u,v|0) = 51771{1 +nu +v) = [(1 4+ nu +v))? — 460nquv]"/?}

and
c(u,v]0) = [(1 + plu + v))? — 40quv] >20[1 + n(u + v — 2uv)].

The Frank, Clayton, and Gumbel copulas are all Archimedean copulas.
They are defined by C(u, v) = ¢~ '(¢(u) + ¢(v)) for some continuous, strictly
decreasing function ¢ from (0, 1] to [0, co) that has ¢(1) = 0.

For the Frank copula,

@(t) = —In[(exp(= 6t) — 1)/(exp(=0) — 1)], 6 # 0,
(e—ﬁu _ 1)(8—01/_ 1)

ef?—1

1
C(u,vlf) = —Eln 1+ and

_9(6*0 -1 )efﬁ(quv)

C(M,V\O) = [e—e — 1+ (e—eu _ 1)(8—(# _ 1)]2‘
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For the Clayton copula, with 6 positive,

o) = ("= 1)/6,C(u,v|0) = (u™® + v — 1)1/
and

cu,v|8) = (1 +60) () 'u? +v?—1)2" 00,

The Clayton copula can also be defined, by different equations, when —1 <
6 < 0, but none of our estimates are within this range.
For the Gumbel copula,

p(t) = (— ), 0= 1,Clu, v]g) = oI+ (-1

and
_, [(=Inu)(=Inv)]"!
c(u,v|0) = C(u, v|0)(uv) (—lInu)’ + (—11’11]‘0)0]271/0
X {[(=Inu)? + (- Inv)?]"/0 + 6 — 1}.
APPENDIX C

RNDs are defined for an exchange rate T years into the future when the spot rate
for one unit of foreign currency is S dollars. The dollar risk-free interest rate is
r and the forward rate at time zero for exchange at time T is denoted by F; it
equals the risk-neutral expectation of S;. Interest rates are assumed to be non-
stochastic so that F is also a futures price. A general exercise price is represent-
ed by X, for a European call option that is written either on spot currency or on
a futures contract that delivers at time T.

The Generalized Beta Density

Bookstaber and McDonald (1987) proposed the GB2 density for asset prices,
with four positive parameters that define a parameter vector 6 = (a, b, p, q).
The RND for S; is

a xap—l

fGBz<x|a’ b, p’q) = bapB(p,q) X [1+ (x/b)a]r’+q’

x>0

where the function B is defined in terms of the Gamma function by B(p, q) =
I'(p)I'(q)/T(p + q). Call prices can be derived if aqg > 1, with the following

result:
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C(X) = Fe "[1 — Fg(u(X,a,b)|p + al,q—al)
— Xe M1 — FB(M(X, a,b)|p, q)]

where F is the incomplete beta function given by

Fﬁ(u|p,q) = J 11 =) 'dt and u(X,a,b) = (X/b)
0

]
B(p, q) 1+ (X/b)”

Risk-neutrality constrains the mean of the density to be

F=bB(p+a',qg—a')/Bp,q).

The Lognormal-Mixture Density
The lognormal RND for S;, with volatility o, is the following density:

1 o {_1<ln(x/F) - (1/2)02Tﬂ
xo V27T P 2 0'\/? .

The price of a call option is then given by Black’s formula:

Y(x|F, o, T) =

Cp(F, T,X,r,0) = Fe ""®(d,) — Xe "'®(d,)

with d, = (In(F/X) + (1/2)0*T)/(e\/T) and d, = d, — o\/'T. A mixture of

two lognormal densities for S, is defined by
.fmix(x) = P¢(X|F17 gy, T) + (1 - P)‘/’(Fzy gy, T)~

There are five non-negative parameters, 0 = (F|, F,, o}, 05, p), with0 =p = 1.
The mixture is risk-neutral when F = pF| + (1 — p)F,. Call prices are simply a
mixture of Black prices:

C(X) = pCB(FlaTy X) 1",0']) + (1 - p)CB(F2> T) X) T, 0—2)'

The Lognormal-Polynomial Density

Madan and Milne (1994) assume that the density of standardized returns Z is
the standard normal density ¢(z) multiplied by a general function approximat-
ed by a polynomial. For a quartic approximation, the parameters are denoted by
0 = (u, o, by, b,) such that log(F;)—log(F) has mean and variance, respective-
ly, equal to uT — o °T and o *T. The RND for Z is

b b,
fzlp, o, by, by) = d2)| 1 + \/g (2 —32) + v

(z* — 622 + 3)
and the RND for S; is
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1 In(x) — In(F) — uT + O.SO'ZT)
bs, b,) = .
fLP(x’M7 g, b3, ) xa_\/%fZ( 0'\/%

Risk-neutrality constrains the parameters to satisfy

3 4
Bb3+ Bb4 _e,MT

Vo V2

with B = 0V T. The price of a call option is given by

1+

C(X) = ¢ Mag(X) + a3(X)bs + a,(X)b,]
with ay(X) = Fe*'®(D,) — X®(D, — o \VT),

a,(X) = FBe*[B*®(D,) + (28 — D)é(D,)1/ V6
a,(X) = FBe*"[B®(D,) + (38° — 38D, + D} — 1)¢(D,)]/ V24

and D, = (In(F/X) + uT + 30°T)/ (e \/T).

Parameter Estimation

As is common in the RND literature, we estimate the parameters by minimiz-
ing the sum of squared pricing errors for a set of market call prices denoted by
c,, (X;). When there are market prices available for N distinct exercise prices,

m 1

having a common expiry time T, we estimate 6 by minimizing

N
GO) = 2 (e, (X)) — C(X;10))%

i=1
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