
INFORMS Journal on Computing
Vol. 23, No. 1, Winter 2011, pp. 26–40
issn 1091-9856 �eissn 1526-5528 �11 �2301 �0026

informs ®

doi 10.1287/ijoc.1100.0390
©2011 INFORMS

Decorous Lower Bounds for
Minimum Linear Arrangement

Alberto Caprara
Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna, I-40136 Bologna, Italy,

alberto.caprara@unibo.it

Adam N. Letchford
Department of Management Science, Lancaster University, Lancaster LA1 4YX, United Kingdom,

a.n.letchford@lancaster.ac.uk

Juan-José Salazar-González
Departamento de Estadística, Investigación Operativa y Computación, Universidad de La Laguna,

E-38271 La Laguna, Tenerife, Spain, jjsalaza@ull.es

Minimum linear arrangement is a classical basic combinatorial optimization problem from the 1960s that
turns out to be extremely challenging in practice. In particular, for most of its benchmark instances, even

the order of magnitude of the optimal solution value is unknown, as testified by the surveys on the problem
that contain tables in which the best-known solution value often has one more digit than the best-known lower
bound value. In this paper, we propose a linear programming-based approach to compute lower bounds on
the optimum. This allows us, for the first time, to show that the best-known solutions are indeed not far from
optimal for most of the benchmark instances.

Key words : programming, integer, algorithm, branch and bound; programming, integer, applications; networks;
graphs, applications; analysis of algorithms

History : Accepted by Karen Aardal, Area Editor for Design and Analysis of Algorithms; received September
2009; accepted February 2010. Published online in Articles in Advance May 19, 2010.

1. Introduction
Given a graph G = �V �E�, with V = �1� � � � �n�, an
arrangement (also called a permutation, labelling, order-
ing, or layout) is a one-to-one function �	 V → V . If we
view � as a placing of the vertices on points 1� � � � �n
along the real line, the quantity ���i� − ��j�� corre-
sponds to the Euclidean distance between vertices
i and j . Several important combinatorial optimiza-
tion problems, collectively known as graph layout
problems, call for an arrangement minimizing a func-
tion of these distances (see the survey by Díaz et al.
2002). Here, we are concerned with the minimum lin-
ear arrangement problem (MinLA for short, using an
acronym common in the literature), in which the
objective is to minimize the sum of the pairwise dis-
tances between all vertices joined by an edge, namely,∑

�i� j�∈E ���i� − ��j��.
1.1. Literature Review and State of the Art
MinLA was originally proposed by Harper (1964). It
was proven to be strongly ��-hard by Garey et al.
(1976), and this was later shown to hold even when G
is bipartite (Garey and Johnson 1979). For general
graphs, the fastest-known exact algorithm (in terms
of worst-case performance) is based on dynamic

programming and runs in ��2nm� time (Koren and
Harel 2002), where m 	= �E�. However, MinLA is
known to be solvable in polynomial time on trees
(Shiloach 1979), outerplanar graphs (Frederickson and
Hambrush 1988), and certain Halin graphs (Easton
et al. 1996). In fact, for some restricted classes of
graphs, optimal layouts are known explicitly (Chung
1988, Harper 1964, Juvan and Mohar 1992, Mitchison
and Durbin 1986, Muradyan and Piliposjan 1980).
On the theoretical side, some recent progress

has been made on the approximability of MinLA.
Approximation algorithms with performance guar-
antee ��logn� were introduced by Bornstein and
Vempala (2004) and Rao and Richa (2005). Recently,
an ��

√
logn log logn� approximation algorithm was

found (Charikar et al. 2010, Feige and Lee 2007). It has
been shown that there does not exist a polynomial-
time approximation scheme for the problem, unless
��-complete problems can be solved in random-
ized subexponential time (Ambühl et al. 2007), and it
has been conjectured that MinLA cannot be approxi-
mated to within a constant factor in polynomial time
(Devanur et al. 2006).
On the practical side, the problem appears to be

extremely challenging. Before this work (and the

26

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS 27

subsequent work by Caprara et al. 2009, discussed
in the conclusions), the best practical method to
solve MinLA to proven optimality was the one based
on dynamic programming mentioned above (which
ruled out the possibility to solve instances with more
than, say, 30 vertices). On the one hand, several
heuristics were proposed for the problem (Koren and
Harel 2002; Petit 2003a, b; Rodriguez-Tello et al. 2008;
Safro et al. 2006) and tested on a well-established col-
lection of benchmark instances (Petit 2001). On the
other hand, it was so far impossible to certify that
their solutions are close to optimal because, with the
exception of three instances whose optimum is known
by construction, the best lower bounds on the opti-
mum are generally one order of magnitude smaller than
the heuristic values.
The situation is illustrated in Petit (2003b), which,

among other things, provides a clear picture of the sit-
uation concerning the practical solvability of MinLA.
Moreover, this is testified in Table 1, in which we
report the values of the best-known heuristic solu-
tion Best heur, as reported in Rodriguez-Tello et al.
(2008), and the best-known lower bound value Best
LB, taken from a table in Petit (2003b), along with
the associated relative gap. Note that for instances
hc10, mesh33× 33, and bintree10, the optimal value is
known by the structure of the problem (and reported
in column Best heur) and that the lower bound for
mesh33× 33 by the mesh method illustrated in Petit
(2003b) is equal to the optimum by definition.

Table 1 Best-Known Solution Values and Lower Bounds for the MinLA
Benchmark Instances

Name n m Best heur Best LB Gap (%)

gd95c 62 144 506 292 42�3
gd96a 1�096 1�676 95�242 5�155 94�6
gd96b 111 193 1�416 702 50�4
gd96c 65 125 519 241 53�6
gd96d 180 228 2�391 595 75�1
c1y 828 1�749 62�230 14�101 77�3
c2y 980 2�102 78�757 17�842 77�3
c3y 1�327 2�844 123�145 23�417 81�0
c4y 1�366 2�915 114�936 21�140 81�6
c5y 1�202 2�557 96�850 19�217 80�2
hc10 1�024 5�120 523�776∗ 349�525 33�3
mesh33× 33 1�089 2�112 31�680∗ 31�680 0�0
bintree10 1�023 1�022 3�696∗ 1�277 65�4
randomA1 1�000 4�974 866�968 140�634 83�8
randomA2 1�000 24�738 6�522�206 4�429�294 32�1
randomA3 1�000 49�820 14�194�583 11�463�259 19�2
randomA4 1�000 8�177 1�717�176 601�130 65�0
randomG4 1�000 8�173 140�211 39�972 71�5
3elt 4�720 13�722 357�329 44�785 87�5
airfoil1 4�253 12�289 272�931 40�221 85�3
crack 10�240 30�380 1�491�126 95�347 93�6
whitaker3 9�800 28�989 1�143�645 144�854 87�3

Note. Known optimal values are marked by an asterisk.

Table 2 Improved Lower Bounds Found by Our Method for the MinLA
Benchmark Instances

Name Our LB Gap (%)

gd95c 443 12�5
gd96a 77�860 18�3
gd96b 1�281 9�5
gd96c 402 22�5
gd96d 2�021 15�5
c1y 59�971 3�6
c2y 76�253 3�2
c3y 113�801 7�6
c4y 106�942 7�0
c5y 88�741 8�4
bintree10 3�696 0�0

1.2. Our Contribution
In this paper, we focus our attention on the compu-
tation of lower bounds for the problem. Our main
final contribution is given in Table 2, showing that,
for the instances with less than (roughly) 5,000 edges
in the benchmark, the current best solutions are very
close to fairly close to the optimum, with gaps that
are (roughly) between 5% and 20%. We can also find
improved lower bounds for the larger instances, but
because our lower bounding procedure does not con-
verge within a reasonable time limit, we preferred not
to report the results here.
Our approach is based on the solution of a suit-

able linear program (LP), which involves variables that
represent distances between vertices in the layout
and contains exponentially many constraints, handled
through separation. In itself, this is a very natural idea
that has already been exploited in the literature. How-
ever, the key to our approach is, on the one hand,
to limit to m the number of variables, and, on the
other hand, to work with “strong” constraints that
arise from the projection into our variable space of
natural inequalities in the space of dimension

(
n
2

)
asso-

ciated with the distances for all vertex pairs. This idea
is implicit in Even et al. (2000), in which such an LP
was introduced uniquely for theoretical purposes. In
this paper, we significantly extend and explore com-
putationally this idea. In doing so, we analyze the
structure of the underlying polyhedron, deriving sev-
eral classes of valid inequalities, proving that they are
facet inducing, and discussing the associated separa-
tion problems.
The structure of the rest of this paper is as fol-

lows. In §2 we illustrate the LP that we will use, com-
paring it with the existing LP-based lower bounds
for MinLA. In §3 we associate certain integer polyhe-
dra with MinLA and derive various valid and facet-
inducing inequalities. The complexity of separation
for these inequalities is discussed in §4. In §5 we
describe our cutting plane algorithm and the asso-
ciated computational experiments. Conclusions are
given in §6.

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
28 INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS

1.3. Notation
Throughout this paper, we use the following cus-
tomary notation. First of all, as already mentioned,
n and m denote the number of vertices and edges,
respectively, in G. For a given vertex i,
�i� denotes
the set of edges incident on vertex i, and N�i� the set
of neighbours of i. We also use the standard bino-
mial notation

(
a
b

) = a!/�b!�a − b�!�. By subgraph G′ of
G we will always mean an edge-induced subgraph G′ =
�V �G′��E�G′�� such that E�G′� ⊆ E and V �G′� ⊆ V is
the subset of vertices of G that are endpoints of at
least one edge in E�G′�. For a subgraph G′ of G, we
will let la�G′� denote the optimal MinLA value for G′.
We will sometimes consider the complete graph on n
vertices, denoted by Kn = �V � F �, where F is the set
of

(
n
2

)
vertex pairs in V . In the hope of improving

readability, whenever possible e will denote a vertex
pair belonging to the edge set E of G, whereas �i� j�
will denote a vertex pair not belonging to E. We let
� denote the collection of the n! arrangements of G.
Finally, given two vertices i� j ∈ V , we will let �ij

denote the collection of the paths (viewed as sets of
edges) in G from i to j .

2. Linear Programming Lower Bounds
MinLA is naturally formulated as an integer LP (ILP)
as follows. For i� j ∈ V , let the binary variable xij

take the value one if and only if vertex i is placed
in position j (i.e., if and only if ��i� = j). More-
over, for e = �i� j� ∈ E, let de ≡ d�i�j� be a variable rep-
resenting the distance between vertices i and j , i.e.,
���i� − ��j�� (whose integrality does not need to be
imposed explicitly). A straightforward ILP formula-
tion is

min
∑
e∈E

de�

∑
j∈V

xij = 1� i ∈ V �

∑
i∈V

xij = 1� j ∈ V �

d�i� j� ≥ �p − q��xip + xjq − 1�� �i� j� ∈ E� p� q ∈ V �

xij ∈ �0�1�� i� j ∈ V �

A big disadvantage of this formulation, apart from
the very large number of constraints, is that its LP
relaxation admits the trivial solution xij = 1/n for
all i� j ∈ V , and dij = 0 for all �i� j� ∈ E, yielding
a lower bound of zero. For this reason, the for-
mulation appears to be of no practical use as it
stands. However, for the closely related minimum
bandwidth problem, suitable variants of this formu-
lation turn out to be the basis of the best practi-
cal approaches to tackle the problem (Caprara and
Salazar-González 2005). Unfortunately, these methods

are heavily based on the fact that the objective func-
tion is of bottleneck type and, apparently, cannot be
used in the MinLA context (note in particular that
these methods carefully avoid solving an LP by a
general-purpose solver).
The above formulation is the textbook linearization

of the quadratic objective function

min
∑

�i� j�∈E

∑
p� q∈V

�p − q�xipxjq�

subject to the classical assignment constraints on the
xij variables; i.e., MinLA can be seen as a special case
of the quadratic assignment problem. Because of the
generality and difficulty of the quadratic assignment
problem, and the relatively small size of the instances
for which the state-of-the-art methods can find a prov-
ably optimal solution or even only compute a good
lower bound, it appears that tackling MinLA as a
quadratic assignment problem is not the best way to
proceed (as also suggested by our preliminary com-
putational results, based on the classical linearization-
based lower bounds).

2.1. A Sparse LP Relaxation
A natural idea to get lower bounds is to stick to the
distance variables de and to introduce new constraints
that these variables must satisfy. In fact, if one does
not insist on having a formulation for MinLA, it is
natural to get rid of the variables xij , whose only
aim is to specify the position of the vertices, signifi-
cantly reducing the number of variables if the graph
is sparse (as is the case for the benchmark instances).
Natural conditions to impose on the distance vari-

ables de are the following rank inequalities. Given
a subgraph G′ of G, the rank inequality associated
with G′ imposes that the sum of the distances asso-
ciated with the edges in G′ must be at least la�G′�
(several examples are given in the sequel). Consid-
ering a suitable collection � of subgraphs of G, the
corresponding LP relaxation is

min
∑
e∈E

de�

∑
e∈E�G′�

de ≥ la�G′�� G′ ∈�� (1)

(Note that the trivial lower bounds de ≥ 1 for e ∈ E
are implicit in (1) if all subgraphs induced by a sin-
gle edge are in �.) This LP relaxation was proposed
in Liu and Vannelli (1995). Of course, the strength
and the solvability of the relaxation depend on �. For
instance, if G ∈�, the right-hand side of the associated
rank inequality is la�G�, thus solving the relaxation
is equivalent to solving MinLA on G. On the other
hand, if � is the collection of all subgraphs induced
by a single edge, the relaxation has the trivial solution

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS 29

1 6 723

4

5

(a)

1 6 723

4

5

(b)

Figure 1 The Simple Graph G in Example 1 and an Associated
Projected Inequality

de = 1 for e ∈ E, yielding the useless lower bound m
on la�G�. To get useful lower bounds, it is natural to
consider in � subgraphs G′ for which not only com-
putation of la�G′� is easy but also the separation of
the constraints can be handled in practice (possibly
via heuristics). A classical and relevant example is the
one in which � contains all the (edge-induced) stars
of G, noting that for a vertex i ∈ V there are 2�N�i�� − 1
edge-induced stars, one for each nonempty subset of
N�i�, all of which may be useful for the LP relaxation.
As discussed next, the separation of star inequalities
is very easy (and the value la�G′� for a star G′ is given
by a simple formula). In Liu and Vannelli (1995), a
few other simple structures in addition to stars are
considered, even if the separation problem for these
is not addressed explicitly, so presumably separation
is heuristic in the computational results.

Example 1. Consider the simple graph G with
n = 7 and m = 6 illustrated in Figure 1(a), for which
it is easy to check that la�G� = 8. If we restrict � to
be the collection of the stars of G, the nondominated
inequalities in (1) are d�1�2� + d�1�4� + d�1�6� ≥ 4 and the
trivial lower bounds de ≥ 1 for e ∈ E, and the corre-
sponding optimal value of LP (1) is 7.

2.2. A Dense LP Relaxation
The main advantage of LP relaxation (1) is the small
number m of variables. However, if one extends the
set of distance variables to all

(
n
2

)
vertex pairs, one

may obtain a much tighter LP relaxation for the same
collection of subgraph classes (e.g., if only stars are
considered). Recall that Kn = �V � F � is the complete
graph on n vertices, and let � now be a suitable col-
lection of edge-induced subgraphs K ′ of Kn. Let F �K ′�
denote the set of edges in subgraph K ′. Introduce
a binary variable d�i� j� for each edge �i� j� ∈ F . The
LP relaxation, in which only the objective function
depends on G, is

min
∑
e∈E

de

∑
�i� j�∈F �K′�

d�i�j� ≥ la�K ′�� K ′ ∈�� (2)

For instance, in case � is the collection of all stars of
Kn, for each vertex i ∈ V , there are 2n−1−1 inequalities
in (2), one for each nonempty subset of V \�i�.

As it is, LP relaxation (2) has no advantage with
respect to (1) because, by setting d�i� j� to a sufficiently
large value for �i� j�
 E, we can satisfy all the con-
straints when K ′ is not a subgraph of G. However,
we get an LP relaxation much stronger than (1) if we
also impose the natural condition that the d variables
define a metric, by the following triangle inequalities:

d�i� j� ≤ d�i�k� + d�k� j�� �i� j� k� ⊆ V � (3)

An LP relaxation analogous to (2) and (3) was consid-
ered in Amaral and Letchford (2006) for a generaliza-
tion of MinLA.

Example 1 (Continued). If we restrict � to be the
collection of the stars of Kn, (2) contains, among oth-
ers, the inequality

d�1�2� + d�1�3� + d�1�4� + d�1�5� + d�1�6� + d�1�7� ≥ 12 (4)

that, jointly with the triangle inequalities d�1�3� ≤
d�1�2� + d�2�3�, d�1�5� ≤ d�1�4� + d�4�5�, d�1�7� ≤ d�1�6� + d�6�7�

and the trivial lower bounds, leads to an optimal
value of 7�5 for LP (2) and (3).

For LP relaxation (1), the metric condition can be
imposed by the following path inequalities, which are
exponentially many but can easily be dealt with as
their separation simply requires computing shortest
paths in G:

d�i� j� ≤ ∑
e∈Pij

de� �i� j� ∈ E� Pij ∈�ij � (5)

recalling that �ij denotes the collection of all paths in
G from i to j .

2.3. A Projected LP Relaxation
We can combine the advantages of the two previous
LP relaxations—namely, the small number of vari-
ables of (1) and the relative tightness of (2) and (3)—
essentially by taking the latter and projecting it onto
the variable space of the former. Roughly speaking,
this amounts to replacing, in each rank inequality, a
variable d�i� j� by the sum of the variables de in the
shortest path from i to j in G (and to removing the
triangle inequalities). This projected relaxation can be
handled in a way analogous to LP (2), in that the
separation of rank inequalities is the same modulo
precomputing the shortest paths between all vertex
pairs, as explained in the following.
Formally, using the same variables as in (1), as well

as the same notation as in (2), the projected LP relax-
ation is

min
∑
e∈E

de

∑
�i� j�∈F �K′�

∑
e∈Pij

de ≥ la�K ′��

K ′ ∈�� �i� j� ∈ F �K ′�� Pij ∈�ij � (6)

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
30 INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS

where we now have an inequality for each subgraph
K ′ ∈ � and for each choice of paths in G joining the
endpoints of the edges in K ′. Note that these inequali-
ties are not necessarily of rank type, namely, an edge e
may appear in more than one path, and therefore de

may have a coefficient larger than one.

Example 1 (Continued). The projected LP relax-
ation (6) contains, among others, the inequality
2d�1�2� +d�2�3� +2d�1�4� +d�4�5� +2d�1�6� +d�6�7��≥ 12, asso-
ciated with (4) and with the unique paths from one to
all vertices, yielding again an optimal value of 7�5 for
LP (6). This inequality is illustrated in Figure 1(b), in
which the edges with a coefficient of two are drawn
as thick lines (the reason for drawing the edges as
arrows will be clear in §4).

A formulation equivalent to (6), with � restricted to
be the collection of all stars of Kn, was given in Even
et al. (2000), where the (equivalent) constraints are
called spreading constraints and the feasible solutions
spreading metrics. In Even et al. (2000), it is observed
that, with that choice of �, the LP can be solved
in polynomial time. The main result of Even et al.
(2000) is that the worst-case ratio between the MinLA
optimum and the lower bound given by this LP is
��logn log logn�. In Rao and Richa (2005), it is shown
that this ratio is in fact ��logn�.

Proposition 1. The feasible region of LP (6) is the pro-
jection over �E of the feasible region of LP (2) and (3).

Proof. Clearly, for each solution d∗ of (2) and (3),
taking only the components of d∗ corresponding to
the edges in E yields a feasible solution of (6), because
the triangle inequalities guarantee that

∑
e∈Pij

d∗
e ≥ d∗

�i� j�

for each vertex pair �i� j� ⊆ V and path Pij ∈ �ij . On
the other hand, for each solution d∗ of (6), it is easy
to check that extending this solution to vertex pairs
�i� j� �∈ V , by defining d∗

�i� j� to be the length of the
shortest path from i to j in G with respect to edge
lengths d∗, yields a feasible solution of (2) and (3). �

Corollary 1. LP (6) is equivalent to LP (2) and (3).

The number of constraints of (6) is much larger than
the one of (2), as is customary for projections, because
exponentially many inequalities in the former corre-
spond to each rank inequality in the latter. However,
as we will discuss in detail in §4, the separation prob-
lem for (6) can be polynomially reduced to the sepa-
ration problem for (2).

3. A Polyhedral Study
In this section, we illustrate classes of rank inequali-
ties to be used to concretely define and solve the LP
relaxations of §2. We do this by studying certain inte-
ger polyhedra associated with MinLA. We refer the

reader to Nemhauser and Wolsey (1988) for an intro-
duction to polyhedral theory and its application to
combinatorial optimization.
A polyhedral study of the convex hull of dis-

tance vectors representing permutations, i.e., the
polyhedron

P�Kn� 	= conv�d ∈�F
+	 there exists � ∈ � such that

d�i� j� = ���i� − ��j�� for all �i� j� ∈ F ��

can be found in Amaral and Letchford (2006). (In fact,
Amaral and Letchford study a more general class of
polyhedra, associated with the so-called single-row
facility layout problem, which contains MinLA as a
special case.) The affine hull was determined, and sev-
eral families of valid and facet-inducing inequalities
were derived.
Our goal here is to work with only m distance vari-

ables de for each e ∈ E. At first sight, it seems natural
to work with the projection of the polytope P�Kn� onto
the subspace defined by the edges in E, i.e., with the
following integer polytope:

P�G� 	= conv�d ∈�E
+	 there exists � ∈ � such that

d�i� j� = ���i� − ��j�� for all �i� j� ∈ E��

However, P�G� has a fairly complex structure. We
have found it helpful to study its dominant, which
is the Minkowski sum of P�G� and the nonnegative
orthant �E

+. That is,

D�G�	=�d∈�E
+	 there exists d′ ∈P�G� such that d≥d′��

Because the objective function in MinLA is nonnega-
tive, optimizing over D�G� is equivalent to optimiz-
ing over P�G�. However, D�G� is much easier to work
with. Indeed, we have the following three elementary
results.

Proposition 2. D�G� is a full-dimensional, unbounded
polyhedron.

Proof. Unboundedness is obvious. As to full
dimensionality, consider an arbitrary point d ∈ D�G�.
By setting, in turn, each component to a sufficiently
large value M while leaving the other components
unchanged, it is easy to check that the resulting m vec-
tors, belonging to D�G� by definition, together with
d form a set of m+1 affinely independent vectors. �

Recall that an inequality
T d ≥ � that is valid for
D�G� is face inducing if there exists at least one point
d ∈ D�G� such that
T d = �.

Proposition 3. If the inequality
∑

e∈E
ede ≥ � is
valid for D�G�, then
e ≥ 0 for e ∈ E. Moreover, if it is face
inducing, then � ≥∑

e∈E
e.

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS 31

Proof. Nonnegativity of
 follows because D�G� is,
by definition, of blocking type; i.e., for each d ∈ D�G�,
we have d′ ∈ D�G� for every d′ ≥ d. The lower bound
on � follows because all components of each d ∈ D�G�
are at least one. �

Proposition 4. For each subgraph G′ of G, the
inequality

∑
e∈E�G′�
ede ≥ � is valid (or face inducing or

facet inducing) for D�G′� if and only if it is valid (respec-
tively, face inducing or facet inducing) for D�G�.

Proof. Note that D�G′� is the projection of D�G�
onto the subspace defined by the edges of G′. The
statement is easily checked to be valid in general for a
polyhedron of blocking type, its projection onto a sub-
space, and an inequality having nonzero coefficients
only for the variables in this subspace. �

When G = Kn, the relationship between P�G� and
D�G� is clear.

Proposition 5. P�Kn� is the unique bounded facet of
D�Kn�, induced by the equation

∑
�i� j�∈F d�i� j� = (

n+1
3

)
.

Proof. It is shown in Amaral and Letchford (2006)
that P�Kn� has dimension

(
n
2

)−1 and that its affine hull
is defined by the given equation. Because D�Kn� is the
dominant of P�Kn� and has dimension

(
n
2

)
, P�Kn� is a

bounded facet of D�Kn�. All other facets of D�Kn� must
contain half lines and therefore be unbounded. �

However, for general graphs P�G� need not even be
a face of D�G�, as the following example illustrates.

Example 2. Consider the (trivial) graph with n = 3
and m = 2, in which E contains the edges �1�2� and
�2�3�. The possible values taken by �d�1�2�� d�2�3�� in a
feasible arrangement are �1�1�, �1�2�, and �2�1�. Thus,
P�G� is a triangle in �2

+, as shown in Figure 2(a).
D�G�, on the other hand, has only one extreme point,
namely, �1�1�, as shown in Figure 2(b).

Going forward, we concentrate on D�G�. In the
following subsections, we present various valid and
facet-inducing inequalities, mainly of rank type, as
defined in §2. Given an inequality that is valid for
D�G�, we will say that an arrangement � ∈ � is tight
for the inequality if the associated distance vector sat-
isfies it at equality. Moreover, we will sometimes use
“arrangement” to mean the associated distance vector.

(a) (b)

d12

d23

d12

d23

Figure 2 P �G� and D�G� for a Trivial Graph

3.1. Star Inequalities
MinLA is trivial when G is a star (i.e., a graph in
which all edges are incident on a common vertex). In
this case, the optimal MinLA solution has cost
n2/4�.
This leads to the following star inequalities.

Proposition 6. For any i ∈ V and any S ⊆ N�i�, the
star inequality

∑
j∈S

d�i� j� ≥
��S� + 1�2/4� (7)

is valid for D�G� and facet inducing if �S� �= 2.

Proof. By Proposition 4, it suffices to prove the
result for the case in which G is itself a star. When
�S� = 1, the star inequality reduces to the trivial lower
bound d�i� j� ≥ 1, which is facet inducing because
D�G� = �d�i� j� ∈ �	 d�i� j� ≥ 1�. When �S� = 2, the star
inequality is the sum of two trivial lower bounds and
therefore not facet inducing.
Now suppose �S� ≥ 3. Let
T d = � be an equation

that is satisfied by all arrangements that are tight for
the star inequality. Now assume that �S� is even, i.e.,
�S� = 2k for some integer k. Without loss of general-
ity, suppose that i = k + 1. Now let � be the iden-
tity arrangement (i.e., ��j� = j for all j) and let �′

be the arrangement obtained by switching vertices 1
and 2, noting that both � and �′ are tight. A com-
parison of the two arrangements shows that
�1� i� =

�2� i�. By symmetry, this shows that
�i� j� takes the
same value for all j ∈ S. Therefore
T d ≥ � can be con-
verted into the star inequality by a suitable scaling.
The proof for �S� odd is analogous; it suffices to sup-
pose that i = k. �

Vertex i is called the center of the star. In Amaral
and Letchford (2006) it was noted that star inequali-
ties do not in general induce facets of P�Kn�.

3.2. Clique Inequalities
MinLA is also trivial when G = Kn, because any
arrangement satisfies the equation d�E� = (

n+1
3

)
. This

leads to the following clique inequalities.

Proposition 7. For any n ≥ 2, and for any S ⊆ V
inducing a clique in G, the clique inequality

∑
�i� j�⊆S

d�i� j� ≥
(�S� + 1

3

)
(8)

is valid and facet inducing for D�G�.

Proof. By Proposition 4, we can assume that G =
Kn and S = V . The result then follows from Proposi-
tion 5. �

Note that the clique inequalities with �S� = 2 are the
trivial lower bounds de ≥ 1.

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
32 INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS

3.3. Circuit Inequalities
MinLA is also trivial when G is a circuit (i.e., a simple
cycle), the optimal MinLA solution having cost 2n−2.
This leads to the following circuit inequalities.

Proposition 8. For any C ⊆ E inducing a circuit in G,
the circuit inequality

∑
e∈C

de ≥ 2�C� − 2 (9)

is valid and facet inducing for D�G�.

Proof. By Proposition 4, it suffices to prove the
result for the case in which G is itself a circuit.
Without loss of generality, we assume that E =
��1�2�� � � � � �n−1�n��∪ �1�n�. Let
T d = � be an equa-
tion that is satisfied by all arrangements that are tight
for the circuit inequality. Now let � be the identity
arrangement, and let �′ be the “shifted” arrangement
with �′

i = i+1 mod n for i = 1� � � � �n, noting that both
� and �′ are tight. A comparison of the two arrange-
ments shows that
�1�n� =
�n−1�n�. By symmetry, this
shows that
�i� i+1� takes the same value for all i. There-
fore
T d ≥ � can be converted into the circuit inequal-
ity by a suitable scaling. �

3.4. Bipartite and Double Star Inequalities
A class of graphs more general than stars for
which there is a closed-form expression for the
MinLA optimal value is that of the complete bipar-
tite graphs. We denote the complete bipartite graph
by Kp�q and assume without loss of generality that
p ≤ q. In Juvan and Mohar (1992) it is shown
that the optimal solution to MinLA for Kp�q is
r�p� q� 	= p�3q2 + 6pq − p2 + 4�/12 (when p + q
is even) and r�p� q� 	= p�3q2 + 6pq − p2 + 1�/12
(when p + q is odd). This leads to the following bipar-
tite inequalities.

Proposition 9. Let S ⊆ V and T ⊆ V \S be such that
each vertex in S is adjacent to each vertex in T , with p 	=
�S�, q 	= �T �, and p ≤ q. The bipartite inequality

∑
i∈S

∑
k∈T

d�i� k� ≥ r�p� q� (10)

is valid for D�G�. It is facet inducing if and only if one of
the following three conditions holds:
• p = 1 and q �= 2,
• p = 2 and q is even, or
• p ≥ 3.

Proof. When p = 1, the bipartite inequalities reduce
to star inequalities and are therefore facet inducing if
and only if q �= 2.
Now suppose that p ≥ 3. By Proposition 4, it suffices

to prove the result for the case in which G = Kp�q . Let

T d = � be an equation that is satisfied by all arrange-
ments that are tight for the bipartite inequality.

In Juvan and Mohar (1992) it was shown that any
arrangement of the following form is tight: the first
��q − p�/2� and the last ��q − p�/2� positions are occu-
pied by vertices in T , whereas the positions in the
center are occupied by vertices in S and T in alterna-
tion. Notice that if we take such an arrangement and
exchange the positions of the vertices in T in positions
��q − p�/2� and ��q − p�/2�+ 2, say, k and l, we obtain
another tight arrangement. Letting i ∈ S denote the
vertex in position ��q −p�/2�+1 and using symmetry,
this shows that

∑
j∈S\�i�

�j� k� = ∑
j∈S\�i�

�j� l�� i ∈ S� �k� l� ⊆ T �

Standard linear algebra calculations show that this is
equivalent to

�i�k� =
�i� l�� i ∈ S� �k� l� ⊆ T �

Thus, the equation must take the form
∑
i∈S

�i

∑
k∈T

d�i� k� = ��

Now notice that if we take a tight arrangement
of the same form and exchange the positions of
the vertices in S in positions ��q − p�/2� + 1 and
��q − p�/2� + 3, say, i and j , we obtain another tight
arrangement. The exchange moves vertex i further
away from ��q − p�/2� vertices in T but closer to q −
��q − p�/2� − 1 other vertices in T . The reverse holds
for vertex j . This implies that

�p − 1��i = �p − 1��j� �i� j� ⊆ S (11)

if q − p is even and

�p − 2��i = �p − 2��j� �i� j� ⊆ S (12)

if q − p is odd. These equations imply that �i = �j

for all �i� j� ⊆ S. Thus, the inequality
T d ≥ � can be
converted into the bipartite inequality by a suitable
scaling.
A similar argument shows that the bipartite

inequality induces a facet when p = 2 and q is even.
When p = 2 and q is odd, however, the Equations (12)
reduce to the trivial equations 0 = 0, and we cannot
conclude that the bipartite inequality induces a facet.
In fact, it does not, because every tight arrangement
satisfies the equation

∑
k∈T

d�i� k� = ∑
k∈T

d�j� k��

where S = �i� j�. �

In the remaining case, in which p = 2 and q is odd,
the bipartite inequality can be derived by summing
together two of the following double star inequalities
and dividing the resulting inequality by three.

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS 33

Proposition 10. Let �i� j� ⊆ V and T ⊆ V \�i� j� be
such that i and j are adjacent to every vertex in T , and
�T � is odd and at least three. The double star inequality

∑
k∈T

�2d�i�k� + d�j�k�� ≥ 3��T �2 + 4�T � − 1�/4 (13)

is valid and facet inducing for D�G�.

Proof. Let t 	= �T �. By Proposition 4, it suffices to
prove the result for the case in which G = K2� t .

Consider any feasible arrangement, and without
loss of generality suppose that i is to the left of j (i.e.,
��i� < ��j�). Suppose that there are n1 vertices to the
left of i and n2 vertices to the right of j (and therefore
t−n1−n2 vertices between i and j). The left-hand side
of the double star inequality, computed with respect
to the given arrangement, is easily checked to be

2n2
1 + n2

2 − 2n1t − n2t + n1 + 2n2 + 3t�t + 1�/2�

A tedious but straightforward calculation shows
that this is minimized when n1 = �t − 1�/2 and
n2 ∈ ��t − 3�/2� �t − 1�/2�, at which points it takes the
value 3�t2 + 4t − 1�/4. Thus, the inequality is valid.

Let
T d = � be an equation that is satisfied by
all arrangements that are tight for the double star
inequality. Exactly the same exchange argument used
in the proof of Proposition 9 shows that
�i�k� =
�i� l�

and
�j�k� =
�j� l� for all �k� l� ⊆ T . Thus, the equation
must take the form

∑
k∈T

��d�i�k� + �d�j�k�� = ��

Now let k and l be vertices in T . Consider a tight
arrangement in which k lies between i and j , and l lies
to the immediate right of j . If we exchange the posi-
tions of j and l, we obtain another tight arrangement.
A comparison of the two arrangements shows that
� = 2�. Therefore the inequality
T d ≥ � can be con-
verted into the double star inequality by a suitable
scaling. �

Double star inequalities are the only inequalities not
of rank type addressed in this paper.

3.5. Tree Inequalities
All rank inequalities illustrated so far are associ-
ated with graphs G′ for which there is a closed-form
expression of la�G′�. For trees, such an expression
is not known but MinLA can be solved efficiently
(Shiloach 1979), although the algorithm is far from
trivial and the structure of the optimal solution often
fairly complex. Therefore, although it appears to be
hopeless to prove that they are facet inducing, one
may consider the following tree inequalities in a cut-
ting plane approach.

Proposition 11. For any F ⊆ E inducing a tree T
in G, the tree inequality

∑
e∈F

de ≥ la�T � (14)

is valid for D�G�, and its right-hand side can be computed
in polynomial time.

3.6. Projected Inequalities
One limitation of the above classes of valid inequal-
ities is that they rely on G containing subgraphs of
certain prespecified types (cliques, circuits, and so on).
In the following theorem, we describe a “projec-
tion” operation that enables one to convert any valid
inequality for D�Kn� into one or more valid inequal-
ities for D�G�, regardless of the structure of G. This
is the basic idea behind the definition of LP relax-
ation (6) from (2).

Proposition 12. Let

∑
�i� j�∈F

�i� j�d�i� j� ≥ �� (15)

with
 and � nonnegative, be a valid inequality for D�Kn�,
and G = �V �E� be any connected subgraph of Kn. More-
over, for each �i� j� ∈ F , let Pij ⊆ E be the edge set of an arbi-
trary path from i to j in G. Then the projected inequality

∑
�i� j�∈F

�i� j�

∑
e∈Pij

de ≥ � (16)

is valid for D�G�.

Proof. If the inequality
∑

�i� j�∈F
�i� j�d�i� j� ≥ � is
valid for D�Kn�, it must also be valid for P�Kn�
(because P�Kn� is a facet of D�Kn�). Now, for any
�i� j� ∈ F and any path Pij from i to j , the inequal-
ity

∑
e∈Pij

de ≥ d�i� j� is valid for P�Kn�, because the dis-
tances between points must obey the triangle inequal-
ity. This shows that the projected inequality is valid
for P�Kn�. Because it has nonnegative coefficients, it
is also valid for D�Kn�. From Proposition 4, it is also
valid for D�G�. �

The condition that G be connected in Proposition 12
is not a significant limitation, because MinLA decom-
poses into one or more independent subproblems
when G is disconnected. We also remark that there
is no guarantee that the projected version of a facet-
inducing inequality will also be facet inducing, or even
only face inducing. This will be discussed in detail for
projected star inequalities, anticipating that basically
all such inequalities turn out to be face inducing in
practice.

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
34 INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS

4. Separation
Because all of the classes of valid inequalities pre-
sented in §3 are exponential in number, we need
exact or heuristic separation algorithms, i.e., routines
for detecting when an inequality in a given class is
violated by the solution to the current LP relaxation
(Nemhauser andWolsey 1988, Grötschel et al. 1988). In
this section, we discuss the complexity of separation
for the inequalities introduced in the previous section.
Throughout, the LP solution is denoted by d∗ ∈�E

+.

4.1. Separation of Nonprojected Inequalities
Proposition 13. The separation problem for star

inequalities (7) can be solved in ��m logn� time.

Proof. It suffices to do the following for each ver-
tex i ∈ V . Sort the vertices j ∈ N�i� in nondecreasing
order of d∗

�i� j�. Iteratively insert vertices into S in the
sorted order, checking the inequality for violation at
each iteration. For a given vertex i, the time taken
to sort is proportional to �N�i�� log �N�i��. The total
time is therefore proportional to

∑
i∈V �N�i�� log �N�i��,

which is ��m logn�. �

Proposition 14. The separation problem for double
star inequalities (13) can be solved in ��nm logn� time.

Proof. It suffices to do the following for each
ordered pair �i� j� ∈ V . Sort the vertices k ∈ N�i�∩N�j�
in nondecreasing order of 2d∗

�i� k� + d∗
�j� k�. Iteratively

insert vertices into T in the sorted order, checking
the inequality for violation whenever �T � is odd. For
a given pair �i� j�, the time taken to sort is propor-
tional to �N�i� ∩ N�j�� log �N�i� ∩ N�j��, if N�i� ∩ N�j�
has been precomputed and stored once for all. This
implies that the overall time to check, for a given ver-
tex i, all pairs �i� j� is ��m logn�. The total time is then
��nm logn�. �

Proposition 15. The separation problem for clique
inequalities (8) is strongly ��-complete.

Proof. An elementary calculation shows that an
inequality (8) violated by d∗ corresponds to a clique
S∗ in G such that

∑
�i� j�⊆S∗��S∗� + 1 − 3d∗

�i� j�� > 0. We
reduce the well-known strongly ��-complete prob-
lem of testing if G has a clique of size p to the
problem of finding such a set S∗ for a suitable d∗.
For e ∈ E, let d∗

e 	= �p + 1 − 1/n�/3. If G contains a
clique S∗ with p vertices, then we have

∑
�i� j�⊆S∗��S∗�+

1 − 3d∗
�i� j�� = (

p
2

)
�p + 1 − p − 1 + 1/n� > 0. On the

other hand, for each clique S∗ with no more than
p − 1 vertices, we have

∑
�i� j�⊆S∗��S∗� + 1 − 3d∗

�i� j�� ≤(�S∗�
2

)
�p − p − 1+ 1/n� < 0. �

Proposition 16. The separation problem for circuit
inequalities (9) is strongly ��-complete.

Proof. An inequality (9) violated by d∗ corresponds
to a circuit C∗ in G such that

∑
e∈C∗�2− d∗

e � > 2. We

reduce the well-known strongly ��-complete prob-
lem of testing if G is Hamiltonian to the problem
of finding such a C∗ for a suitable d∗. For e ∈ E, let
d∗

e 	= 2�1 − 1/n − 1/n2�. If G contains a Hamiltonian
circuit C∗, then we have

∑
e∈C∗�2 − d∗

e � = 2n�1/n +
1/n2� > 2. On the other hand, for all circuits C∗ with
no more than n − 1 edges, we have

∑
e∈C∗�2 − d∗

e � ≤
2�n − 1��1/n + 1/n2� < 2. �

For bipartite inequalities, we are also convinced
that separation is difficult, although we did not find
a formal proof.

Conjecture 1. The separation problem for bipartite
inequalities (10) is strongly ��-complete.

For the complexity of separation of tree inequalities
we do not dare to conjecture, given the very complex
form of the right-hand side.
Heuristic algorithms for the separation of inequali-

ties (8), (9), (10), (14) are illustrated in §5.1.

4.2. Separation of Projected Inequalities
As anticipated in §2, in this section we discuss the
separation of the projected version of the various
inequalities that we consider.

Proposition 17. Any polynomial-time algorithm for
the separation of a class of valid inequalities (15) for D�Kn�
yields a polynomial-time algorithm for the separation of the
associated projected inequalities (16).

Proof. Given d∗ ∈ �E , suppose that there is an
inequality (16) violated by d∗. Letting P ∗

ij denote the
shortest path in G between i and j (with respect to
lengths d∗

e), the inequality (16) associated with these
shortest paths is also violated. Accordingly, we can
proceed as follows. We compute the P ∗

ij paths by an
all-pair shortest-path algorithm, let d∗∗

�i� j� be the length
of P ∗

ij for all vertex pairs �i� j� ∈ F , and run the sepa-
ration algorithm for (15) on this new d∗∗ ∈�F (note in
particular that we may have d∗∗

e < d∗
e for some e ∈ E,

meaning that the corresponding path inequality (5) is
violated). If a violated inequality is found, the asso-
ciated violated inequality (16) is easily obtained by
replacing each edge �i� j� ∈ F by the edges in P ∗

ij . �

In other words, given d∗ ∈ �E , the separation of
the projected inequalities is obtained by defining the
complete graph Kn, with edge lengths d∗∗ equal to
the shortest paths in G with respect to d∗, and then
running the separation algorithm over this complete
graph. Given that d∗∗ can be found once for all
inequalities, the time complexities in the following
corollaries do not take into account the associated
shortest-path computation.

Corollary 1. The separation problem for projected
star inequalities can be solved in ��n2 logn� time.

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS 35

Corollary 2. The separation problem for projected
double star inequalities can be solved in ��n3 logn� time.

Note that the converse of Proposition 17 does not
hold in general; i.e., the separation of the projected
version of a class of inequalities may be easier than
the separation of the nonprojected version, given that
in the former case the edge lengths d∗∗ satisfy the tri-
angle inequalities. This is not the case, however, for
the circuit inequalities.

Corollary 3. The separation problem for projected cir-
cuit inequalities is strongly ��-complete.

Proof. Analogous to the proof of Proposition 16.
We consider the separation of circuit inequalities over
the complete graph Kn, letting d∗∗

�i� j� 	= 2�1−1/n−1/n2�
if �i� j� ∈ E and d∗∗

�i� j� 	= 2 otherwise, and note that d∗

satisfies the triangle inequalities and that, again, there
is a violated inequality if and only if E contains a
Hamiltonian circuit. �

Moreover, we suspect that also for clique and bipar-
tite inequalities separation is not easier when the pro-
jected version is considered.

Conjecture 2. The separation problem for projected
clique inequalities is strongly ��-complete.

Conjecture 3. The separation problem for projected
bipartite inequalities is strongly ��-complete.

Again, for the complexity of separation of projected
tree inequalities, we do not dare to conjecture.

4.3. On the Strength of Projected Inequalities
As already mentioned, the projected version of a
facet-inducing inequality is not even necessarily face
inducing, i.e., with maximal right-hand side in “≥”
form, as the example discussed next will show. Given
that our method is widely based on the use of pro-
jected inequalities, this is an important issue to be
addressed because, even if the separation of such
inequalities is generally doable only for the origi-
nal right-hand side, the right-hand side should be
changed into maximal when they are added to the
current LP.

Example 1 (Continued). The projected star in-
equality 2d�1�2� +d�2�3� +2d�1�4� +d�4�5� +2d�1�6� +d�6�7� ≥
12 is not face inducing, because the minimum of the
left-hand side over all feasible arrangements is in fact
13. With this value as the right-hand side, the inequal-
ity together with the trivial lower bounds would yield
a value of 8 for the LP relaxation (6), equal to la�G�.

In this section, we discuss this issue for projected
star inequalities, which are (by far) the most rele-
vant inequalities in our method. For these inequali-
ties, although computation of a maximal right-hand
side appears to be nontrivial in general, we will

derive a relatively simple sufficient condition for the
original right-hand side to be maximal. Our com-
putational experiments show that this condition is
satisfied basically for all projected star inequalities
separated, which implies that the original projected
inequalities are fine in practice.
Consider a projected star inequality associated with

i ∈ V , S ⊆ N�i�, and paths Pij ∈�ij for j ∈ S:
∑
j∈S

∑
e∈Pij

de ≥
��S� + 1�2/4�� (17)

First of all, we derive a suitable subclass of these
inequalities that dominates the whole class. For each
path Pij , let �Pij denote the directed path obtained by
orienting its edges from i to j , as illustrated in Fig-
ure 1(b). We denote an edge �h�k� oriented from h to
k by �h�k�.

Proposition 18. The subclass of projected star
inequalities (17) such that
(i) for each j ∈ S, if Pij contains an intermediate vertex

h
 �i� j�, we have that h ∈ S; and
(ii)

⋃
j∈S

�Pij induces a directed tree T in G (rooted at i);
dominates the whole class of projected star inequalities.

Proof. Consider a projected star inequality not sat-
isfying (i), i.e., such that there exists a vertex h visited
by Pij for which h
 S. This inequality is dominated
as it can be obtained by summing together: (a) the
inequality obtained by replacing S by S\�j� ∪ �h� and
Pij by its subpath from i to h, and (b) the (slack)
lower bounds de ≥ 0 for the edges in the subpath of
Pij from h to j . By iterating the procedure one gets a
dominating inequality satisfying (i).
Now consider a projected star inequality satisfy-

ing (i) but not (ii), i.e., such that there exists a vertex
h ∈ S that is visited by a subpath P ′

ih ⊆ Pij for j �= h
and P ′

ih �= Pih. This inequality is dominated as it can be
obtained by summing together and dividing by two:
(a) the inequality obtained by replacing P ′

ih by Pih in
the path from i to j , and (b) the inequality obtained
by replacing Pih by P ′

ih in the path from i to h. By
iterating the procedure on the new inequalities until
such a vertex h does not exist, one obtains a collection
of inequalities satisfying (i) and (ii) that dominate the
original inequality. (In particular, note that, for all the
inequalities in the collection, there is no edge �h�k�
that is oriented from h to k in one path and from k to
h in another one.) �

Observe that the proof of Proposition 18 yields a
polynomial-time algorithm to construct, from a pro-
jected star inequality violated by the current LP solu-
tion, a violated inequality satisfying (i) and (ii). We
now state the above-mentioned sufficient condition
under which such an inequality is face inducing
(which, as already mentioned, turns out to be almost
always satisfied in practice).

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
36 INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS

Proposition 19. Consider a projected star inequality
satisfying (i) and (ii) in Proposition 18, let �1� � � � � s� be the
neighbors of i in T and, for j = 1� � � � � s, T j be the subtree
of T rooted at j . If there exists a partition of �1� � � � � s� into
S1 and S2 such that �∑j∈S1 �T j � −∑

j∈S2 �T j �� ≤ 1, then the
inequality is face inducing.

Proof. We let we 	= ��j ∈ S	 �Pij � e�� for each oriented
edge e ∈ T be the number of paths containing e. More-
over, for each vertex h in T , we let
+

T �h� denote the
set of edges leaving h in T . Note that, if (ii) is satis-
fied, condition (i) is equivalent to stating that, for each
oriented edge �h�k� ∈ T ,

w�h�k� = 1+ ∑
e∈
+

T �k�

we (18)

(in words, out of all paths visiting k, one ends in k and
the other ones continue).
Note that the left-hand side of the inequality has

the form
∑

e∈T wede; i.e., it can be seen as the objec-
tive function of the weighted variant of MinLA over a
tree. We show that there exists a layout of the vertices
in T in which the value of this objective function is

��T � + 1�2/4�, which implies that the right-hand side
is as large as possible. In fact, we show that this is the
cost of any layout such that (a) the vertices in

⋃
j∈S1 T j

(respectively,
⋃

j∈S2 T j) appear to the left (respectively,
right) of i and (b) for j ∈ S1 (respectively, j ∈ S2), for
each oriented edge �h�k� ∈ T j , h is to the right (respec-
tively, left) of k.
Indeed, consider a layout satisfying (a) and (b). By

keeping this layout and the set of vertices unchanged,
we transform T into a sequence of different trees for
which the layout cost is the same, ending with a star
having i as a center and all edge weights equal to one,
for which the cost of the layout is indeed the required
value because, by (a),

∑
j∈S1 �T j � vertices are to the left

of i and
∑

j∈S2 �T j � vertices are to the right of i (i.e., the
same number of vertices, modulo one, are to the left
and the right of the star center, meaning that the star
layout is optimal).
If we = 1 for e ∈ T , T is already a star and there is

nothing to be done. Otherwise, consider an oriented
edge �h�k� ∈ T such that w�h�k� > 1 (possibly with
h = i), along with another oriented edge �k� l� ∈ T , not-
ing that such an edge exists by (18) (possibly with
w�k� l� = 1). Recalling (b), we focus on the case in which
h, k, and l appear in this order in the layout from
left to right (i.e., �h�k� l� ⊆⋃

j∈S2 T j ∪ �i�), the opposite
case being identical. We remove from T edge �k� l�,
add to T edge �h� l� with w�h� l� 	= w�k� l�, and redefine
w�h�k� 	= w�h�k� − w�k� l�. It is easy to check that the new
weights still satisfy (18) and that the cost of the layout
is the same for the new tree (and weights). By iterat-
ing the procedure, we end up with a tree T such that
we = 1 for e ∈ T . �

5. Computational Experiments
Our algorithm was implemented in C and run on
a PC with processor Intel Core 2 Duo 3.33 GHz
and 2 GB of RAM under Microsoft Windows XP
Professional Version 2002 SP2, using CPLEX 11.2 as
the LP solver. As the results in this section show,
our approach may be quite time consuming, so we
imposed a time limit of one day (86,400 seconds) of
CPU time for each instance.

5.1. Separation Heuristics
Triangle, path, (projected) star, and double star
inequalities are separated efficiently in our code by
the methods illustrated in §4. In this section, we illus-
trate the heuristic procedures used to separate the
remaining inequalities for the complete graph Kn.
According to Proposition 17, these procedures can be
used also for their projected versions. The general
impression is that it is fairly easy to find violated
inequalities whatever the heuristic used.
For clique inequalities (8), we use a simple greedy

heuristic that defines the clique S by starting with
the vertex i such that

∑
j∈V \�i� d∗

�i� j� is minimum and
then, at each iteration, adding the vertex j such that
a suitable weighted combination of

∑
i∈S d∗

�i� j� and∑
i∈V \�S∪�j�� d∗

�i� j� is minimum. For each set S consid-
ered in the various iterations (and for its complement
V \S), we test violation of the corresponding clique
inequality.
For bipartite inequalities (10), note that, once the set

of p vertices in one side of the bipartition is fixed, the
separation is easy by using the same observations as
in the separation of (double) star inequalities. Accord-
ingly, we first enumerate all sets for p = 2 (and q even)
and check the associated bipartite inequalities. Then,
letting S be the initially empty set of vertices on one
side of the bipartition, we perform a sequence of iter-
ations adding to S the vertex such that

∑
i∈V \�S∪�j�� d∗

�i� j�

is minimized, and if p = �S� > 2, we check the associ-
ated bipartite inequalities.
We use two simple heuristic procedures for the sep-

aration of tree inequalities (14). In the first one, for
each vertex i ∈ V , we consider each partial (short-
est path) tree T in one of the iterations of Dijkstra’s
algorithm with source i and edge weights d∗, and
check the tree inequality for T (the right-hand side
la�T � is computed by our implementation of the algo-
rithm in Shiloach 1979). The second procedure is anal-
ogous, considering each partial (shortest spanning)
tree T in one of the iterations of Prim’s algorithm with
source i and edge weights d∗.
Finally, for circuit inequalities (9), we find a

maximum-weight collection of vertex-disjoint circuits
in Kn (some of the vertices may not be contained in
any circuit) by letting the weight of each edge e be
equal to 2 − d∗

e (recall the proof of Proposition 16).

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS 37

Such a collection can be found efficiently by matching
techniques. Then, we check the inequality associated
with each circuit in the collection.

5.2. Implementation Details
We report the results for the LP relaxations in §2. In
our cutting plane approach, we initialized these relax-
ations with the n star inequalities (7) having, for i ∈ V ,
vertex i as center and S = N�i�. When the dense LP
relaxation (2) is solved, the clique inequality (8) with
S = V (given that V itself is a clique of Kn) is also
added.
We solve all the LPs in the cutting plane process by

dual simplex. After the solution of each LP relaxation,
we separate inequalities in the following order.
For the dense LP relaxation (2), the first inequali-

ties that are separated (by complete enumeration) are
the triangle inequalities (3). For the sparse LP relax-
ation (1) and the projected LP relaxation (6), we may
or may not separate the path inequalities (5), because,
according to the discussion in §2 these inequalities do
not improve the final lower bound if the time limit is
not reached, but their explicit addition may speed up
the solution process. We will indicate in the results if
(5) were separated.
After having separated (3) in the dense case and,

possibly, (5) in the projected case, we separate, in this
order:
• star inequalities, by the exact algorithm in Propo-

sition 13;
• clique inequalities, by the heuristic in §5.1;
• circuit inequalities, by the heuristic in §5.1;
• tree inequalities, by the two heuristics in §5.1;
• double star inequalities, by the exact algorithm

in Proposition 14; and
• bipartite inequalities, by the heuristic in §5.1.
As the results below will show, the star inequali-

ties, whose separation is very easy, are by far the most
important ones in our approach. Moreover, for the
projected LP relaxation, we often separate several pro-
jected star inequalities (17) associated with the same
star inequality (7) of Kn. This is because the shortest
path (according to distances d∗) from the center i of
the star to the vertices in S changes from iteration to
iteration. To limit this phenomenon, if there were vio-
lated projected star inequalities with center i ∈ V for a
given number of consecutive cutting plane iterations,
before adding a further projected star inequality (17)
associated with i and S ⊆ N�i�, we consider all edges
e = �i� j� for j ∈ S, and (a) if de is not yet a variable of
the current LP (this is possible only if �i� j� �∈ E), we
add it; and (b) if not present, we add the path inequal-
ity (5) associated with edge �i� j� and with the current
shortest path Pij from i to j . (Given that we may add
path inequalities associated with edges not in E, this
is important also in case we separate explicitly (5) for
the edges in E.)

5.3. Benchmark Instances
We first considered the well-known instances from the
Petit test set (Petit 2003b), available at http://www.
lsi.upc.edu/∼jpetit/MinLA/Experiments/. On the
largest instances of this test set, the time limit was
exceeded even when trying to solve the sparse
LP relaxation (1) with � equal to the set of
stars of G, which is essentially the simplest and
fastest-to-compute lower bound discussed in this
paper. Accordingly, we restricted our attention to the
instances for which this lower bound could be com-
puted. In fact, these are the instances with fewer than
3,000 edges (the next largest instance, randomA1, has
almost 5,000 edges).
We also considered the bandwidth instances

addressed in Caprara and Salazar-González (2005),
available at http://www.informs.org/Journal/IJOC/
Online-Supplements/Volume-17-2005/Caprara-and-Salazar-
Gonzalez-2005. Out of the associated connected
graphs, we removed bcsstk02, as it is complete. More-
over, because all the results are identical for the six
e05r∗ instances and the two rdb∗ instances (although
the graphs are not, but they may be isomorphic), we
give the results only for e05r0000 and and rdb200.

5.4. Comparison of the LP Relaxations in §2
In Table 3 we compare the lower bounds found by the
LP relaxations illustrated in §2, using star inequalities
only. For the projected LP relaxation (6) we report the
results with and without the explicit separation of the
path inequalities (5).
Table 3 shows that the sparse LP relaxation (1) can

be solved within a relatively short time but the lower
bounds produced are fairly poor. The situation does
not change substantially if, in addition to star inequal-
ities, other inequalities are added to this relaxation. In
other words, considering inequalities associated with
subgraphs of the complete graph (rather than the spe-
cific graph considered) appears to be essential to find-
ing good lower bounds.
Moreover, the table shows that the dense LP relax-

ation (2) and (3), which would produce the same
lower bounds as (6) if solved to optimality, is much
(a few orders of magnitude) slower to be solved,
exceeding the time limit in all but two instances. For
the cases in which (2) and (3) reaches the time limit,
with the exception of instance gd96b, the lower bound
it finds is much worse than the one found by (6).
Although it often reaches the time limit, the lower

bounds produced by (6) are very good for instances
c∗y, for which the previous relative gap between best-
known heuristic and lower bound values was roughly
80%, and fairly good for instances gd∗, for which the
previous relative gap was roughly 50%–75%, with the
exception of gd96a, for which it was roughly 95%.
The lower bound for bintree10 is not bad, whereas for

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
38 INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS

Table 3 Lower Bounds and Running Times for the LP Relaxations in §2 with Star Inequalities Only

LP (1) LP (2) and (3) LP (6) LP (6) and (5)

Name LB Gap (%) Time LB Gap (%) Time LB Gap (%) Time LB Gap (%) Time

gd95c 312 38�3 0�3 424 16�2 1�889�6 424 16�2 0�3 424 16�2 0�3
gd96a 6�708 93�0 2�237�8 8�755 90�8 limit 70�674 25�8 limit 77�860 18�3 limit
gd96b 1�199 15�3 1�5 1�199 15�3 limit 1�261 10�9 5�2 1�261 10�9 9�3
gd96c 193 62�8 0�1 376 27�6 2�822�6 376 27�6 1�2 376 27�6 0�5
gd96d 920 61�5 4�6 912 61�9 limit 1�966 17�8 28�3 1�966 17�8 27�0
c1y 25�431 59�1 293�7 27�093 56�5 limit 59�948 3�7 4�511�9 59�948 3�7 10�259�8
c2y 29�604 62�4 465�4 31�295 60�3 limit 76�229 3�2 5�617�3 76�229 3�2 8�684�8
c3y 37�184 69�8 961�6 38�529 68�7 limit 113�801 7�6 limit 113�739 7�6 limit
c4y 28�137 75�5 869�2 29�528 74�3 limit 106�942 7�0 limit 106�627 7�2 limit
c5y 29�773 69�3 687�7 31�237 67�7 limit 88�741 8�4 limit 86�755 10�4 limit
mesh33× 33 3�136 90�1 662�2 5�394 83�0 limit 19�691 37�8 limit 20�042 36�7 limit
bintree10 1�362 63�1 909�0 2�098 43�2 limit 2�847 23�0 47�1 2�847 23�0 45�9

Note. Time limit of 86,400 seconds.

mesh33×33 the solution may be far from convergence
when the time limit is reached, although these two
instances are of limited interest because their optimal
value is known.
All in all, Table 3 clearly shows that (6) widely out-

performs the other two. As for the explicit separa-
tion of (5), sometimes it pays off, notably for instance
gd96a, and sometimes it does not. According to the
present discussion, in the remainder of this section we
will not consider LPs (1) and (2) and (3) any more,
and we report the results found by (6) both without
and with the explicit separation of (5).

5.5. Results with the Addition of the
Inequalities in §3

Table 4 presents the results of LP relaxation (6) when,
besides star inequalities, all the other inequalities in
§3 are separated by the heuristic procedures outlined
above. For instance bintree10, the separation of tree
inequalities leads to the optimal value (which is not
surprising), and then the method keeps on finding
violated inequalities until the time limit. For the four
small gd* instances, the lower bound improvement
is notable, although not impressive, but the running
time increases by a couple of orders of magnitude.
Note that our separation heuristics find plenty of vio-
lated inequalities, and our impression is that even
with an exact separation the lower bounds would be
similar. For instances c1y and c2y, although about 90%
of the time limit is available when the solution of the
LP with star inequalities only is complete, the lower
bound improvement from then to the time limit is
negligible. Of course, there is no improvement for
the instances for which the time limit was reached
already by separating star inequalities only. In sum-
mary, the other inequalities—which are the most nat-
ural ones to consider in addition to stars and are
facet inducing as well—give limited improvements
for these instances and for the instances in which the

LP relaxation with stars only is solved within a tiny
fraction of the time limit. This is not the case for the
instances from Caprara and Salazar-González (2005),
as mentioned in §5.6.

5.6. Results for the Instances in Caprara and
Salazar-González (2005)

To find a MinLA heuristic solution for the instances
from Caprara and Salazar-González (2005), we
applied a multistart local search procedure kindly
provided to us by Gerd Reinelt (2009).
In Table 5, we report the results of LP relaxation of

(6) for these instances, both restricting attention to star
inequalities only and separating all the inequalities
in §3. (Moreover, for these instances, models (1) and
(2) and (3) give much poorer results, which are not
reported. The only exception is instance bcsstk01, for
which model (2) and (3) finds a lower bound value of
971 within minutes.)
These results show that the quality of our lower

bounds is variable for these instances, with a rela-
tive gap ranging from 0% (we could solve to proven

Table 4 Lower Bounds and Running Times for LP Relaxation (6) with
All Inequalities in §3

LP (6) LP (6) and (5)

Name LB Gap (%) Time LB Gap (%) Time

gd95c 443 12�5 113�6 443 12�5 68�3
gd96a 70�674 25�8 limit 77�860 18�3 limit
gd96b 1�281 9�5 493�5 1�281 9�5 889�8
gd96c 402 22�5 218�1 402 22�5 390�3
gd96d 2�021 15�5 1�669�0 2�021 15�5 1�642�2
c1y 59�970 3�6 limit 59�971 3�6 limit
c2y 76�251 3�2 limit 76�253 3�2 limit
c3y 113�801 7�6 limit 113�739 7�6 limit
c4y 106�942 7�0 limit 106�627 7�2 limit
c5y 88�741 8�4 limit 86�755 10�4 limit
mesh33× 33 19�691 37�8 limit 20�042 36�7 limit
bintree10 3�696 0�0 limit 3�696 0�0 limit

Note. Time limit of 86,400 seconds.

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS 39

Table 5 Results for the Bandwidth Benchmark Graphs in Caprara and Salazar-González (2005)

LP (6) (star) LP (6) (all) LP (6) and (5) (star) LP (6) and (5) (all)

Name n m LB Gap (%) Time LB Gap (%) Time LB Gap (%) Time LB Gap (%) Time

bcspwr01 39 46 84 20�8 0�0 91 14�2 0�8 84 20�8 0�0 91 14�2 0�7
bcspwr02 49 59 130 19�3 0�1 144 10�6 2�0 130 19�3 0�0 144 10�6 1�8
bcspwr03 118 179 567 16�5 1�4 588 13�4 189�5 567 16�5 0�9 588 13�4 254�6
bcspwr04 274 669 3�623 23�0 789�2 3�696 21�4 limit 3�623 23�0 105�9 3�700 21�4 limit
bcsstk01 48 176 778 31�3 2�7 971 14�2 23�232�8 778 31�3 1�7 972 14�1 38�481�1
bcsstk02 66 2�145 35�937 25�0 limit 35�937 25�0 limit 35�937 25�0 6�908�2 35�937 25�0 limit
bcsstk04 132 1�758 25�762 13�6 5�674�6 27�518 7�7 limit 25�762 13�6 2�434�9 27�569 7�5 limit
bcsstk05 153 1�135 9�614 13�1 1�710�6 9�653 12�7 limit 9�614 13�1 1�742�1 9�653 12�7 limit
can—24 24 68 179 14�8 0�1 203 3�3 2�8 179 14�8 0�1 203 3�3 3�4
can—61 61 248 1�083 4�7 3�7 1�119 1�6 1�221�4 1�083 4�7 1�3 1�119 1�6 538�0
can—62 62 78 171 19�3 0�1 187 11�8 4�2 171 19�3 0�1 187 11�8 5�1
can—73 73 152 797 27�5 6�8 971 11�7 2�016�8 797 27�5 2�6 971 11�7 4�855�5
can—96 96 336 1�609 40�5 154�2 2�105 22�1 27�786�0 1�609 40�5 39�9 2�105 22�1 8�280�6
can—144 144 576 1�752 45�7 142�2 2�304 28�5 19�608�4 1�752 45�7 2�4 2�304 28�5 1�710�6
can—161 161 608 4�568 31�8 1�788�9 5�657 15�5 limit 4�568 31�8 628�9 5�569 16�8 limit
can—187 187 652 3�053 41�2 17�521�6 3�827 26�2 limit 3�051 41�2 limit 3�051 41�2 limit
can—229 229 774 6�155 36�6 11�094�8 7�461 23�1 limit 6�155 36�6 6�707�4 7�461 23�1 limit
can—256 256 1�330 18�211 20�9 33�942�8 20�627 10�4 limit 18�162 21�1 limit 18�162 21�1 limit
can—268 268 1�407 17�377 19�6 limit 17�377 19�6 limit 17�304 19�9 limit 17�304 19�9 limit
can—292 292 1�124 14�144 28�2 18�653�5 14�981 24�0 limit 14�144 28�2 4�354�2 15�012 23�8 limit
dwt—59 59 104 222 23�2 0�2 258 10�7 55�4 222 23�2 0�1 258 10�7 88�2
dwt—66 66 127 192 0�0 0�0 192 0�0 1�7 192 0�0 0�0 192 0�0 1�7
dwt—72 72 75 143 14�4 0�1 150 10�2 6�7 143 14�4 0�1 149 10�8 7�0
dwt—87 87 227 879 5�7 4�5 897 3�8 20�761�1 879 5�7 3�8 897 3�8 18�430�7
dwt—162 162 510 1�832 24�6 4�667�1 2�032 16�4 limit 1�832 24�6 3�901�4 2�029 16�5 limit
dwt—193 193 1�650 21�021 15�0 24�126�8 23�073 6�8 limit 21�021 15�0 8�653�6 23�154 6�4 limit
dwt—209 209 767 5�731 10�3 2�001�5 5�905 7�5 limit 5�731 10�3 516�3 5�905 7�5 limit
dwt—221 221 704 3�571 5�5 2�721�9 3�603 4�7 limit 3�571 5�5 634�6 3�603 4�7 limit
dwt—245 245 608 3�403 11�8 382�1 3�422 11�3 limit 3�403 11�8 128�2 3�422 11�3 limit
bwm200 200 298 484 2�4 403�4 495 0�2 2�409�1 484 2�4 234�4 495 0�2 33�409�2
e05r0000 236 2�847 41�814 29�2 limit 41�814 29�2 limit 43�377 26�5 limit 43�377 26�5 limit
fidap001 216 �2079 32�419 15�0 limit 32�419 15�0 limit 32�325 15�2 limit 32�325 15�2 limit
fidap005 27 126 402 2�9 0�2 412 0�5 5�4 402 2�9 0�2 412 0�5 4�2
fidapm05 42 239 975 2�8 2�3 998 0�5 7�492�9 975 2�8 0�9 998 0�5 805�2
lshp-265 265 744 5�137 15�6 13�761�3 5�497 9�7 limit 5�137 15�6 22�256�4 5�602 8�0 limit
lund-a 147 1�151 9�489 16�2 6�679�3 10�760 5�0 limit 9�489 16�2 2�530�1 10�772 4�9 limit
lund-b 147 1�147 9�465 15�4 5�441�1 10�692 4�5 limit 9�465 15�4 3�156�9 10�712 4�3 limit
nos4 100 247 943 8�5 9�9 976 5�3 59�118�0 943 8�5 5�7 976 5�3 60�497�5
pde225 225 420 2�145 29�4 725�5 2�539 16�5 70�519�0 2�145 29�4 287�4 2�538 16�5 limit
rdb200 200 460 2�581 31�5 1�144�3 3�052 19�0 limit 2�581 31�5 267�6 3�066 18�6 73�463�6
saylr1 238 445 2�313 25�6 1�208�7 2�673 14�0 limit 2�313 25�6 257�7 2�676 13�9 limit
steam1 240 1�761 21�017 26�3 57�429�7 21�559 24�4 limit 21�017 26�3 limit 21�017 26�3 limit
steam3 80 424 1�360 4�0 30�8 1�382 2�4 limit 1�360 4�0 8�3 1�406 0�7 limit
tub100 100 148 236 4�1 1�9 245 0�4 74�3 236 4�1 0�2 245 0�4 71�5

Note. Time limit of 86,400 seconds.

optimality instance dwt—66) to about 35%. More-
over, the quality of the bounds increases significantly
with the addition of other inequalities besides stars, a
notable difference with respect to the classical MinLA
instances discussed so far. In any case, for about a
third of the instances, the gap is less than 10%, repre-
senting a first significant step toward proving that the
solutions found by the common heuristics are near
optimal.

6. Conclusions
The MinLA instances in the literature are a well-
established benchmark for the problem. In this paper,

we show for the first time that the best-known heuris-
tic solutions in the literature are indeed near optimal
for most of these instances. We hope that our contri-
bution will stimulate further research in this direction.
This result is obtained by combining two LP relax-
ations that were already tested previously with lim-
ited success, namely, the sparse LP relaxation (1) and
the dense LP relaxation (2), into a unique projected LP
relaxation (6) that combines the advantages of both.
LP relaxation (6) has the following two main lim-

its. First of all, although we have put a lot of effort
into speeding up the computation, for many instances
even only solving the relaxation with star inequalities

Caprara, Letchford, and Salazar-González: Decorous Lower Bounds for Minimum Linear Arrangement
40 INFORMS Journal on Computing 23(1), pp. 26–40, © 2011 INFORMS

is very time consuming and essentially does not lead
to any significant result for instances with more than
5,000 edges within one day of computation on a
PC. Second, even with the addition of the integral-
ity requirement on the variables, the model would
not be a valid formulation of MinLA, and testing the
MinLA feasibility of a given integer solution would
be nontrivial (in fact, we conjecture that this is an
��-complete recognition problem).
To overcome the second limit above, in Caprara

et al. (2009) a different formulation of the problem
is proposed, with a much larger number of vari-
ables. The solution of the associated LP relaxation
uses many of the ideas presented in this paper for
the solution of LP (6). This approach could solve to
proven optimality the two smallest instances in the
MinLA benchmark, namely, gd95c and gd96c, and find
better lower bounds than ours for gd96b and gd96d.
On the other hand, recalling the first limit above, this
formulation seems to be absolutely too large for the
other MinLA benchmark instances, as well as for any
graph with more than a few hundred edges.

Acknowledgments
The second author was supported by the Engineer-
ing and Physical Sciences Research Council under
Grant EP/D072662/1. The third author was supported
by “Ministerio de Ciencia e Innovación” under Grant
MTM2009-14039-C06-01. The authors are grateful to André
Amaral for illuminating discussions and to Gerd Reinelt for
providing them with the source code of a multistart local
search procedure for MinLA implemented at the University
of Heidelberg.

References
Amaral, A. R. S., A. N. Letchford. 2006. A polyhedral approach

to the single row facility layout problem. Working paper, Lan-
caster University, Lancaster, UK.

Ambühl, C., M. Mastrolilli, O. Svensson. 2007. Inapproximability
results for sparsest cut, optimal linear arrangement, and prece-
dence constrained scheduling. Proc. 48th Annual IEEE Sympos.
Foundations Comput. Sci., IEEE Computer Society Press, Los
Alamitos, CA, 329–337.

Bornstein, C. F., S. Vempala. 2004. Flow metrics. Theoret. Comput.
Sci. 321(1) 13–24.

Caprara, A., J. J. Salazar-González. 2005. Laying out sparse graphs
with provably minimum bandwidth. INFORMS J. Comput.
17(3) 356–373.

Caprara, A., M. Jung, M. Oswald, G. Reinelt, E. Traversi. 2009.
A betweenness approach for solving the linear arrange-
ment problem. Working paper, DEIS, Università di Bologna,
Bologna, Italy.

Charikar, M., M. T. Hajiaghayi, H. Karloff, S. Rao. 2010. l22 spread-
ing metrics for vertex ordering problems. Algorithmica 56(4)
577–604.

Chung, F. R. K. 1988. Labellings of graphs. L. Beineke, R. Wil-
son, eds. Selected Topics in Graph Theory 3. Academic Press, San
Diego, 151–168.

Devanur, N. R., S. A. Khot, R. Saket, N. K. Vishnoi. 2006. On
the hardness of minimum linear arrangement. Working paper,
Georgia Institute of Technology, Atlanta.

Díaz, J., J. Petit, M. Serna. 2002. A survey of graph layout problems.
ACM Comput. Surveys 34(3) 313–356.

Easton, T., S. B. Horton, R. G. Parker. 1996. A solvable case of the
optimal linear arrangement problem on Halin graphs. Congres-
sus Numerantium 119 3–17.

Even, G., J. S. Naor, S. Rao, B. Schieber. 2000. Divide-and-conquer
approximation algorithms via spreading metrics. J. ACM 47(4)
585–616.

Feige, U., J. R. Lee. 2007. An improved approximation ratio for the
minimum linear arrangement problem. Inform. Processing Lett.
101(1) 26–29.

Frederickson, G. N., S. E. Hambrush. 1988. Planar linear arrange-
ments of outerplanar graphs. IEEE Trans. Circuits Systems 35(3)
323–332.

Garey, M. R., D. S. Johnson. 1979. Computers and Intractability:
An Introduction to the Theory of ��-Completeness. Freeman,
New York.

Garey, M. R., D. S. Johnson, L. J. Stockmeyer. 1976. Some simpli-
fied ��-complete graph problems. Theoret. Comput. Sci. 1(3)
237–267.

Grötschel, M., L. Lovász, A. J. Schrijver. 1988. Geometric Algorithms
and Combinatorial Optimization. John Wiley & Sons, New York.

Harper, L. H. 1964. Optimal assignments of numbers to vertices.
SIAM J. Appl. Math. 12(1) 131–135.

Juvan, M., B. Mohar. 1992. Optimal linear labelings and eigenvalues
of graphs. Discrete Appl. Math. 36(2) 153–168.

Koren, Y., D. Harel. 2002. A multi-scale algorithm for the linear
arrangement problem. L. Kuc̆era, ed. Proc. 28th Internat. Work-
shop Graph-Theoretic Concepts in Comput. Sci. Lecture Notes in
Computer Science, Vol. 2573. Springer, Berlin, 293–306.

Liu, W., A. Vannelli. 1995. Generating lower bounds for the linear
arrangement problem. Discrete Appl. Math. 59(2) 137–151.

Mitchison, G., R. Durbin. 1986. Optimal numberings of an n × n
array. SIAM J. Discrete Math. 7(4) 571–582.

Nemhauser, G. L., L. A. Wolsey. 1988. Integer and Combinatorial Opti-
mization. Wiley, Chichester, UK.

Muradyan, D. O., T. E. Piliposjan. 1980. Minimal numberings of
vertices of a rectangular lattice. Akademii Nauk Armianskoi SSR
1(70) 21–27 (in Russian).

Petit, J. 2001. Layout problems. Ph.D. thesis, Department of Lan-
guages and Information Systems, Universitat Politècnica de
Catalunya, Barcelona, Spain.

Petit, J. 2003a. Combining spectral sequencing and parallel simu-
lated annealing for the MinLA problem. Parallel Processing Lett.
13(1) 77–91.

Petit, J. 2003b. Experiments on the linear arrangement problem.
J. Experiment. Algorithmics 8 Article 2.3.

Rao, S., A. W. Richa. 2005. New approximation techniques for some
linear ordering problems. SIAM J. Comput. 34(2) 388–404.

Reinelt, G. 2009. Personal communication.
Rodriguez-Tello, E., J.-K. Hao, J. Torres-Jimenez. 2008. An effec-

tive two-stage simulated annealing algorithm for the mini-
mum linear arrangement problem. Comput. Oper. Res. 35(10)
3331–3346.

Safro, I., D. Ron, A. Brandt. 2006. Graph minimum linear arrange-
ment by multilevel weighted edge contractions. J. Algorithms
60(1) 24–41.

Shiloach, Y. 1979. A minimum linear arrangement algorithm for
undirected trees. SIAM J. Comput. 8(1) 15–32.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

