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Vehicle routing and scheduling with time-varying
data: A case study
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A heuristic algorithm is described for vehicle routing and scheduling problems to minimise the total travel
time, where the time required for a vehicle to travel along any road in the network varies according to the
time of travel. The variation is caused by congestion that is typically greatest during morning and evening
rush hours. The algorithm is used to schedule a fleet of delivery vehicles operating in the South West of the
United Kingdom for a sample of days. The results demonstrate how conventional methods that do not take
time-varying speeds into account when planning, except for an overall contingency allowance, may still lead
to some routes taking too long. The results are analysed to show that in the case study using the proposed
approach can lead to savings in CO2 emissions of about 7%.
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Introduction

Vehicle Routing and Scheduling algorithms have traditionally
been developed for road networks, where the average speed of
the vehicles on each road link is estimated as a constant value.
Sometimes different average speeds are used for different
types of road or roads in particular areas, but often the average
speed is not altered over the planning period. In practice,
traffic flows may be subject to congestion that leads to lower
average speeds at particular times of the day or night. The
average speeds may also vary due to the day of the week, the
time of year and other influences such as weather conditions.

There is now much more traffic information available that
makes it possible to plan vehicle journeys taking account of
congestion that is predictable from the traffic patterns of the
past. This approach will not be able to take account of unex-
pected events that may cause congestion such as an accident,
but regular congestion due to volume of traffic or long-term
road works can be predicted from past data.

Such data can be used to create a Road Timetable that
shows the shortest time between customers when the journey
is started at different times. In some cases the shortest-time
path may change at different times of day due to the pattern of
congestion on the road network. Issues regarding the construc-
tion of such a Road Timetable are discussed in Eglese et al
(2006).

This paper describes a vehicle routing and scheduling algo-
rithm, called LANTIME, that is able to accept data from a
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Road Timetable and will construct a set of vehicle routes that
aims to minimise the total time required to deliver goods from
a depot to a set of customers subject to a set of constraints. The
possible constraints include the capacities of the vehicles, the
times available for each driver and vehicle and time-window
constraints for the customer deliveries.

The main aim of this paper is to present a case study where
the algorithm has been applied using real data for a vehicle
fleet delivering electrical wholesale items in the South West of
the UK. The purpose of this case study is to analyse the effects
of using Road Timetable data compared with routing and
scheduling where this information is not available. The results
are compared in terms of the total distances travelled, the time
required for each vehicle route and the CO2 emissions.

The paper is organised as follows. The next section
discusses the academic literature relevant to vehicle routing
and scheduling using time-varying data. In the following
section, the details of the LANTIME scheduler are described.
The case study and results are described next followed by
the conclusions and remarks on further research.

Literature related to time-varying vehicle routing models

Vehicle Routing Problems have been studied extensively in
the Operational Research literature. A good overview of exact
and heuristic methods, together with descriptions of some
application areas is to be found in Toth and Vigo (2002).
Most models treat the time between customers as constant
values, but a relatively small number of articles have been
published that consider these times as varying according to
the time of travel. One example is the paper by Fleischmann
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et al (2004). Modern traffic information systems are described
and a framework is presented for using time-dependent travel
times within dynamic vehicle routing problems of different
types. Computational tests based on the traffic in Berlin show
that the use of constant average travel times can lead to signi-
ficant underestimation of the total travel times. The paper also
reports on how this can lead to missing delivery time-window
constraints. Ichoua et al (2003) examine a model for vehicle
routing and scheduling based on time-dependent travel times.
These travel times are derived from speeds that vary according
to different times of the day and it is shown that this approach
has the advantage of maintaining the First In, First Out (FIFO)
property. This means that a vehicle starting to travel down
a single road will always reach the end of the road before
another similar vehicle that starts its journey down the same
road at a later time. The model is tested on generated data
and illustrates the benefits from taking time-varying travel
times into account. Eglese et al (2006) demonstrate how the
use of time-varying data can affect results for a hypothetical
distribution operation, using real speed data on a road network
in the north of England.

Van Woensel et al (2008) describe an approach incorpo-
rating queueing models for vehicle routing where travel times
may vary dynamically due to congestion. The models are built
on the relationships between the speed, flow and density of
the traffic on any road. The approach can be used where direct
observations of speeds are not available, but data on flows
can be obtained or easily estimated.

There have also been developments in dynamic vehicle
routing for adjustments to vehicle routes reacting to changing
traffic conditions in real time. Examples include Ichoua et al
(2006) and Taniguchi and Shimamoto (2004). When the
customer demands are for specific orders that need to be
loaded at the depot, as occurs in our case study, then although
these approaches may allow routes to be improved after a
vehicle has left a depot, planning which customer is to be
served on each vehicle route still needs to be determined
when the vehicles are loaded based on expected travel times.

Formulation and algorithm design

The problem considered is a conventional single-depot
Vehicle Routing Problem with Time Windows (VRPTW).
The VRPTW, where the speeds over each arc or edge of a
network are not varying with time, can be formulated in a
variety of ways including a multi-commodity network flow
model, where the binary variables indicate whether an arc
between two nodes is traversed by a certain vehicle, or a
set-partitioning formulation, where the variables used in the
master problem indicate possible paths. The formulation used
in this paper is based on a different standard formulation that is
capable of being expanded later to include more practical rout-
ing requirements as well as variable travel time information.

The set of customers is denoted by N and the set of vehicles
by K. For each customer i ∈ N , the service time requirement

is s(i), the demand required is w(i) and a time window [ei , li ]
is specified for beginning of service. The set of vehicles K
represents a homogeneous fleet of vehicles. For each vehicle
k ∈ K , its capacity isW, its starting time is � and its maximum
working time is D.

The travelling times between locations are all known and
fixed and defined as c(i, j) where {i, j} ⊂ N ∪{0}, and where
by convention 0 represents the depot. The cost associated with
traversing an arc is represented as the travelling time.

For each individual vehicle, k, Rk = [vk
0, . . . , v

k
mk ] the path

of locations required to be serviced by the vehicle k where
vk
i ∈ N for i = 1, . . . ,mk − 1, and, vk

0 and vk
mk are identified

with 0. That is, the route starts and ends at the depot. mk

represents the number of stops on the complete path, including
depot stops, for vehicle k.

The starting time of the service for a customer i ∈ N
is denoted by a(i) and the waiting time before a service is
denoted as b(i). The starting time is defined as the maximum
of the leaving time from the previous stop plus the trav-
elling time from the previous location and the start of the
time window ei . By convention a(0) = � and s(0) = 0. The
waiting time is dependent on both thestarting time and the
time-window start time.

a(vk
i ) = max

{
evki

a(vk
i−1) + s(vk

i−1) + c(vk
i−1, v

k
i )

}
(1)

b(vk
i ) = max

{
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− a(vk
i )

0

}
(2)

The only constraint applied directly to each individual
customer is that the service is started within the given time
window. This is a time window on beginning of service and
not on completion of service.

ei �a(i)�li , ∀i ∈ N (3)

The working time required on each route must be under the
total work time available, D. In the VRPTW the working time
includes travelling time, service time and waiting time.

mk−1∑
i=0

c(vk
i , v

k
i+1)+

mk−1∑
i=1

s(vk
i )+

mk−1∑
i=1

b(vk
i )�D ∀k ∈ K (4)

Constraint (4) ensures that the vehicle returns to the depot
on time. Equation (5) defines the variable R̃k as the path of
locations required to be serviced by the vehicle k with the
depot stops removed.

R̃k = Rk\{�k0, �kmk } ∀k ∈ K (5)⋃
k∈K

R̃k = N (6)

The equality Constraint (6) ensures that all customers N are
dealt with by the individual customer sets R̃.

mk−1∑
i=1

w(vk
i )�W ∀k ∈ K (7)
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Adapted CROSS Exchange Insertion/Removal Operator

One Exchange Operator Swap Operator

Figure 1 The four types of neighbourhood move.

Constraint (7) ensures the capacity of the vehicle is not
exceeded by the demand requirements of the individual
deliveries placed on route Rk .

The objective function (8) is for a fixed-fleet version of the
problem where the objective is to minimise the travelling cost
over all the routes.

Min
∑
k∈K

mk−1∑
i=0

c(vk
i , v

k
i+1) (8)

Full details of the algorithm used can be found in Maden
(2006). The main points are summarised below.

An initial solution is created for the VRPTW using a
parallel insertion algorithm following Potvin and Rousseau
(1993). This initial solution is a starting solution from which
tabu search explores neighbouring solutions. The insertion
algorithm must ensure that the solution is feasible with
respect to all constraints.

The insertion algorithm forms a five-step process as
outlined below.

Step 1: Seed the vehicles’ routes with one delivery each
(using a seeding criterion).

Step 2: For each remaining delivery, find the cost if a vehicle
were to complete that delivery from the depot with
no other customers on its route.

Step 3: Find best location on best vehicle’s route for all
remaining deliveries.

Step 4: Make the best insertion based on a savings criterion.
Step 5: If all routes are full or all jobs are scheduled, termi-

nate; else go to step 3.

The initial vehicle route is started by seeding it with the
delivery farthest from the depot, though other variations are
possible.

The initial solution is then improved using a tabu search
algorithm.

The algorithm described here uses four possible neighbour-
hood operations: CROSS Exchange, insertion/removal, one
exchange and swap. The first of these is an adaptation of a
neighbourhood move proposed by Taillard et al (1997). The
four neighbourhoods are illustrated in Figure 1.

The insertion/removal, one exchange and swap operators
can be considered as special cases of the adapted Cross-
Exchange operator. They represent smaller neighbourhoods
and so take less time to search completely than the adapted
Cross Exchange. In all these moves, when a set of deliveries
is moved together, a check is carried out to discover whether
it is better to reverse the sequence of deliveries for those
moved.

The algorithm randomly selects which neighbourhood to
explore at each stage, according to probabilities assigned in
advance.

The tabu list is not fixed but varies as proposed by Gendreau
et al (1994); a move added to the tabu list at time t remains
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restricted until time t + � where � is randomly selected
from an interval [�, �]. Gendreau et al (1994) suggests that
this approach virtually eliminates the probability of cycling
between solutions. A standard aspiration criterion overrides
the restriction implied by the tabu list if the move leads to a
new best solution.

A long-term memory structure is used to help diversify
the search into new areas. The tabu search objective has an
additional component to represent the long-term memory cost
M(xtrial) of the proposed move that leads to solution xtrial .

cost trial = M(xtrial) f (xtrial) (9)

The long-term memory factor reflects the number of times
each delivery that is involved in the move, leading to the
trial solution xtrial , has been involved in previous completed
moves. The memory structure keeps a tally of the number of
times a delivery has been involved in a completed move. For
a move only involving swapping a single delivery, a value of
1 is added to that delivery tally; for a move involving more
than one delivery, 1/(Num deliveries involved) is added to
the tally for all deliveries involved in the completed move.

The component M(xtrial) for Equation (9) is calculated
using a sum of the tally counts of deliveries that are involved
within the move, divided by the number of deliveries involved
in the move; then this value is expressed as a fraction of the
total number of iterations, total num iterations. � is a constant
used to control the effect that long-term memory has on the

cost function.

M(xtrial)

=
(∑

tally count/num deliveries involved

total num iterations
+ 1

)
�

(10)

The memory component of the cost function is set to equal 1
when determining if the possible solution meets the aspiration
criteria.

The tabu search objective tries to locate a solution x which
leads to the minimum search cost. The search cost includes
the original VRPTW objective f (x), the memory cost M(x)
and the function P(x) that is a measure of the infeasibility
of solution x.

M(x) f (x) + �P(x) (11)

The parameter � is dynamically adjusted throughout the
search. � is initially set at 1 and in the same way as Gendreau
et al (1994), every � iterations, � = 2� if all previous � solu-
tions were infeasible, and � = �/2 if all previous � solutions
were feasible.

In expression (11) the cost of the solution f (x) is calculated
using Equation (8) and the memory cost is calculated using
Equation (10). The penalty cost is calculated by determining
how much extra time, including the time windows for each
delivery and the working time allowance for each vehicle,
is needed to complete the solution. The total extra time is
denoted as P(x).

The algorithm can be summarised as follows:

Step 1: Initialisation
Generate initial solution, xnow,
Copy initial solution to best overall feasible solution, x∗ = xnow,
Ensure tabu list is empty, and long-term memory values are defaulted to zero

Step 2: Neighbourhood selection & termination
If termination criterion is met, End Search and Return x∗,
Else Randomly select the neighbourhood N to be used this iteration

Step 3: Choice
Randomly generate xtrial from N (xnow)

If first trial value in neighbourhood, xbest = xtrial
If P(xtrial) = 0 and f (xtrial) < f (x∗), (Aspiration criterion)

Copy f (xbest ) = f (xtrial), P(xbest ) = P(xtrial), xbest = xtrial Go to Step 4,
Else if move from xnow to xtrial is not set tabu,

if M(xtrial) f (xtrial) + �P(xtrial) < M(xnow) f (xnow) + �P(xnow),
Copy f (xbest ) = f (xtrial), P(xbest ) = P(xtrial), xbest = xtrial Go to Step 4,

Else if M(xtrial) f (xtrial) + �P(xtrial) < M(xbest ) f (xbest ) + �P(xbest ),
Copy M(xbest ) = M(xtrial), f (xbest ) = f (xtrial), P(xbest ) = P(xtrial), xbest = xtrial

Continue Step 3 until search of neighbourhood N (xnow) is exhausted

Step 4: Update
xnow = xbest
Update Memory table and Tabu List, increment iteration count
If P(xbest ) = 0 and f (xnow) < f (x∗), x∗ = xnow
Restart Step 2
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Experiments were carried out on standard benchmark
VRPTW test problems from Solomon (1987) to determine the
best values of the parameters to be used with this algorithm.
Full details are in Maden (2006).

Some further extensions were made to the algorithm so that
it could be used in practice for case study problems.

The most important extension is to allow the time to travel
between locations c(i, j) to vary according to the time that the
journey is started. The optimum times, distances and routes
were previously calculated and stored as a Road Timetable,
using the approach described in Eglese et al (2006).

In addition, the algorithm was modified to ensure that the
routes obeyed current driving legislation by inserting breaks
for a driver when required. The law lays down several condi-
tions:

(i) there must be a driving break of 45min every 4.5 h
(270min),

(ii) if the total working time is greater than 6 h (360min)
then a 30-min break must be taken,

(iii) if the total working time is greater than 9 h (540min)
then a 45-min break must be taken.

The two types of breaks can be taken simultaneously. For
example, if a driver takes a 45-min driving break then he
would have taken enough rest to work over 9 h. Conversely,
if a driver works over 6 h and takes a 30-min break, then the
next driving break need only be for 15min.

Finally, a penalty function is included in the objective if
any deliveries are not included in the routes for the fixed-
vehicle fleet. However the final solutions produced need to
service all deliveries. For the experiments in the case study,
if any deliveries were not included then the vehicle fleet was
increased until a feasible solution was found that included
all deliveries. In other practical situations, some deliveries
may have to be rescheduled for another time or passed on to
another carrier.

The algorithm was also modified to allow a heterogeneous
fleet, the capacity constraint was extended to cover two
elements (eg weight and volume) and problems involving
pickups and deliveries were included, but these extensions
were not required for the case study described in this paper.

The implementation of the algorithm changes significantly
with the inclusion of variable travel time information. As
highlighted in papers notably Malandraki and Daskin (1992),
Fleischmann et al (2004) and Ichoua et al (2003) there
are other complications that need to be considered when
extending an algorithm to make use of time-dependent travel
times. This is because a local neighbourhood move involving
deliveries near the start of a route could have a significant
effect on the timings later on, and makes it more difficult
to determine the effect of the neighbourhood move on the
objective function efficiently.

Ichoua et al (2003) use an approach of approximating the
effect on later jobs by using a similar approach to the one

outlined when using static data, using the creation of an addi-
tional time window to give an approximation of the effect. The
M best moves given by the approximation are then calculated
exactly. The final selection is based on the exactly calculated
values.

Malandraki and Daskin (1992) determined that using a
typical insertion algorithm with variable travel time informa-
tion was too computer intensive to be of practical use, but as
computer speeds and power increase, this problem becomes
less acute. In this algorithm, the effect of a neighbourhood
move on the objective function is determined exactly.

Another issue arises from the approximation of a contin-
uous change in the time to travel between any two nodes on
the network using a set of discrete time bands. The issue is
similar to that of ensuring that the FIFO property holds when
constructing the Road Timetable as described in Eglese et al
(2006). When travelling from A to B, the time of arrival at
B could be earlier if the vehicle waits at A until the starting
time falls in a time band where the speeds are faster. Although
the construction of the Road Timetable ensures that this will
not happen when the best route between A and B does not
change, if the best route between A and B changes with the
change to a new time band, then this phenomenon can occur.
In practice, delaying the departure from A should never lead
to an earlier arrival at B for any particular route. If the time
bands used in constructing the Road Timetable are relatively
narrow, then this should not be a significant problem in prac-
tice. The experiments were all conducted using 15-min time
bands that are narrow enough so that the changes in speed
on a road between neighbouring time bands are generally
small and provide a good approximation to the continuous
case. Using narrower time bands would provide an even better
approximation but increase the computational burden.

Case study

The case study is based on the distribution system of an elec-
trical goods wholesaler. For its operation in the South West of
the UK, items need to be taken from its regional distribution
centre in Avonmouth to a set of customers. The area covered
includes Worcester, Swindon and Portsmouth to the east, the
whole of south Wales and the south west of England to the
tip of Cornwall. The operation is carried out on a daily basis
Monday–Friday. The vehicles used are all 3.5 tonne GVW
box vans, so there are no restrictions on the roads on which
they may travel. As the items of electrical equipment are rela-
tively small and light there are no effective constraints on the
capacity of the vans. However each driver is available only for
a maximum 10-h working day including the statutory breaks
for driving time and working time. There are no time-window
constraints for the deliveries, other than that they must all be
delivered on a particular day.

Demand data were obtained for a sample of nine sepa-
rate days. The number of customers served per day ranged
between 40 and 64. The number of vans required is normally



520 Journal of the Operational Research Society Vol. 61, No. 3

Table 1 Results for run sets A and B

Date N Run Total dist. (km) Total time (min) Work Time per vehicle (min)

1 2 3 4 5 6

9/6/2008 53 A 1990 2295 599 581 557 598
B 2619 660 680 631 648

11/6/2008 51 A 2037 2377 180 485 599 573 541
B 2736 198 539 729 640 630

12/6/2008 64 A 2466 2934 538 571 573 598 152 501
B 3342 605 628 637 716 168 587

13/6/2008 49 A 1964 2337 595 596 569 577
B 2620 668 674 628 649

16/6/2008 55 A 2458 2853 472 555 593 397 588 249
B 3186 518 622 648 450 666 282

17/6/2008 57 A 1987 2454 195 514 575 589 582
B 2744 214 570 637 651 671

18/6/2008 48 A 2076 2393 160 457 589 590 597
B 2672 179 505 662 656 670

19/6/2008 40 A 1523 1782 438 574 195 575
B 2018 481 654 218 666

20/6/2008 43 A 1668 2045 593 511 390 551
B 2381 754 567 445 615

up to seven, though additional vans and drivers are available
if required.

In order to construct the corresponding Road Time-
tables, data were supplied from ITIS Holdings whose Floating
Vehicle Database contains speeds of vehicles on roads that
have been captured through tracking devices on the vehi-
cles. Road Timetables were constructed for each day’s set of
customers based on the speeds observed in 96, 15-min time
bins averaged over a 3 month period in 2007. For comparison
purposes, Road Timetables were also constructed using the
speeds found at times of the day when the traffic was free
flowing or uncongested.

In cases where the location of a customer was off the main
road network covered by the ITIS data (typically on an estate
or very minor road) then the time for a vehicle to transfer
between the location and the main road network was estimated
based on the straight line distance to a node on the network
in the way described in Eglese et al (2006). This time was
generally a very small proportion of the total journey time.

For each day’s data, initially two runs were made using
the LANTIME algorithm. The first set of runs (A) used the
uncongested speeds that did not vary by time of day. The
results from this correspond to what would be expected from
a conventional vehicle routing and scheduling system where
the speeds on each road are constant. The second set of runs
(B) give the results of using the routes planned in (A), but with
the varying speeds taking account of the effects of congestion
at different times of day.

The results are shown in Table 1.
For each of the 9 days sampled, when the routes that were

constructed using constant uncongested speeds from A were
used and tested using the actual time-varying speeds in B, at
least one of the routes constructed became infeasible, because

the total time required exceeded the 10 h allowed, sometimes
by a considerable margin. These instances are indicated by
bold type in the table. Over all the runs, the percentage of
routes that went over time was 65% and the total extra time
required to finish those routes was an average of 57 mins.
In practice this may require the payment of overtime payments
and could also lead to delivery problems if some deliveries are
delayed beyond the normal time when customers can accept
deliveries.

To overcome this problem, one strategy used by planners is
to use constant speeds, but slower than the uncongested speeds
to make an allowance for congestion. With a constant speed
model, this will not reflect the actual variations in speed at
different times of the day, but the approach might be expected
to make sufficient allowance so that the actual route lengths
do not exceed the 10 h allowed. Using slower speeds may
lead to plans requiring more vehicle routes and drivers than
strictly necessary.

In order to analyse this strategy, the algorithm was run
again using constant speeds, where the original uncongested
speeds were reduced by 10%. The resulting plans were then
tested using the actual time-varying speeds in the same way
as the previous set of runs in B. The results from these runs
are shown in Table 2 and are labelled ‘P-10%’.

The results from these runs show that even with this
allowance, many of the routes planned still exceed the 600-
mins time limit. The percentage of routes that went over time
is 44% and the total extra time required to finish these routes
is an average of 20mins. In this case, the allowance has not
been enough to provide a set of routes that are likely to be
satisfactory.

Another set of runs was then carried out, again using
constant speeds, but this time where the speeds were reduced
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Table 2 Results for run set P-10%

Date Total dist. (km) Total time (min) Work Time per vehicle (min)

1 2 3 4 5 6

09/06/2008 1979 2659 236 582 620 640 581
11/06/2008 2328 2966 624 500 606 602 634
12/06/2008 2875 3665 631 600 653 572 600 608
13/06/2008 1884 2633 450 603 636 435 508
16/06/2008 2513 3213 547 595 240 608 643 579
17/06/2008 1995 2757 604 597 593 634 328
18/06/2008 2034 2670 609 324 627 506 604
19/06/2008 1485 2003 607 286 502 607
20/06/2008 1679 2328 598 578 583 570

Table 3 Results for run sets P-20% and C

Date Run Total dist. (km) Total time (min) Total CO2 (kg) Work Time per vehicle (min)

1 2 3 4 5 6 7 8

09/06/2008 P-20% 2309 3005 497 565 613 463 541 545 279
C 2155 2862 463 586 438 247 600 397 594

11/06/2008 P-20% 2558 3237 548 484 516 607 519 552 560
C 2458 3076 528 580 536 505 332 528 595

12/06/2008 P-20% 3546 4373 763 542 577 548 551 539 551 533 532
C 2802 3632 604 596 198 597 566 501 595 578

13/06/2008 P-20% 2027 2801 438 557 475 505 593 557 113
C 1955 2692 424 588 499 520 505 580

16/06/2008 P-20% 3171 3928 680 541 554 582 557 516 589 589
C 3153 3864 676 513 600 482 589 544 596 540

17/06/2008 P-20% 2145 2945 465 299 448 563 560 516 559
C 2226 3064 483 452 460 546 583 512 512

18/06/2008 P-20% 2581 3257 557 536 593 564 538 484 543
C 2210 2896 477 458 600 173 592 514 559

19/06/2008 P-20% 1749 2300 376 493 604 362 296 545
C 1504 2002 324 596 318 582 506

20/06/2008 P-20% 1710 2386 370 206 541 576 467 596
C 1777 2361 383 593 299 600 532 337

by 20%. The resulting plans were then tested using the actual
time-varying speeds as before. The results from these runs
are shown in Table 3 and are labelled ‘P-20%’.

A final set of runs (C) show the results from planning the
routes using the LANTIME algorithm with the time-varying
speed data and these are also given in Table 3.

When the change in speeds is further reduced by 20% for
planning, then in all instances apart from three, the routes are
within the 600mins maximum and the extra time required is
only an average of 8mins. However on each sample day, this
requires the use of an additional van route compared to run
set P-10%.

In contrast with the previous results, using the LANTIME
algorithm with the time-varying speeds (set C) produced
results where all routes were completed within the 10 h limit.
As for run sets P-10% and P-20%, in many cases an addi-
tional van route was needed compared to the original plans
in run sets A and B. The results from set C demonstrate that

using LANTIME provides a more reliable basis for planning
routes in terms of the time needed to complete each route.

Table 3 also presents an estimate of the CO2 emissions
for each of the run sets. These have been calculated using
the speed along each road in the route using the emissions
function provided in the National Atmospheric Emissions
Inventory. This can be accessed online (at www.naei.org.uk).
For this case study, the figures used are for Euro II Diesel
LGVs. The tables provided allow an estimate to be made of
various emission factors in terms of emissions per kilometre
for different average speeds. They may not fully reflect actual
emissions that may be affected by the amount of irregularity
in speed, weight of load, road inclines and other factors. For
this case, as the customer orders are relatively light compared
to the weight of the van, no attempt has been made to modify
the function for the weight of goods carried at each stage of
the route. A good discussion of the issues involved in the
estimation of CO2 emissions from road freight transport can
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Table 4 Summary statistics

Run Total dist. (km) Total time (min) Total CO2 (kg)

P-20% 21796 28232 4694
C 20236 26431 4363

be found in McKinnon and Piecyk (2009). The evaluations
could have been made for other harmful pollutants, but only
CO2 emissions have been evaluated as a major contributor to
the greenhouse effect. All the calculations have been made in
grams and then rounded in the results to the nearest kilogram.

When the total emissions per day are compared for run
sets P-20% and C, the total emissions for run set C were
usually lower than those for run set P-20%, though not in every
case.

Table 4 summarises the total distance, total time required
and the total CO2 emissions for run sets P-20% and C. It shows
that the total distance travelled and the total time required
for run set C were less than those for P-20%. The reduction
is about 7% when compared with the P-20% run set. This
is because the LANTIME algorithm using the time-varying
speed data tends to avoid routes where congestion is high,
speeds are low andCO2 emissions are relatively high. By
searching for the fastest routes, it tends to avoid congestion
and only uses longer routes when the vehicles can travel faster
at a speed closer to the optimum for emissions per kilometre.

Conclusions and further research

The case study results demonstrate the effect that consider-
ation of time-varying speeds can have on a real distribution
operation. Ignoring this issue can lead to routes that suffer
delays producing duties for drivers that are unacceptably long.
In this case, there were no time-window constraints on service
deliveries, but where these are important then ignoring time-
varying speeds can lead to missing delivery time windows as
well.

The analysis has shown that being able to plan routes
using traffic information that provides time-varying speeds
for the roads in the network can also lead to some reduc-
tion in the levels of CO2 emissions produced compared with
plans based on constant speeds and a general contingency
allowance for congestion. The reduction observed for the
case study was about 7% when compared with a planning
method using constant speeds and a common contingency
allowance for all roads.

Although this study suggests that finding the set of routes
that minimise the total time in a network with time-dependent
travel times may lead to reductions in emissions compared to

conventional approaches, the LANTIME algorithm still does
not plan routes that directly minimise pollution. The next step
in this research is to modify the algorithm to find the set of
routes that will produce the set of routes that directly minimise
the pollution, still taking account of the time-varying speeds
due to patterns of congestion.
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