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This paper introduces a new class of problem, the disrupted vehicle routing problem (VRP), which deals with
the disruptions that occur at the execution stage of a VRP plan. The paper then focuses on one type of such
problem, in which a vehicle breaks down during the delivery and a new routing solution needs to be quickly
generated to minimise the costs. Two Tabu Search algorithms are developed to solve the problem and are
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Introduction

Many procedures have been developed to produce optimal
or near optimal solutions to vehicle routing and scheduling
problems where demands and travel times are known and
fixed. However, no matter how good a plan is, various
disruptions may take place at the execution stage, which can
make the plan no longer an optimal or even a feasible solu-
tion. Disruptions during the execution of a vehicle routing
problem (VRP) plan may be caused by vehicle breakdowns,
traffic accidents blocking one or more links, delayed depar-
tures from the depot or any service point, new orders or
cancelled orders, etc. When a disruption occurs, routes should
be quickly revised to minimise the negative effect it may
cause to the delivery company and their customers. In prac-
tice, plans may be revised manually based on people’s past
experiences or common sense. Dealing with disruptions is a
complicated decision-making process; therefore a decision
support system with effective algorithms, which can quickly
find a new routing plan when disruptions occur, is valuable.

The disrupted VRP problem is different from the classic
VRP because:

1. In the original problem, vehicles depart from the depot and
end at the depot. The goal is to design a set of minimum
cost routes, originating and ending at the central depot.
When a disruption happens, vehicles are at different loca-
tions. An optimal routing solution has to be found for
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vehicles that are starting from different locations and end at
the depot. Therefore, the sub-routes can be open ones, not
closed ones as they were in the original problem. However,
a disrupted VRP is not exactly an open VRP problem as
both ends of each vehicle route are fixed once disruption
occurs.

2. Computing time. When a disruption occurs, it is critical
to respond quickly with a new plan. This means while
it is possible to spend hours or possibly days to find a
high quality solution for the original problem, disruption
management requires a quick response and thus a short
computing time. As there is a clear trade-off between the
computing time and the quality of the solution, an algo-
rithm should be developed with a good balance between
the two.

3. The original problem is solved from scratch. To solve the
new problem, benefit will be taken from the solution to the
original problem. First, this will make it quicker to find
the new routing solution. Second, this may help minimise
the deviation from the original plan. Deviation from the
original plan may cause service delay or drivers’ overtime
work. Change of plan may also cause issues if drivers are
not familiar with new routes assigned.

4. Objectives. The objective of the original problem is usually
to minimise the total operations costs involved. When a
disruption occurs, there may be additional costs to take
into account (eg cost of delay on delivering an order) and
the inconvenience to the customers and drivers (eg waiting
time, deviation from the original plan).

5. Decision making. In the situation when disruptions happen,
it may be desirable to generate multiple solutions for the
decision maker to choose from. Sometimes violations of
customer requirements or other constraints are unavoidable
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when unexpected disruptions happen. Decisions may need
to take account of issues that are not easily quantifiable.
Several alternative good solutions may better support a
manager’s decision making. The original problem does not
usually involve multiple solutions.

In this paper, we propose a formulation for one type of the
disrupted VRP that involves a vehicle breakdown. Two Tabu
Search algorithms are developed to solve the disrupted VRP.
The algorithms focus on 1, 2 and 3 in the above list. Issues
in 4 and 5 are not explored, that is we will not consider the
multi-objective approach to the disrupted VRP in this paper.
It should be noted that although we consider making use of
the original plan as discussed in point 3 above, minimising
deviation from the original plan is not an objective for the
problem discussed in this paper. A set of test problems has
been generated based on standard VRP benchmark prob-
lems and computational results from experiments using the
heuristic algorithms are presented.

Literature review

Dealing with unexpected events after a plan has been made
is an important issue in managing a business activity. Yu and
Qi (2004) have given a detailed discussion about a variety of
approaches to uncertainties. They divide those approaches into
two stages: in-advance planning and real-time re-planning.
Contingency planning, stochastic models and robust optimisa-
tion are examples of in-advance planning. Disruption manage-
ment is an example of the real-time re-planning. Real-time
re-planning is necessary in some cases, because many disrup-
tions are rare and unpredictable, thus cannot be embedded
in a plan in advance. Disruption management aims to enable
the dynamic revision of an operational plan when disruptions
occur and provide good feasible solutions to the disruption
problem in real time.

Disruption management was first applied to flight
scheduling (Teodorović and Guberinić, 1984), which is often
referred to as aircraft recovery. The application was then
extended to crew recovery (Teodorović and Stojković, 1995).
The airline industry has been the area where disruption
management is mostly studied because the flight disruption
often involves huge cost loss. Literature reviews on disruption
management in the airline industry can be found in Filar et al
(2001), Kohl et al (2004), Yu and Qi (2004), and Clausen
et al (2005). Yet disruption management studies can also be
found in machine scheduling (Akturk and Gorgulu, 1999;
Hall and Potts, 2004), project scheduling (Eden et al, 2002;
Zhu et al, 2005), production planning (Yang et al, 2005) and
supply chain coordination (Xia et al, 2002; Qi et al, 2004;
Xiao et al, 2005). However, there is little research on dealing
with disrupted VRPs.

A disrupted VRP can be approached as a special kind of
Dynamic/Real-time Vehicle Routing Problem (DVRP), where
new demand information is received as time progresses and

must be dynamically incorporated into an evolving schedule.
Such problems are found in many different application areas
and there exist some problems that must be solved in real
time, such as dial-a-ride systems, courier services, taxi cab
services and emergency services. Psaraftis (1988) was among
the first to study dynamic versions of the VRP. He lists 12
issues for which the DVRP differs from the conventional
static problem, reviews generic features that a dynamic vehicle
routing procedure should possess and recommends directions
for further research in this area. Powell et al (1995), Psaraftis
(1995), Bertsimas and Simchi-Levi (1996), Gendreau and
Potvin (1998), and Ghiani et al (2003) have provided detailed
surveys on DVRPs and related routing problems. The current
literature on DVRP has mostly focused on a single source
of uncertainty (ie the dynamic service requests), although
some recognition has been given to other sources of uncer-
tainty (Gendreau and Potvin, 1998). Disruption management
deals with all unexpected events that are significant enough
to require the original routing plan to be changed.

Li et al (2004, 2007a, 2007b, 2009a) have done a series
of studies on the vehicle rescheduling problem (VRSP). It
is based on the Single Depot Vehicle Scheduling Problem
(SDVSP), which is the problem of assigning vehicles to a
set of predetermined trips with fixed starting and ending
times with an objective of minimising capital and operating
costs. The VRSP involves producing a new schedule for
the previously scheduled trips after a trip has been severely
disrupted. After that, Li et al (2009b) introduced the Real-
time Vehicle Rerouting Problems with Time Windows. The
paper addresses a similar problem to the one formulated in
our paper in that they both look at vehicle breakdown that
disrupts a VRP plan. However, Li et al (2009b) deals with a
VRP with Time Windows, which involves both delivery and
pickup services whereas our paper deals with a Capacitated
VRP where Time Windows are not involved. The rerouting
problem in Li et al (2009b) is formulated as a set-covering
problem and the authors try to minimise a weighted sum of
operation, service cancellation and route disruption costs. The
problem is solved by a Lagrangian relaxation based-heuristic
that includes an insertion based-algorithm to obtain a feasible
solution for the primal problem. Solomon (1987) benchmark
problems are used as test instances. A vehicle breakdown is
introduced at an early time in the schedule and the number
of backup vehicles is set as 0 or 1. The algorithm is run for
a certain number of iterations. Computational results show a
considerable cost saving compared to the solution from the
naive manual approach.

Problem description

The problem addressed in this paper is based on the
Capacitated Vehicle Routing Problem (CVRP). In this case,
the disruption involves a vehicle vi that breaks down at time
t after leaving the depot and before delivering to the final
customer on its route. We only look at the case where one
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vehicle breaks down because it is unusual to have more than
one vehicle breaking down on the same day. In this situation,
a number of unserved customers have to be reallocated to
other vehicles. Extra vehicles (EVs) may have to be used
to finish serving all the customers. The objective of this
disrupted VRP is (1) to minimise the number of vehicles
used and (2) to minimise the total distance travelled by all
the vehicles after disruption happens to finish the delivery
to the unserved customers. Priority is given to the number
of vehicles. Therefore, a solution with fewer vehicles will
always be better than a solution with more vehicles. For those
solutions with the same number of vehicles, the one with the
minimum total travel distance is preferred. The following
assumptions have been made:

1. One EV is available in the depot. As has already been
discussed, we assume that a solution that does not require
the use of an EV is always better than the one that requires
an EV.

2. A vehicle cannot be diverted until it has visited its current
destination. This assumption is made because it is not
easy to estimate the time required for finding the new
plan and the communication with drivers. Therefore, in
the new routing plan, the starting point for each vehicle
that has not broken down is its next visiting point in the
original plan.

3. The commodity that the vehicles are delivering is a single
commodity that is transferable between customers, such
as gas or oil. This means any vehicle is able to serve any
customer as long as it is carrying enough to satisfy the
customer requirement.

4. Each vehicle departs with full capacity.
5. The cost of the distribution is proportional to the distance

travelled. No extra costs are involved.
6. All the vehicles depart from the depot at the same time 0

and we assume that all the vehicles are travelling at the
same speed, that is one unit of distance per unit of time.

7. There are no time window constraints for any of the
orders.

8. When a vehicle breaks down, if another vehicle is serving
a customer, that customer is the starting point of its new
route.

9. If a vehicle breaks down when it is serving a customer,
this customer will not need to be visited by another
vehicle.

10. If a vehicle has already returned to the depot when another
vehicle breaks down, reuse of that vehicle should be seen
as using an EV.

We shall refer to this problem as defined above as the
Disrupted Capacitated Vehicle Routing Problem with Vehicle
Breakdown (DCVRP-B).

The algorithms

We develop two metaheuristic algorithms to solve the
DCVRP-B because the problem is NP-hard, and there is

a time constraint on finding a new routing plan. Both
algorithms are based on Tabu Search due to its effectiveness
in solving VRPs.

Algorithm I

(1) The initial solution
When a vehicle breaks down, an easy alternative plan is to
send another vehicle from the depot to complete the route
that the broken-down vehicle has not finished. The rest of the
vehicles will keep following the original plan. As the original
plan already gives the best possible routes, we base our initial
solution on it to save computing time when finding the new
solution to the disrupted problem.

Before developing an initial solution, it is necessary to
check whether it is possible to complete serving all the
customers without using the EV. This is done by comparing
the total demand required for the unserved customers and
the total load carried by the unbroken vehicles. We use
different approaches to obtain the initial solution for these
two different cases.

For those problems where an EV must be used, the initial
solution is the same as the easy alternative plan:

1. For the disrupted route, a vehicle is sent from the depot
to serve the customer which the broken-down vehicle was
going to serve next when it broke down. The vehicle will
continue serving the rest of the customers following the
same order as was specified in the original plan.

2. For the rest of the routes, the starting point for each route
is the next customer that should be served according to the
original plan when disruption happens. The vehicles will
continue serving the rest of the customers following the
same order as was specified in the original plan.

For those problems where the service can be completed
without using the EV, we have used an insertion algorithm
to find the initial solution. The routes that do not involve a
broken-down vehicle are formed in the same way as in the
previous case. Assume EVs are not available. The unserved
customers in the disrupted route will be inserted into the
closest routes according to their distance to the midpoint
between the starting point and the depot. If an insertion
violates the capacity constraint, the customer should be
inserted into the next closest route. If there is no feasible inser-
tion route, the customer will be inserted into its closest route
even though it is infeasible. The cost function is defined as:

Cost = �i [ci + p1 × Ei ] (1)

where i represents the routes, ci is the cost of route i, p1 is
a penalty for violating the capacity constraints. As will be
discussed later, p1 is initially set to a value p′

1 and will be
changed during the search process depending on the feasi-
bility of the neighbourhood moves that have been made.
Ei is the excess of load in route i. If a solution is feasible,
Ei is equal to zero for all the routes.
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(2) The Tabu Search algorithm
We have proposed a Tabu Search algorithm, which we
believe is appropriate considering the characteristics of the
DCVRP-B. It involves a small number of parameters and
does not have any random element. It is simple, easy to
implement, stable, flexible and finds a relatively good solu-
tion in a reasonable time.

The Tabu Search proposed starts from an initial solu-
tion, feasible or infeasible, and moves at each iteration to
a best neighbourhood solution, until a stopping criterion is
satisfied.

The neighbourhood search is based on a relocation process
that involves removing one customer from its current route
and inserting it into another route. At each iteration, all the
possible moves are tried for all the customers, and the move
that gives the least cost will be chosen as the next move as
long as it is not in the Tabu list.

The neighbourhood solution may be infeasible and is eval-
uated by the mechanism proposed by Gendreau et al (1994).
Potential neighbourhood moves are evaluated using the cost
function given in Equation (1) in the last section. The penalty
p1 is initially equal to p′

1. It is multiplied by 2 if during the
last r1 consecutive iterations all the solutions have been infea-
sible or divided by 2 if all the solutions have been feasible
during the last r1 consecutive iterations.

The best neighbourhood solution is defined as follows: if
there is any feasible neighbourhood solution with lower cost
compared to the current best feasible solution, the feasible
solution with the least cost is the best neighbourhood solution;
otherwise, choose the infeasible solution that gives the least
cost.

The tabu rule can be violated if a solution is feasible and is
better than the best feasible solution, or if it is infeasible and
it gives lower cost than the best infeasible solution already
known.

The tabu list contains the customers that have been moved
and the corresponding routes from which they are removed
for the last � iterations, that is (customer, route), � represents
the tabu list length. Every time a new move is made, the tabu
list is updated.

To explore more search space, we penalise those vertices
that have been moved frequently. The number of times that
customer j has been relocated t j are kept in the memory. The
evaluation function can be rewritten as

Cost = �i [ci + p1 × Ei ] + p2 ×
(
t j
c

)
(2)

where p2 is the penalty term, c is the total number of reloca-
tions that have been performed so far.

To intensify the search space, each route is improved by
performing two-opt and relocation every r2 iterations. The
single route improvement is also performed every time a new
best feasible solution is found. The single route two-opt and
relocation are each repeated for r3 iterations and for each
iteration the best neighbourhood move is performed whether

it improves the original solution or not. The best solution
found for each individual route is then retained.

The stopping criterion is to stop when the program has run
for a certain time period because in a disruption situation, a
new routing plan needs to be found within a limited time. If
no feasible solution has been found by that time, the program
returns the easy alternative plan. For the problems where it
is possible to find a feasible solution without using the EV,
if no feasible solution can be found within 5/6 time of the
restricted time period, the algorithm will restart from the easy
plan and run for the rest of the time.

Algorithm II

Algorithm II is based on our TS heuristic presented for an
open VRP described in Fu et al (2005, 2006). The DCVRP-
B can be thought of as a mixed closed and open VRP, where
if an EV is used, then its route is a closed one and the other
routes are open ones (that is, one end of each route is at the
depot and the other end is a customer location); otherwise all
routes are open ones. In order to make Algorithm II quicker
to find the new routing solution, the following modifications
were performed on the previous TS heuristic (Fu et al, 2005):

(1) In our previous TS heuristic (Fu et al, 2005), the initial
solution is generated either randomly or by the farthest
first heuristic. To take the benefit from the solution to the
original problem, in Algorithm II, the initial solution is
simply the same as the easy alternative plan.

(2) The previous TS heuristic (Fu et al, 2005) is able to deal
with a route length constraint that does not exist in the
DCVRP-B. Therefore, we relax this constraint by setting
it to infinity.

(3) The stopping criterion is changed to be a time constraint.
(4) Some necessary changes are made for the TS heuristic

to be capable of dealing with the mixed closed and open
route situation.

Furthermore, compared with Algorithm I, this heuristic
uses a different neighbourhood structure and randomly
selects neighbours rather than searching a neighbourhood
completely.

Results and findings

The program for Algorithm I was written in C# and Algorithm
II was coded in Delphi 7.0. Both algorithms have been imple-
mented on an Intel Core 2 Duo laptop running at 2.5GHz with
4GB of RAM. The test problems were adapted and selected
from the standard CVRP problems provided by Augerat et al
(1995) (Set A, B and P), Christofides and Eilon (1969) (Set E),
Fisher (1994) (Set F) and Christofides et al (1979) (Set M).
All these problems are Euclidean and it is assumed that the
distance between each pair of customers is equal to the travel-
ling cost. All the distances have been rounded to their nearest
integer. For the instances in set A, both customer locations
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and demands are random. The instances in set B and M,
however, are clustered instances. In the instances of set E and
P, customer locations are uniformly distributed. The instances
in set F are taken from real vehicle routing applications.
The best known solution for each CVRP problem is used as
the original routing plan before disruption. The direction of
the vehicle on each route is the same as the best schedule
given. For each test problem, different combinations of
disrupted vehicle and disruption time were tested in the
experiments. Because the average route length of the original
routing plan for each of the test problems ranges from 83 to
164, three disruption times are created accordingly, which
are either early (20), middle (40) or late (60) in the time
required for a typical route. As route length varies in each
problem and we choose the same disruption times for all test
problems, in some cases, the proposed broken-down vehicle
has already served all the customers in the route when the
disruption happens. In this case, there is no need to reoptimise
the problem, as the original solution will still be valid for the
disrupted problem and any improvement found could have
been applied to the original problem. Those invalid problems
have been deleted from the problem set, which leaves 230
problems in total. For each problem, a time constraint of 60 s
has been applied. For Algorithm II, the time constraint is 12 s
and five runs are tested for each problem. The best result out
of five is presented as the result obtained from Algorithm II
within the time limit of 60 s. The results obtained by Algo-
rithm I, II and the easy alternative plan are compared with
the optimal solution that is discussed in the next section.

Optimal solution

An exact algorithm has been developed to find the optimal
solutions for the problems. This has been modified from the
algorithm to solve open VRPs and described in Letchford
et al (2007). Optimal solutions can be found for most of the
problems. Most optimal solutions can be obtained in a very
short time. However, nine out of 230 problems require over a
minute and in addition there are four cases when the algorithm
cannot find a feasible solution even after a long computing
time (a limit of 10min has been used) and only lower bounds
can be obtained. Thus the exact algorithm approach cannot
reliably find solutions to all disruption problems within the
limited time required, so a heuristic approach is still needed.
The results from the exact algorithm are used to measure the
quality of the heuristic algorithms.

Parameter tuning

Parameters have been tuned for Algorithm I. Algorithm I
involves the following six parameters:

p′
1 initial penalty value for violation of capacity constraint.

p2 penalty for frequently moved vertices.
r1 number of iterations after which p1 will be doubled or

halved without changing feasibility.

r2 number of iterations after which a single route improve-
ment should be performed.

r3 number of times that a single route improvement should
be repeated.

� tabu tenure.

The parameters were tested on a sample of problems repre-
sentative of the whole set. The average results obtained were
stable over a wide range of settings for all parameters except
p2. We observed that better results can be obtained if a larger
value of p2 is used for smaller problems. The best average
results were found by using the following parameter settings
p′
1 = 1; p2 = 10 000 (when n�50) or 200 (when n > 50);

r1=10; r2=20; r3=20; �=n/k (n is the number of customers;
k is the number of vehicles available).

The results presented below are the results obtained by
using this parameter value set.

Results

In this section, detailed results are presented for one problem
as an example, and then the results are summarised. Table 1
shows the results for problem A-n34-k5. The first column
shows the disrupted vehicles and disruption times we tested.
(1, 20) means vehicle 1 breaks down at time 20. The next four
columns give the results of the disruption problem presented
in this paper using different approaches. They are the costs
that are generated after the disruption occurs. To illustrate the
results, we have calculated the cost caused by the disruption,
which is the difference between the distance travelled if no
disruption happens and the total distance travelled if disrup-
tion happens. To calculate the disruption cost, we will need
the result of the original plan (cost if no disruption happens)
and the cost generated before the disruption happens, which
is presented in the sixth column of Table 1. The cost of the
original plan for A-n34-k5 (1, 20), for example, is 778 and so
the optimal disruption cost will be 164+642−778=28. The
disruption costs for A-n34-k5 are presented in Table 2. The
optimal solution is first shown in the second column followed
by the results obtained by using the other three approaches.
Comparisons are made and the percentage deviations from
the optimal solution for each of the three approaches are
presented. The average values are summarised in the last row
of the table.

As can be seen, Algorithm I is able to find optimal solutions
for all the problems for A-n34-k5. Algorithm II is slightly
worse, with only one case (4, 20) where the optimal solution
cannot be found. If using an easy alternative plan, the disrup-
tion cost for A-n34-n5 is the highest: 7.35% higher than the
optimal solution.

Table 3 shows, for each of the 15 test instances, the
average percentage deviations from the optimal solution for
the disruption costs obtained by each of the three approaches.
The bottom line shows the average of all the problems. Those
problems that do not require an EV are excluded from this
summary, but are presented in Table 4 because the easy plan
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Table 1 Cost results for A-n34-k5

A-n34-k5 Cost after disruption Cost before disruption

Optimal Easy Algorithm I Algorithm II

(1, 20): 642 642 642 642 164
(1, 40): 544 544 544 544 276
(1, 60): 468 482 468 468 371
(2, 20): 648 648 648 648 164
(2, 40): 519 519 519 519 276
(2, 60): 439 439 439 439 371
(3, 20): 646 646 646 646 164
(3, 40): 571 571 571 571 276
(3, 60): 476 476 476 476 371
(4, 20): 639 651 639 641 164
(4, 40): 549 549 549 549 276
(4, 60): 450 462 450 450 371
(5, 20): 646 646 646 646 164
(5, 40): 535 540 535 535 287
(5, 60): 447 447 447 447 371

Table 2 Disruption cost results for A-n34-k5

A-n34-k5 Optimal Easy Dev (%) Algorithm I Dev (%) Algorithm II Dev (%)

(1, 20): 28 28 0.00 28 0.00 28 0.00
(1, 40): 42 42 0.00 42 0.00 42 0.00
(1, 60): 61 75 22.95 61 0.00 61 0.00
(2, 20): 34 34 0.00 34 0.00 34 0.00
(2, 40): 17 17 0.00 17 0.00 17 0.00
(2, 60): 32 32 0.00 32 0.00 32 0.00
(3, 20): 32 32 0.00 32 0.00 32 0.00
(3, 40): 69 69 0.00 69 0.00 69 0.00
(3, 60): 69 69 0.00 69 0.00 69 0.00
(4, 20): 25 37 48.00 25 0.00 27 8.00
(4, 40): 47 47 0.00 47 0.00 47 0.00
(4, 60): 43 55 27.91 43 0.00 43 0.00
(5, 20): 32 32 0.00 32 0.00 32 0.00
(5, 40): 44 49 11.36 44 0.00 44 0.00
(5, 60): 40 40 0.00 40 0.00 40 0.00

Average 7.35 0.00 0.53

always uses the EV and thus the results are not comparable
with the optimal plan as they use a different number of vehi-
cles. Results for the cases where the optimal algorithm failed
and where a different number of vehicles is used in different
approaches are also excluded in this table but are presented
in Table 5.

As can be observed from Table 3, Algorithm I provides the
best results among the three approaches with 1.60% higher
disruption cost than the optimal solution. If following the
easy plan, the disruption cost will be 13.65% higher than
the optimal solution on average. In fact, within a minute,
Algorithm I is able to find the optimal solution in all but
nine cases out of the problems presented in this table and
there are 95 cases where easy plan is not the optimal plan.
It can also be observed that for all of the three approaches,
the deviation from the optimal solution is bigger for larger

problems. It seems that for larger problems more cost can be
saved by applying algorithms to solve the disruption problem
than simply using easy plan, although larger problems are
more difficult to solve to optimality within the time limit.
Moreover, it seems that there is more chance for the easy plan
to be optimal for clustered problems, which are B-n39-k5,
B-n50-k7 and M-n101-k10, where less than 1% of deviation
from the optimal solution can be observed.

Table 4 shows the results for those problems that do not
require an EV. Both Algorithms I and II perform worse than
the cases when an EV is used. This is because the new
plan should be different from the easy plan and it takes
a longer time to find a good solution. Again, Algorithm I
performs better than Algorithm II. In the 25 problems where
an optimal solution is available, Algorithm I can find 15 of
them, but some high individual percentage deviations result
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Table 3 Average percentage deviations from optimal disruption
costs (with extra vehicle)

Instances Easy (%) Algorithm I (%) Algorithm II (%)

A-n32-k5 0.00 0.00 0.00
A-n33-k5 4.36 0.00 0.36
A-n34-k5 7.35 0.00 0.53
A-n39-k5 4.21 0.00 0.39
B-n39-k5 0.00 0.00 0.00
B-n50-k7 0.41 0.00 0.00
E-n22-k4 0.96 0.00 0.00
E-n51-k5 8.07 0.00 3.89
E-n76-k10 15.04 0.39 3.38
E-n101-k8 40.08 0.72 4.69
F-n72-k4 9.26 0.00 4.50
M-n101-10 0.88 0.00 0.88
P-n45-k5 20.92 0.00 1.76
P-n76-k4 26.17 5.52 18.87
P-n101-k4 48.32 19.33 33.97
Average 13.65 1.60 4.72

Table 4 Results for test problems without extra vehicles

Algorithm I (%) Algorithm II (%)

B-n39-k5 (3, 40) 0.00 0.00
(4, 40) 0.00 0.00

B-n50-k7 (1, 40) 0.00 0.00
(3, 40) 0.00 14.75
(4, 40) 0.00 0.00
(4, 60) 0.00 0.00
(6, 40) 4.40 25.27
(7, 60) 0.00 2.82

E-n22-k4 (2, 40) 0.00 0.00
(2, 60) 0.00 0.00
(3, 60) 0.00 0.00

M-n101-10 (2, 20) 77.08 327.08
(2, 40) 0.00 0.00
(3, 40) 16.98 40.88
(4, 40) 1.52 13.64
(5, 20) 60.87 258.70
(5, 40) 0.00 0.00
(6, 20) 420.45 502.27
(8, 20) 57.89 589.47
(8, 40) 0.00 0.00
(9, 40) 6.90 18.97
(10, 20) 117.50 380.00

P-n45-k5 (2, 60) 0.00 0.00
(3, 60) 0.00 0.00

Average 31.82 90.58

Table 5 Results for problems that are not included in Tables 3 and 4

Optimal Use EV Easy Use EV AlgI Use EV AlgII Use EV

E-n76-k10 (1, 20): 66 No 7 Yes 7 Yes 66 No
E-n101-k8 (1, 20): — — 16 Yes 16 Yes 15 Yes

(6, 20): — — 19 Yes 19 Yes 19 Yes
(7, 20): — — 17 Yes 17 Yes 17 Yes

M-n101-10 (1, 20): — — 37 Yes 172 No 37 Yes

in the average deviation from the optimal solution being over
30%.

Table 5 shows the five cases that cannot be included in
the above tables either because no optimal solution has been
found (problems from E-n101-k8 and M-n101-10) or because
different numbers of vehicles are used (E-n76-k10 (1, 20)).
For each of the problems and algorithms, the value of disrup-
tion cost is presented as well as whether the EV is used in
the solution.

Conclusions

We have described the DCVRP-B. Two heuristic algorithms
based on Tabu Search have been presented. One is newly
proposed for the problem (Algorithm I). The other is based
on previous work using the open VRP formulation (Algo-
rithm II). The algorithms take advantage of the original plan
and a new routing plan can be found within a limited time.
The newly proposed Tabu Search algorithm (Algorithm I)
involves a small number of parameters and does not have a
random element. The algorithm is simple, flexible and always
gives a feasible solution. This algorithm outperforms Algo-
rithm II and can also save a considerable amount of disrup-
tion cost compared to using an easy alternative plan. An exact
algorithm has also been developed and it is able to find the
optimal solution quickly in most of the cases, but in some
cases fails to find a feasible solution within the required time
limit. Algorithm I is able to find the optimal solution in all
but 19 cases of the 230 problems tested. Although it is rela-
tively harder for our algorithms to find optimal solutions for
larger problems because of the time limit, more disruption
cost savings can actually be obtained compared with using an
easy plan.
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