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Sensitivity analysis, combined with parametric optimization, is often presented as a way of checking if the solution of a deterministic linear
program is reliable—even if some of the parameters are not fully known but are instead replaced by a best guess, often a sample mean.
It is customary to claim that if the region over which a certain basis is optimal is large, one is fairly safe by using the solution of the
linear program. If not, the parametric analysis will provide us with alternative solutions that can be tested. This way, sensitivity analysis
is used to facilitate decision making under uncertainty by means of a deterministic tool, namely parametric linear programming. We show
in this note that this basic idea of stability has little do with optimality of an optimization problem where the parameters are uncertain.

1. WHY SENSITIVITY ANALYSIS

Most, if not all, decisions are made under uncertainty; there
is hardly any disagreement about that. Aspects such as price
and demand, quality of raw materials, and reliability of ma-
chines and operators can hardly ever be viewed as determin-
istic entities. In addition, the model itself will almost always
be an approximation of the real problem and hence repre-
sents uncertainty with respect to the quality of the resulting
optimal solution.

However, it is important to remember that although all
decisions can be viewed as being made under uncertainty,
this does not imply that uncertainty is an important aspect
of all problems. If, for example, the same decision is the
unique optimum for absolutely all possible values of the
uncertain parameters, although the objective function value
may be very dependent, the true optimal decision can be
found simply by solving one single problem, normally the
one where all parameters are set at their most likely value. In
such a case it is fair to claim that uncertainty is unimportant
for making decisions.

An obvious difficulty with this approach is the need to
know that it works without actually checking that it does. A
common approach is therefore to solve the expected value
problem—that is, the problem with all uncertain parameters
replaced by their expected values—and then perform sen-
sitivity analysis. This approach is taught in most textbooks
on mathematical programming and operations research, al-
though it is not common to interpret the linear program that
is solved as an expected value problem. If uncertainty is in
the objective function, the sensitivity analysis will tell over
which area of the parameter set the given (primal) solution is

optimal. If uncertainty rests in the right-hand side, the anal-
ysis shows over which area the given basis is primal feasi-
ble, and therefore over which area the same primal variables
remain nonnegative. In the first case, if the area is large, it
is customary to say that the expected value solution (that
is, the solution corresponding to the expected value prob-
lem) is stable, implying that it is reasonably safe to use it.
In the second case, it is the optimal basis that is stable (and
also the dual variables), but at least we know which vari-
ables (machines, processes, transportation modes) to focus
on. Again, in standard texts, the terminology is usually dif-
ferent because the term expected value solution is not used.
An advanced user would also consider the reduced costs at
the boundaries to make sure the function is not too steep.
Correspondingly, if the area of optimality is small, there is
a fear that the given solution (or basis) is not very safe to
use. In that case, we can use the parametric analysis to look
for alternative solutions.

In a newly issued book on sensitivity analysis and para-
metric programming (Gal and Greenberg 1997), we read
in the foreward: “Mathematical programming, especially
linear programming and related network and combinatorial
methods, usually form the OR/MS deterministic subfield.
It is time to recognize that this categorization is restric-
tive and does not serve the field well. Those of us who
work in the area are, in a sense, blessed and lucky. We
have in the linear programming mathematical model and
in its solution by the simplex method a readily available
analysis that answers important data sensitivity questions
and, at the same time, yields critical related economic in-
formation. Coupling such an analysis with computationally
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simple studies provides a rather nondeterministic view of the
modeling situation. Thus, those of us who teach and practice
mathematical programming have the means of emphasizing
and answering concerns about validity, robustness, uncer-
tain data, base case and scenario analysis, and in achiev-
ing the truism that modeling is more about gaining insight
than in producing numbers. We can and do cut across the
dichotomy.” We see that the usefulness of sensitivity analy-
sis for understanding uncertainty is shared by the authors in
their reference to robustness, uncertain data, and base case
and scenario analysis.

As an example from a more typical text book, sensitiv-
ity analysis is introduced the following way in Ravindran et
al. (1987, §2.11): “In all LP models the coefficients of the
objective function and the constraints are supplied as input
data or as parameters to the model. The optimal solution
obtained by the simplex method is based on the values of
these coefficients. In practice the values of these coefficients
are seldom known with absolute certainty, because many of
them are functions of some uncontrollable parameters. For
instance, future demands, the cost of raw materials, or the
cost of energy resources cannot be predicted with complete
accuracy before the problem is solved. Hence the solution of
a practical problem is not complete with the mere determi-
nation of the optimal solution. Each variation in the values
of the data coefficients changes the LP problem, which may
in turn affect the optimal solution found earlier. In order to
develop an overall strategy to meet the various contingen-
cies, one has to study how the optimal solution will change
with changes in the input (data) coefficients. This is known
as sensitivity analysis or post-optimally analysis.”

What type of decision problems are we talking about?
First, we see from the very wording that uncertainty is an
element of the decision problem. Second, it seems clear that
some decisions must be made before all the actual parame-
ter values become known, and finally, that in some way it
is costly if the decision fits badly to the realized parame-
ter set. The problem therefore has at least two stages, that
is, at least two points in time where costs (profits) are in-
curred, and these points are separated by another point in
time where uncertainty is revealed. Typical examples would
be production to meet an uncertain demand (possibly at un-
certain prices), or the construction of a vehicle schedule
without knowing the exact travel times and costs resulting
from uncertain traffic patterns.

2. PRODUCING ALTERNATIVE SOLUTIONS

As long as the expected value solution is not optimal for
all possible parameter sets, it is clear that in hindsight, that
is after the fact, it may turn out that a different solution
would have been better. This in itself is unavoidable and
does not imply that the expected value solution is not the
right solution.

If we accept the interpretation of the decision structure
given in the previous section, it is quite clear that we have
some problems with the objective function. What does it
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mean to minimize costs in a setting where costs occur twice,
and the second occurrence is random? In fact, it means noth-
ing unless we specify it more clearly. Very often it seems
that the underlying assumption (implicit and hidden as it
may be) is to minimize the sum of the immediate costs aris-
ing from the decision, and the expected future costs. We
will proceed here as if that was the case. A few aspects of
this issue will be discussed in the next section.

Many will argue that we have already gone too far, as they
are not willing to operate with probability distributions at
all. In fact, many approaches claim that one of their benefits
is that distributions are not needed. And, of course, prob-
ability distributions are not discussed in textbooks on sen-
sitivity analysis and parametric (linear) programming. The
arguments made in this paper do not depend on either the
willingness or the ability to estimate probability distribu-
tions. Furthermore, we do not imply that users are willing or
able to solve the resulting complex optimization problem.
However, we do assume that users would accept that proba-
bility distributions would make it possible to find better so-
lutions #f'the distributions were available and all calculations
came for free. In other words, we do not disregard practi-
cal arguments against probability distributions, but we do
assume that terms like “expected future costs” make sense,
even though they possibly cannot be calculated from a prac-
tical point of view.

Let us add that any approach that implicitly or explicitly
accepts that we do in fact have a problem with at least two
stages (simply meaning that some decisions are made before
all relevant parameters are known with certainty ) must make
some kind of assumption about the relationship between the
immediate costs and the future costs. There is no free lunch
here.

So, again we conclude that although the expected value
solution is not optimal (in hindsight) for all parameter sets,
it may still minimize expected costs and hence be optimal.
But, of course, there may be other solutions that have a
better expected performances.

How would one go about finding alternative solutions?
Again, if we refer to textbooks (for example, Ravindran
1987) as well as practice, there are a few basic approaches.

e Because it is likely that the solutions close to the ex-
pected value solution are good (after all, they are optimal
for some parameters), we may use parametric linear pro-
gramming to seek out candidates. It is sometimes the case
that we can list a// solutions that are optimal for some pa-
rameters. In the latter case we know for sure that in our col-
lection we have the solution that will turn out to be optimal
in hindsight.

o If the number of possible optimal solutions is too large
(or if we are solving for example an integer program), we
may sample parameters and solve the deterministic problem
corresponding to each sample. This is sometimes referred
to as scenario analysis. It is hoped that this will produce a
representative set of possible optimal solutions, and there-
fore it will very likely also produce the solution that is op-
timal in hindsight. During the sampling we may, of course,
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use any trick of the trade from sampling theory to decrease
variance.

e We may carry out “what-if”” sessions. Many software
packages are set up for this. Note that there is no princi-
pal difference between a “what-if” session and sampling as
defined in the previous item.

e Based on the candidate solutions obtained by any of the
three previous methods, we may search for common features
to capture properties that are in all or most of them. From this
we construct some new candidate solutions that represent
the essence of what we have found out from the analysis. In
the continuous case we may take convex combinations of
other solutions.

It is worth noting that we do not list simulation as a way
of producing candidate solutions. A simulation model can
be used to evaluate solutions, not to find them. In partic-
ular, a simulation model can say that strategy x is better
than strategy y, but it cannot generally tell if x is good
or bad.

3. PROBABILITY DISTRIBUTIONS

As mentioned, many methods make a point of not using
probability distributions. The arguments are slightly vary-
ing. The most common argument is that in most situations it
is very hard or even impossible to obtain such distributions,
and then if we could, the resulting model would not be solv-
able. This is a valid argument, but it is important to realize
that it is practical, not a principal, argument. Also, it is not
always true, even though the cost of estimation and solution
may be high. It would become a principal argument if one
claimed that it was incorrect to use a probability distribu-
tion even if it was available, and the resulting model could
be solved. This section will discuss some approaches that
do not use probability distributions. Using these methods
does not necessarily imply that one has a principal objection
against distributions.

Economic theory tells us to maximize expected utility.
In this text we have used expected profit as our objective
function. This is equivalent to maximizing expected utility
with a linear utility function. The arguments in this paper
do not depend on the utility function being linear.

If we object to utility theory, then we need to replace this
with another theoretical platform. Some claim that all they
want is a “good” solution, but without saying what it is.
This paper has little to say to those who just want “good”
solutions in a context where optimal is worse than “good”;
after all, the starting point is an optimization model with
an objective function chosen by the user. In other words,
we assume that even though “good” may indeed be good
enough, optimal would be better.

In some cases, worst-case analysis is used. This is an ap-
proach that avoids probability distributions while accepting
the two-stage setting. In itself, this can be valid; but true
worst-case models are rare. Normally they are either terri-
bly pessimistic (no goods will be demanded and the price
will be zero; all machines will be down all the time) or

rather arbitrary because the worst case is impossible to define
(demand will never be less than 23.2 and the price never
below 16.6; the machines will never be down more than 25
minutes and 3 seconds per day). We may think of cases like
bridge building and other cases where safety is a core prop-
erty, but these are often not worst-case models. It is impossi-
ble to build a bridge that cannot fall down. Rather, one tries
to build the bridge as cheaply as possible, given an accept-
able probability that it collapses. In other words, these are
models that use probability distributions (mostly the tails)
in the constraints. In some cases, it is possible to formulate
models that are good substitutes of the true worst case. A
typical example would be the construction of a telecommu-
nications network under the constraint that the network re-
mains connected if any one arc fails. By assuming that only
one arc can fail at a time, a meaningful model is achieved.

Another approach often used is to investigate the available
candidate solutions as we indicated in item 4 above, and
in that way to arrive at a solution. This solution is then
accepted without simulation because simulation requires (at
least implicitly) a distribution.

Finally, many will argue that because it is impossible
to find the correct distribution form, they prefer to solve
the deterministic program. This approach has at least two
implicit assumptions. The first is that the distribution form is
so important that if it is wrong, the results are not worth very
much. The second is that if all probability mass is put in one
point (that is, disregard all information about the parameters
except their means, and hence use a distribution with a very
extreme form), things are rather good. These two views are
hardly consistent. Of course, these statements are not made,
but they are implicit in the arguments.

4. WHY SENSITIVITY ANALYSIS/PARAMETRIC
OPTIMIZATION MAY NOT DELIVER GOOD
CANDIDATE SOLUTIONS

As we have seen, there are different ways of trying to find
good overall solutions based on sensitivity analysis. Some
use distributions, others do not. However, all but the worst-
case analysis have one common aspect: They build on the
assumption that the optimal solution inherits properties
from candidate solutions produced by parametric linear
programming (sensitivity analysis) or sampling. Geometri-
cally, this means that the optimal solution is contained in the
space spanned by the deterministic solutions. We shall now
demonstrate that this basic assumption is generally false,
and hence that all and any of the above approaches, except
worst-case analysis, represent a cumbersome way of con-
sciously looking for the wrong solution. The examples are
made as simple as possible. For that reason it is easy to
see what goes wrong, and one may be tempted to think that
these errors would never be made. However, for more com-
plex problems this visual overview is lost, and one is rather
likely to make logical mistakes. Of course, even the sim-
ple structures below can be embedded in larger structures,
making them hard or impossible to detect.



4.1. Example 1

Assume that we can produce three products, in the amounts
x, v, and z. The demands for x and y are random between
zero and one, and such that their demands add to one. This
reflects that the products are substitutes; that is, they satisfy
the same needs for the customers. We cannot sell anything
that is not demanded. There is an upper limit of 1 on our
production capacity. The model assumption here is that the
decisions to produce x, y, and z are all made before the
demand ¢ becomes known. A linear programming model
has been formulated and is as follows:

max 3x+2y+z

subject to:
x <4,
y <1-4
x+y+z <1,
X, V,zZ =>0.

In this case it is possible to find the optimal solution for
all values of &. It is the same optimal basis all the time. The
optimal solutions are givenbyx = ¢, y = 1 —¢,and z = 0 for
all & = €]0,1]. If we evaluate these solutions in terms of
expected performance, we find that they are all infeasible (or
alternatively that they all have an expected value of —o0).
This is easily seen by letting x = 7, and y = 1 — 7 for some
0<7<1. Then either <& or 1 — <1 — & will always be
false, except when & = 7. Note that we do not need to know
the probability distribution to conclude this way, as long as
the support is known to be [0, 1].

Rather, we would want the solution that maximizes the
expected value of 3x + 2y + z (where expectation is taken
over £, and where we remember that decisions must be made
before ¢ is known). We find that the optimal solution is
x =y = 0 and z = 1, with a (deterministic) value of 1.
We observe that all the candidate solutions had one thing
in common—namely, z = 0—and that is exactly what we
do not want. Another way to put this is to observe that
although the same basis is optimal for a// possible param-
eters, that is not enough to conclude that we have found
the “correct” basis. So not even knowing that the same ba-
sis is always optimal in hindsight is enough to make useful
conclusions.

It is possible to argue that the model in this example
does not function well in the stochastic setting. That is in-
deed true because it is clearly a deterministic model, not
made for stochastic analysis. It does not properly take care
of what happens when the production does not match the
demand; it simply declares that to be infeasible. However,
rather than invalidating the example, that is just another as-
pect of what may go wrong when sensitivity analysis is
applied to a deterministic model to analyze what is under-
stood to be a stochastic decision situation. Models normally
will have to be reformulated to make much sense. But note
that the model makes full sense as long as it is used deter-
ministically. However, it is not the purpose of this paper to
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discuss the modeling aspect of passing from deterministic
to stochastic formulations.

4.2. Example 2

In the previous example, the uncertainty was in the con-
straints, and the model was inherently deterministic in its
construction. Let us now present an example where the un-
certainty is in the objective function, and where the model
is explicitly set up for a two-stage analysis. Assume that we
can produce a good at the presently unknown price p. To
do this we must build a building of capacity ¢ <1, at a unit
cost of 2. If this is to be done, it must be done now. Inside
the building we must fit production equipment to facilitate
the production. If we build the equipment now, it will come
at a unit cost of 2, and its size z is constrained by the build-
ing size. We can also wait until after p has become known,
but in that case the unit cost will increase to 2.2 because
of increased delivery and installation costs. This extra ca-
pacity is denoted y, and it is also constrained by ¢, by the
requirement y +z <c. Letting x be the production level, the
problem now becomes

max px —2c —2z — 2.2y

subject to:
x <y+z,
y+z <c,
c <1,
X, y,z,c =0.

The two-stage interpretation is that ¢ and z must be deter-
mined now. Hence, the goal is to sort out their values. Also
here it is easy to find all possible solutions by parametric lin-
ear programming. If p<4, the solutionisc =x=y =z =
0 with a profit of 0. If p>4, the solutionisc=x =z =1
and y = 0 with a profit of p — 4. The first solution obvi-
ously has an expected value of 0, and the second E{ p} — 4.
So if E{ p} =4, we should build the building and production
facility now; if not, we should not nothing.

Only these two solutions are possible from parametric
linear programming and sampling. The common feature here
is that y = 0. This is so because in both cases z = ¢, forcing
y=0.

But there is another possible solution, namely ¢ = 1 and
z = 0. The problem facing us after p has become known
will then be

max px —2.2y —2

subject to:
X <)
y <1,
x,y =0.

In this case, we will clearly do nothing if p<2.2, but we
will build one unit of production equipment and produce
one unit of the good if p>2.2.

To compare this solution with the candidate solutions
from parametric linear programming above, we must make
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some assumption on the distribution. Generally, the new so-
lution is best if

Pr{p>22 E{p| p>22} —22] -2
> max{E{p} — 4,0}.

If, for example, we assume a uniform distribution over [0, 9],
the new solution has an expected value of 0.57, and the best
from the parametric linear program an expected value of
0.5. So the new solution is 14% better.

4.3. Conclusion of Examples

What have we obtained? First, it takes only an example to
show that the basic idea that the solution that maximizes ex-
pected profit can be found or approximated by investigating
sampled deterministic solutions is false. In fact, it is more
typical that the common features found in the candidate so-
lutions from parametric optimization or sampling is exactly
what we do not want. Why is this so?

All the problems implicitly solved by parametric opti-
mization have one thing in common: They are determinis-
tic. Therefore, the chance is that if the solutions have com-
mon features, these features reflect the deterministic prop-
erty. This is not a general result, of course, but it is a
very important observation. In example 1, we never pro-
duced any z because all the deterministic problems allowed
x + y=1. In example 2, the price is either high enough
to allow production—in which case we build the building
and the cheap production facility—or not high enough—in
which case we do nothing. The common feature here is that
the price is known. In such a case there is never a reason to
pay 2.2 for something we can get for 2.

Geometrically, what we are observing is that the space
spanned by all the possible deterministic solutions does not
contain the solution that maximizes the expected value of
the objective function. This is despite the fact that the so-
lution which is optimal in hindsight is indeed in the space.
So, clearly, the idea of looking for common features is gen-
erally not a valid approach. But are the examples above
extreme and unusual, or are they typical? In other words,
does it normally work to use parametric analysis and sim-
ilar methods, even though there are cases where it is not
right? This question cannot be answered in any precise way.
However, we will end this section by listing two arguments
for why the difficulty is more common than not. In addi-
tion, we must remember that even if there were a large class
of problems where parametric optimization would produce
the right candidate, we would need a way to tell if a given
problem was in that class or not. Such a method does not
currently exist.

e Decision problems usually contain some decisions that
produce options; that is, they open up possibilities in the
future that may or may not be used. Normally there is a
cheaper version available if we buy immediately. In a deter-
ministic optimization problem we will always either not do
anything or will buy the cheap version. An example would
be to build an oil platform with extra space, in case the field

turns out to be larger than expected and we need more pro-
duction equipment. It costs more to install this extra capa-
city later (often offshore) than to do it when the platform
is under construction. A deterministic model will never
suggest the expensive version but will either suggest a
smaller platform without the extra production capacity or
the larger platform with the capacity installed. It is very
often these decisions that are the crucial decisions for this
type of investments.

e Decisions that produce options as described above are
often much less spectacular than in the example. It is simply
that out of many possible ways of solving a problem, some
are better for later periods than others. Deterministic meth-
ods will consistently pick the wrong ones unless flexibility
comes for free. For example, if the goal is to construct a
fleet of vehicles from a very large number of possible mod-
els, and the goods that are to be transported are unknown
or the amounts are unknown, vehicles that are flexible with
respect to type of goods will normally not show up in any
analysis based on deterministically known quantities. It is
not easy to realize that if one analysis shows we should buy
three station wagons and the other that we need a medium-
sized truck, we should in fact buy two pick-ups.

5. WHAT DOES SENSITIVITY/PARAMETRIC
ANALYSIS DO?

After having seen that all approaches based on parametric
analysis are principally false for analyzing decision mak-
ing under uncertainty, we are still left with one question:
What does sensitivity analysis do? Clearly, there is such a
thing as stability of a solution (or basis) with respect to a
parameter set.

In this article, we have discussed solely the issue of de-
cision making under uncertainty. Assume that the parame-
ter under investigation is not random. Rather, it is known,
but we are considering changing it. For example, Norwe-
gain authorities have decided that certain rivers must have
a minimal flow so that some waterfalls can be enjoyed by
tourists. Typically this water is lost for hydropower produc-
tion. As the owner of the hydropower plant, one may ask:
“What if the minimal required amount of water is reduced
by 30%?” If the model is otherwise correctly defined with
respect to uncertainty (the amount of available water is very
uncertain), then sensitivity analysis is appropriate. This is a
general rule: namely, that sensitivity analysis is appropriate
for variations in deterministic parameters.

There is one situation related to uncertainty where sensi-
tivity analysis is an appropriate tool. Assume that next year
we will be making an important decision, and when it is be-
ing made all parameters will be known with certainty. Now,
however, that the parameters are unknown, but even so we
need numbers for our budget for the next year. If we now
solve the expected value problem, and based on sensitivity
analysis find it is very stable, we can be quite confident that
the numbers we put into the budget are good.



Note the setting here. We are not making any decisions in
face of uncertainty; we are simply predicting what will hap-
pen next year when we make a decision under certainty. This
has nothing to do with decision making under uncertainty—
and it is maybe not so surprising that a deterministic tool
like sensitivity analysis does in fact analyze only determin-
istic decision problems?
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