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Abstract: A single server is faced with a collection of jobs of varying duration and urgency. Each job has a random lifetime during
which it is available for nonpreemptive service. Should a job’s lifetime expire before its service begins then it is lost from the system
unserved. The goal is to schedule the jobs for service to maximize the expected number served to completion. Two heuristics have
been proposed in the literature. One (labeled πS) operates a static priority among the job classes and works well in a “no premature
job loss” limit, whereas the second (πM) is a myopic heuristic which works well when lifetimes are short. Both can exhibit poor
performance for problems at some distance from the regimes for which they were designed. We develop a robustly good heuristic by
an approximative approach to the application of a policy improvement step to the asymptotically optimal heuristic πS, in which we
use a fluid model to obtain an approximation for the value function of πS. The performance of the proposed heuristic is investigated
in an extensive numerical study. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 57: 225–236, 2010
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1. INTRODUCTION

The article considers a scenario in which a collection of
jobs is seeking service which is provided by a single server.
There are two major sources of uncertainty related to each
job. First, its service is of uncertain duration. Second, the jobs
lifetime, namely, the period of time during which it is avail-
able for service, is also uncertain. For most of the article we
shall assume that a job abandons the system unserved if its
service does not begin before the expiration of its lifetime.
Furthermore, all jobs whose service begins are guaranteed to
be served to completion. No preemptions are allowed. Each
job is subject to triage (an assessment of its service require-
ment and its urgency) at time zero and is placed in one of J

classes. Jobs in each class are assumed to have independent
and identically distributed (i.i.d.) lifetimes (denoted Xj ∼ Fj

for class j ) and i.i.d. service times (denoted Yj ∼ Gj for class
j ). Following triage, the central challenge discussed by the
article concerns how the jobs should be scheduled for service
such that the expected number of jobs served to completion is
maximized. Intuitively, it seems clear that priority should be
given to jobs with small service times (since these delays oth-
ers less) and/or small lifetimes (since these are most urgent).
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Precisely how this should be done to achieve optimality is far
from clear, however.

Gaver and Jacobs [8] have argued the importance of incor-
porating job/customer impatience into service system mod-
els. They cite call center where customers will hang up if
they are required to wait excessively for service and mil-
itary scenarios in which enemy targets may move out of
reach if not dealt with promptly. There is now an extensive
literature tailored to call center applications. See, for exam-
ple, Garnett et al. [7], Bassamboo et al. [3], and a recent
special issue of Management Science (Koole [15]). Con-
tributions related to military applications include those of
Gaver et al. [9] and Glazebrook and Punton [12]. Further-
more, Glazebrook et al. [13] develop heuristic policies for the
admission control and routing of impatient customers seeking
service. These studies concern situations in which a stream
of new jobs arrive for service over time. The clearing sys-
tem model alluded to in the opening paragraph and which
is the focus of the article posits an amount (possibly large)
of urgent work, arising perhaps as the result of a natural or
man-made disaster, which is present ab initio and which must
be accomplished with limited resources. Direct precursors of
this article include the studies of Glazebrook et al. [11] and
Argon et al. [2]. The latter emphasizes applications concern-
ing the use of limited medical resources after mass casualty
incidents. Before proceeding further, we pause to remark that
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the situation envisaged in the article should be clearly distin-
guished from cases where jobs are to be scheduled in the face
of known hard deadlines. For important examples of the latter,
see Glazebrook [10], Jiang et al. [14], Doytchinov et al. [6],
and Van Mieghem [24].

In principle, the problems described in the opening para-
graph are capable of solution by the methods of stochastic
dynamic programing (DP) (Puterman [20] and Tijms [23]).
In practice, the scale of the computational effort required
means that this is a realistic option only for small problems
and special cases. Argon et al. [2] have shown that when
lifetimes and service times are suitably agreeable (jobs with
the shortest lifetimes also have the shortest service times)
then the optimal policy always gives highest priority to the
time-critical job regardless of the system state. Such special
results notwithstanding, the central challenge concerns the
development and evaluation of strongly performing heuristic
policies. The literature contains discussions of two candidate
policy classes. Glazebrook et al. [11] develop a simple static
policy (hereafter denoted πS) which operates a fixed priority
among the job classes. The class with the smallest associ-
ated value of E(Xj)E(Yj ) is accorded the highest priority by
πS (jobs scheduled first) whereas that with the largest asso-
ciated value has lowest priority (jobs scheduled last). This
simple, intuitive policy is shown to be asymptotically opti-
mal for problems with exponentially distributed lifetimes in
a “no premature job loss” limit (minj E(Xj ) → ∞). In con-
trast, Argon et al. [2] develop a myopic “triangular” heuristic
which performs well in a “heavy premature job loss” limit
(maxj E(Xj ) → 0). Although these policies perform sat-
isfactorily in the neighborhood of the regimes for which
they were designed, they are nonrobust and can exhibit poor
performance more generally. We exploit the simplicity (espe-
cially the static nature) of the Glazebrook et al. [11] heuristic
πS to develop a class of heuristic policies with robustly strong
performance via a two-stage procedure. At Stage 1, we use a
fluid model to approximate the value function of the system
operating under πS. We then adopt an approximate DP (Pow-
ell [19]) approach and design in Stage 2 a dynamic heuristic
by using the approximating value function from Stage 1 in
a DP recursion. Expressed differently, motivated by compu-
tational considerations, we introduce an approximating fluid
model to render feasible the task of applying a single pol-
icy improvement step to the asymptotically optimal heuristic
πS. The idea of applying a single policy improvement step
to some given heuristic policy is not new. See Ott and Krish-
nan [18], Tijmas [23], Anseli et al. [1], Bhulai and Koole [5],
and Opp et al. [17] for a few examples. All these contributions
utilize the value function of the initial policy. This, however,
may be very difficult to obtain. A variety of approximation
schemes have been proposed to overcome this difficulty. See,
for example, Marback et al. [16], Bhulai [4], Powell [19], and
Roubos and Bhulai [21, 22]. A primary contribution of the

article is the idea of developing a good approximation to the
value function of an initial policy by use of an approximating
fluid model.

The article proceeds as follows: our clearing model for
the scheduling of impatient jobs is presented in Section 2.
In Section 3 we describe an approach to the development
of heuristic policies via an approximating fluid model. Our
heuristics are subject to extensive numerical investigation in
Section 4 where they are compared with earlier proposals
in the literature and (where possible) to optimal. They are
found to perform extremely well, comfortably outperforming
competitors.

2. THE MODEL

A clearing system has a single server and a collection of
impatient jobs (or customers) awaiting service which begins
at time zero. Each job belongs to one of J classes. We use
the pair jk to denote the job which is the kth member of class
j , 1 ≤ k ≤ Lj , 1 ≤ j ≤ J . Observe that Lj is the number
of class j jobs present at time 0. Associated with each job
jk are two positive valued random variables, namely, its life-
time Xjk and its service time Yjk . For each j the collection
{Xj1, Xj2, . . . , XjLj

} of class j lifetimes are independent and
identically distributed (i.i.d.), having the same distribution as
Xj whose distribution function is Fj . Similarly, the collection
{Yj1, Yj2, . . . , YjLj

} of class j service times are independent
and identically distributed, having the same distribution as Yj

whose distribution function is Gj . All lifetimes and service
times have finite expectation and are independent of each
other.

The single server processes individual jobs nonpreemp-
tively. Job jk will abandon the system unserved if its service
has not begun before Xjk . However, once a job has begun ser-
vice, it will be served through to completion. Let π denote a
service policy (a nonanticipative rule for allocating the server
to waiting jobs) and Tjk(π) the random time at which policy
π begins to process job jk. If jk is not served by π then we
write Tjk(π) = ∞. The number of jobs served to completion
under π is denoted N(π) and is given by

N(π) =
J∑

j=1

Lj∑
k=1

I{Tjk(π) ≤ Xjk}. (1)

In (1), I is an indicator. The goal of analysis is the determi-
nation of a policy π to maximize E{N(π)}. Argon et al. [2]
argue that under the optimal policy the server will never idle,
whereas the theory of stochastic dynamic programing (see,
for example, Puterman [20]) guarantees the existence of an
optimal policy which takes actions which depend only upon
the current system state.

Naval Research Logistics DOI 10.1002/nav



Li and Glazebrook: Approximate Dynamic Programming Approach for Clearing System Scheduling 227

We model this problem as a semi-Markov decision process
which is as follows:

1. Decision epochs are at time zero and at all service
completion times. The state of the process at deci-
sion epoch t ≥ 0 is denoted {nj (t), 1 ≤ j ≤ J ; t} ≡
{n(t), t}, where nj (t) is the number of class j jobs
which at time t have not yet been served and have not
abandoned the system. Generic states of the system
are denoted (n, t), (n′, s);

2. At each decision epoch, one of the jobs remaining
in the system is chosen for processing. In any sys-
tem state (n, t), the collection of admissible actions
is written A(n) and is given by

A(n) = {j ; nj ≥ 1, 1 ≤ j ≤ J }. (2)

In (2) the action j is identified with the class of the
job chosen for processing.

3. Let t be a decision epoch and (n, t) the system state
then. If action j ∈ A(n) is taken and results in a
service time (realized value of Yj ) equal to s then
the system at the next decision epoch t + s will be
(n′, t + s) with probability p(n′|n, t , j , s) given by

p(n′|n, t , j , s)

=
J∏

i=1

(
ni − δij

n′
i

)
{P [Xi ≥ t

+ s|Xi > t]}n′
i {P [Xi〈t + s|Xi〉t]}ni−δij −n′

i

=
J∏

i=1

(
ni − δij

n′
i

) {
1 − Fi(t + s)

1 − Fi(t)

}n′
i

×
{

Fi(t + s) − Fi(t)

1 − Fi(t)

}ni−δij −n′
i

,

0 ≤ n′
j ≤ nj − δij , 1 ≤ i ≤ J . (3)

In (3), δij is the Kronecker delta which is equal to
one when i = j and is otherwise zero.

4. A policy π is any nonanticipative rule for choosing
admissible actions. Our goal is the determination of
a policy to maximize the expected number of jobs
served from initial state (L, 0).

In principle (an ε-approximation to) an optimal policy
could be developed with the tools of stochastic dynamic
programing (DP). Write

� = {(n, t); 0 ≤ nj ≤ Lj , 1 ≤ j ≤ J , t ∈ R
+}

for the system’s state space and develop the value function
V : � → [0,

∑J
j=1 Lj ], where V (n, t) is the maximal

expected number of service completions from state (n, t).
Assuming sufficient regularity, V satisfies the optimality
equations

V (n, t) = 1+

max
j∈A(n)

{∫ ∞

0

∑
n′

p(n′|n, t , j , s)V (n′, t + s)dGj (s)

}
, n �= 0,

V (0, t) = 0. (4)

Computational approaches to the determination of opti-
mal policies built around the recursive scheme in (4) are not
practical for problems of realistic size. We seek to develop
heuristic approaches which are close to reward maximizing.

Two heuristics have been proposed in the literature and
both will play a role in our narrative. Glazebrook et al. [11]
proposed a static priority rule πS. Suppose that the job
classes are numbered in increasing order of the quantity
E(Xj)E(Yj ), i.e., such that

E(X1)E(Y1) ≤ E(X2)E(Y2) ≤ · · · ≤ E(XJ )E(YJ ). (5)

In any state (n, t), πS chooses action πS(n, t) where

πS(n, t) = min{j ; nj ≥ 1}.

Hence πS implements a class priority according to the order-
ing 1 → 2 → · · · → J . It favors jobs with small mean
service times and/or small mean lifetimes and was shown by
Glazebrook et al. [11] to be optimal in a “no premature job
loss” limit when job lifetimes are exponentially distributed.

Argon et al. [2] propose a myopic heuristic policy πM

which takes the following form: in state (n, t), πM chooses
action πM(n, t) to be the nonempty class j with smallest
associated value of

E(Yj )

[
J∑

i=1

(ni − δij ){E(Xi − t |Xi > t)}−1

]
. (6)

As we shall see, both heuristics πS and πM perform well
on occasion, but exhibit a lack of robustness in performance.
Namely, there are problems for which they do not work at all
well. In the next section, we propose an approach to the devel-
opment of a heuristic policy with associated performance
which is robust and stronger than either.

REMARK: Minor adjustments to the above are required
for simple variants of our model, such as (a) incorporating the
possibility of loss during service and/or (b) different returns
earned upon completion of services of jobs from different
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classes. For example, scenario (a) requires an adjustment of
the optimality equations in (4) to

V̄ (n, t) = max
j∈A(n)

{
P(Xj > t + Yj |Xj > t)

+
∫ ∞

0

∑
n′

p(n′|n, t , j , s)V̄ (n′, t + s)dGj (s)

}
, n �= 0,

V̄ (0, t) = 0. (7)

In (7) we make an assumption that service times are deliv-
ered in full even when premature loss occurs. There are
other modeling possibilities. It is evidently the case that
V̄ (n, t) ≤ V (n, t) for all choices of n, t .

3. HEURISTIC POLICY DEVELOPMENT-
APPROXIMATE POLICY IMPROVEMENT FROM

πS VIA FLUID MODELS

Of the heuristic policies described at the conclusion of the
proceeding section, πS enjoys the benefits of a very sim-
ple structure. It seems reasonable to explore the possibility
of designing effective dynamic heuristics for our problem
by strengthening the performance of this static policy via
the implementation of a single DP policy improvement step.
Write VπS : � → [

0,
∑J

j=1 Lj

]
for the value function for

πS, namely, VπS(n, t) is the expected number of service com-
pletions from state (n, t) under policy πS. The function VπS

satisfies the recursion

VπS(n, t) = 1 +
∫ ∞

0

∑
n′

p(n′|n, t , πS(n, t), s)

× VπS(n′, t + s)dGπS(n,t)(s), n �= 0,

VπS(0, t) = 0. (8)

A single DP policy improvement step applied to πS will result
in a new dynamic policy πSPI determined as follows:

πSPI(n, t)

= arg max
j

{∫ ∞

0

∑
n′

p(n′|n, t , j , s)VπS(n′, t + s)dGj (s)

}

(9)

with the argmax in (9) being taken over the admissible set
A(n). In words, policy πSPI makes optimal decisions under
an assumption that all future decisions are made according
to πS.

Our experience is that policy πSPI performs very strongly
when it is available. In support of this claim we make refer-
ence to 2000 randomly generated problems in which J = 2

and both lifetimes and service times are exponentially distrib-
uted. The performance of four heuristics, which includes πS

and πSPI, when applied to these problems is given in Table 1,
Section 4, together with the details of the problems them-
selves. Similar results for 2000 randomly generated problems
with J = 5 and exponentially distributed lifetimes and ser-
vice times are given in Table 2. In both tables, the results
are presented in four groups (500 problems in each group)
labeledA, B, C andD according to the relative lengths of life-
times and service times in the generated problems. In Table 1,
the worst performances of heuristic πS within each group,
as measured by the percentage deviation from optimum, are
23.79% (A), 24.33% (B), 16.52% (C), and 5.17% (D). Once
a policy improvement step is applied to πS as in (9) above,
the corresponding worst case percentages for πSPI are 0%
for all four groups. In Table 2, the worst case percentages for
πS are 15.95% (A), 11.86% (B), 3.87% (C), and 0.33% (D)
whereas those for πSPI are 0.48% (A), 0.88% (B), 1.04% (C),
and 0.05% (D). In all groups and for both tables the median
percentage suboptimality for πSPI was 0%. Furthermore, for
nonexponential cases, results for 2000 randomly generated
problems in which J = 2, lifetimes are Weibull distributed
and service times are deterministic are given in Table 3. This
may be found in Section 4 along with full problem details.
The design of the study is along the lines of the exponential
cases above. In Table 3, the worst case percentage for heuris-
tic πS are 36.43% (A′), 26.16% (B ′), 20.21% (C ′), and 4.13%
(D′). The corresponding percentage for πSPI are 0.00% (A′),
0.24% (B ′), 1.46% (C ′), and 0.20% (D′).

REMARK: A dynamic version of the priority policy πS

recalculates the expected remaining lifetimes at every deci-
sion epoch and updates the priority list. We have also imple-
mented a single policy improvement step for this policy
in several cases with Weibull lifetimes. The numerical evi-
dence we have suggested is that the resulting policy does not
offer any significant improvement on πSPI. In some cases its
performance is weaker.

The strong performance of πSPI notwithstanding, its devel-
opment via (8) and (9) is computationally prohibitive other
than for small problems and special cases. In light of this
computational intractability we proceed as follows: we shall
develop an approximation V

(1)

πS : � → [
0,

∑J
j=1 Lj

]
to the

value function VπS . The dynamic heuristic which then results
is obtained by using the approximation V

(1)

πS within (9). Hence
we have

πSF1(n, t) =

arg max
j

{∫ ∞

0

∑
n′

p(n′|n, t , j , s)V (1)

πS (n′, t + s)dGj (s)

}
.

(10)
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The approximating value function V
(1)

πS is obtained by devel-
oping a suitable fluid (deterministic) analog of the stochastic
system emptying under policy πS. In this approximating
model, the (random) number of jobs remaining is represented
by a fluid level which diminishes at a suitable deterministic
rate to reflect both service completions and losses from the
system of unserved jobs under πS.

3.1. Approximating VπS : No Losses During Service

We proceed to discuss how to develop V
(1)

πS (n, t), an
approximation to VπS(n, t) based on a fluid model which
drains fluid in a way which is appropriate given our assump-
tion that jobs in service cannot experience premature loss.
We focus initially on the contribution to V

(1)

πS (n, t) from a
single job class. We drop the class identifier and use X, Y

and θ(·) for the class lifetime, service time (both assumed
absolutely continuous in this account) and lifetime hazard,
respectively. Note that the lifetime hazard is given by θ(t) =
F ′(t){1 − F(t)}−1, where F is the distribution function of X

and ′ denotes derivative. We also write E(Y ) = µ−1.
We use the pair (m, s) to denote the amount of fluid (num-

ber of jobs) present when the processing of the class begins
(m) and the time at which this happens (s) when πS is
applied to the fluid model. Because of the way in which πS

imposes static priorities among the classes, this class will
be served continually from s until all of the corresponding
fluid is drained. We use N(1)(m, s) for the number of ser-
vices completed (which in the fluid model may be noninteger)
during the processing of the class. It will then follow that
µ−1N(1)(m, s) is the time taken to process the class under
the fluid model.

The fluid is drained as follows: if m ≥ 1 then a single unit
of fluid is removed instantaneously (to signify the guaran-
teed service completion of one job) at time s. Loss of fluid
is then experienced at a rate determined by the hazard rate
θ(τ ) during the time period s < τ ≤ s + µ−1. Note that
this period is the time occupied by the processing of the first
job in the fluid model. If the amount of fluid remaining at
time s + µ−1 exceeds one then a further single unit of fluid
is removed instantaneously at time s + µ−1 and signifies the
guaranteed service completion of a second job. Loss of fluid
is then expected at a rate determined by the hazard rate θ(τ )

during the period s + µ−1 < τ ≤ s + 2µ−1, and so on. If we
write R(τ) for the amount of fluid remaining at time τ , we
have for τ ≥ s

R′(τ ) = −θ(τ )R(τ), τ �= s + kµ−1, k ∈ N,

R({s + kµ−1}+) = max{R(s + kµ−1) − 1, 0}, k ∈ N,

R(s) = m. (11)

If we define k(m, s) by

k(m, s) = min{k; R({s + kµ−1}+) = 0} (12)

we then have

N(1)(m, s) = k(m, s) + R(s + k(m, s)µ−1). (13)

Note from (12) that k(m, s) is the (integer) number of
fully completed jobs under the fluid model whereas R(s +
k(m, s)µ−1) is a fractional amount of fluid remaining after
those completions and is deemed to yield a further fractional
completion within the approximating fluid model.

In fact, the system (11) is straightforward to solve explic-
itly. To state the solution with a minimum of notation we
develop the sequence

mr(s) =
{

1, r = 0

1 + ∑r−1
u=0 exp

{∫ (u+1)µ−1

0 θ(s + v)dv
}

, r ∈ Z
+.

Please note that mr(s) may be understood as the amount of
fluid at time s to achieve r + 1 service completions. The
proof of Proposition 1 can be found in the Appendix. Before
its statement please note that the assumption that E(X) < ∞
implies that the hazard rate θ has an infinite integral over R

+
and hence that mr(s) → ∞, r → ∞ for all choices of s.

PROPOSITION 1:

(a) If mr−1(s) < m ≤ mr(s) for some r ∈ Z
+ then

N(1)(m, s)

= r + {m − mr−1(s)} exp

{
−

∫ rµ−1

0
θ(s + v)dv

}
;

(14)

(b) If m ≤ m0(s) = 1 then

N(1)(m, s) = m.

To obtain V
(1)

πS (n, t), we need to restore the class

identifier to the notation and wrote N
(1)
j (mj , sj ) for

the above fluid approximation for the number of Class
j services completed from an initial state (mj , sj ). We
now suppose that the classes are numbered according
to their ordering by πS, with Class 1 processed first
and Class J last.

For fixed system state (n, t) and 1 ≤ j ≤ J ,
we inductively develop the quantities νj (n, t) which
records the number of class j services completed
under the fluid model when static policy πS is applied
from this state, as follows:

ν1(n, t) = N
(1)
1 (n1, t),
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Figure 1. Values of V
(1)

πS (n1, n2, 0) where 0 ≤ n1 ≤ 16, 0 ≤ n2 ≤ 10. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com]

and

νj (n, t) =

N
(1)
j

(
nj exp

{
−

∫ ∑j−1
i=1 µ−1

i νi (n,t)

0
θj (t + v)dv

}
,

t +
j−1∑
i=1

µ−1
i νi(n, t)

)
, 1 ≤ j ≤ J . (15)

The first argument of N
(1)
j on the right-hand side of

(15) is the number of class j jobs present when the
processing of that class begins. The original number
nj (present at t) is diminished by losses occurring
over the time period [t , t + ∑j−1

i=1 µ−1
i νi(n, t)) dur-

ing which the first j − 1 classes are processed. We
now use the quantities in (15) to develop the needed
approximating value function as

V
(1)

πS (n, t) =
J∑

j=1

νj (n, t).

Dynamic heuristic πSF1 is then developed from (10).

REMARK: It is straightforward to establish from the
expression on the right-hand side of (14), together with
the preceding expressions for the mr(s), that the quantity
N(1)(m, s), regarded as a function of m only (fixed s) is
continuous, increasing, piecewise linear and concave. It will
then follow that the derived approximating value V

(1)

πS (n, t) is
increasing and concave componentwise in n, for fixed t . This
is exemplified in Fig. 1 below where values of V

(1)

πS (n1, n2, 0)

are plotted for a two class problem whose details are as in the
following Example.

EXAMPLE: Consider a two class example in which the
lifetimes Xj are i.i.d. Weibull with hazard rate given by

θj (t) = αjβ
−αj

j tαj −1, t ∈ R
+, j = 1, 2. (16)

In this illustrative example we set the parameter values to
be α1 = 1.06, β1 = 56.77, α2 = 1.81, β1 = 81.22. We fur-
ther assume that the service times are deterministic with rates
µ1 = 0.11, µ2 = 0.13. In Fig. 2 find a summary of the deci-
sions (which job class to process) taken by dynamic heuristic
πSF1 at time points 0, 18.15, 30.85, and 45.39, should deci-
sions be required then. These time points are chosen to be
representative of likely decision times.

In Fig. 2 each filled circle indicates a decision in favor
of Class 1, and each diamond a decision in favor of Class
2. Please note that θ1(t) ≥ θ2(t), 0 ≤ t ≤ 66.02, whereas
θ2(t)/θ1(t) increases with t . Hence at time t = 0, Class 1 jobs
will appear more urgent and in most states this is reflected in
a decision to process this class. As time increases all residual
lifetimes of jobs decrease, but those of Class 2 jobs decrease
more rapidly. Hence decisions taken by πSF1 increasingly
favor Class 2 jobs as time elapses.

3.2. Approximating V̄πS : Losses During Service

We now give a brief account of how the above discussion
should be modified for the variant of our model in which
losses are allowed during service. See (7) mentioned ear-
lier. It is clear that our initial policy πS will continue to be
asymptotically optimal in the sense discussed in Glazebrook
et al. [11] for this variant of the basic model discussed earlier.
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Figure 2. Decisions taken by policy πSF1 in states (n1, n2, t) where 0 ≤ n1 ≤ 16, 0 ≤ n2 ≤ 10, and t = 0, 18.15, 30.85, 45.39.

We write V̄πS : � → [0,
∑J

j=1 Lj ] for the value function for
πS now given by

V̄πS(n, t) = P {XπS(n,t) > t + YπS(n,t)|XπS(n,t) > t}
+

∫ ∞

0

∑
n′

p(n′|n, t , πS(n, t), s)V̄πS(n′, t + s)dGπS(n,t)(s),

V̄πS(0, t) = 0. (17)

Direct computation of V̄πS from (17) is computationally pro-
hibitive other than for small problems and special cases.
Hence we again deploy a fluid approximation to develop an
approximating value function V

(2)

πS : � → [0,
∑J

j=1 Lj ]. The
dynamic heuristic which results is given by

πSF2(n, t) = arg max
j

{
P(Xj > t + Yj |Xj > t)

+
∫ ∞

0

∑
n′

p(n′|n, t , j , s)V (2)

πS (n′, t + s)dGj (s)

}
.

(18)

Consider now a single class with X, Y , and θ as in sub-
section (3.1) above. Under the fluid model suppose that πS

begins processing the class when in state (m, s). If we write

R̄(τ ) for the amount of fluid remaining at time τ , we have
that for τ ≥ s

R̄′(τ ) = −θ(τ )R̄(τ ) − µI{R̄(τ ) > 0},
R̄(s) = m. (19)

Hence, according to (19) fluid is now drained continuously
under the impact of both losses from the system and service
effort. If we define t̄ (m, s) by

t̄ (m, s) = inf{τ − s; τ ≥ s and R̄(τ ) = 0}
then it is not difficult to show from (19) that t̄ (m, s) satisfies
the integral equation∫ t̄ (m,s)

0

{
exp

[∫ u

0
θ(s + v)dv

]}
du = mµ−1, (20)

which has the solution

t̄ (m, s) = θ−1 ln(1 + mθµ−1)

in the special exponential lifetime case in which the hazard
rate is constant, namely, θ(·) ≡ θ . Since t̄ (m, s) is the time for
the fluid to be drained, the corresponding number of service
completions is given by

N̄ (2)(m, s) = µt̄(m, s).
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To obtain V̄
(2)

πS (n, t) we develop quantities ν̄j (n, t), 1 ≤
j ≤ J , inductively as follows:

ν̄1(n, t) = N̄
(2)
1 (n1, t),

and

ν̄j (n, t) = N̄
(2)
j

(
nj exp

{
−

∫ ∑j−1
i=1 µ−1

i ν̄i (n,t)

0
θj (t + v)dv

}
,

t +
j−1∑
i=1

µ−1
i ν̄i (n, t)

)
, 1 ≤ j ≤ J .

(21)

Please note that in (21) the job classes are numbered in order
of their processing by πS. We now use the quantities in (21)
to develop the approximating value function as

V
(2)

πS (n, t) =
J∑

j=1

ν̄j (n, t).

Dynamic heuristic πSF2 is then developed from (18).

4. NUMERICAL STUDY

In the following discussion we consider three general sce-
narios. These are (I) lifetimes and service times are both expo-
nentially distributed, (II) Weibull lifetimes and deterministic
service times, and (III) Weibull lifetimes and exponential ser-
vice times. In both scenarios (I) and (II) it is possible (though
expensive) to compute optimal policies for problems of mod-
est size using dynamic programing (DP) by exploiting special
features of the structure of the value iteration algorithms con-
cerned. It is thus possible to assess the quality of heuristic
πSF1 by direct comparison of the expected number of service
completions achieved with the optimum. For scenario (III), it
has not proved possible to develop optimal policies for prob-
lems of even modest size in reasonable time. In sharp contrast,
it is a straightforward matter to perform the computations
necessary to implement heuristic πSF1 on-line; namely, to
obtain those πSF1(n, t) which are required in any realization
of the system. Hence, in scenario (III) it is natural to assess
the relative performance of πSF1 and the competitor heuris-
tics πS [see (5)] and πM [see (6)] by means of Monte Carlo
simulation. In the numerical results we have also included the
heuristic πSPI for comparison when it has proved possible to
do so.

4.1. Scenario (I): Lifetimes and Service Times
Exponentially Distributed

In this scenario, crucially, the lifetime hazard rates θj are all
constant functions. Hence the time dependence in the value

function Vπ(n, t) for any stationary policy (i.e., one which
makes decisions in any state (n, t) which depend upon n but
not on t) disappears. In such cases, the optimality equation
in (3) reduces to

V (n)

=1+ max
j∈A(n)

{∫ ∞

0

∑
n′

p(n′|n, j , s)V (n′)µje
−µj sds

}
, n �= 0,

V (0) = 0. (22)

Equation (22) enables the development of optimal policies
in this case along with the value V (L) which is the expected
number of service completions achieved from initial state
L. It is a straightforward matter to check that in this case
heuristics πSPI, πSF1, πS, and πM are all stationary. Here, the
appropriate value iteration algorithm for the computation of
expected services achieved under any stationary policy π are
developed from recursions of the form

Vπ(n)

= 1 +
∫ ∞

0

∑
n′

p(n′|n, π(n), s)Vπ(n′)µje
−µj sds, n �= 0,

Vπ(0) = 0. (23)

Problems were generated at random for two class (J = 2)
and five class (J = 5) cases for each of four distinct
assumptions (A, B, C, D) about the relative lengths of life-
times and service times. We sample the key problem features
µ−1

j , θ−1
j , Lj as follows:

µ−1
j ∼ U [1, 10] (all cases); (24a)

θ−1
j µj |µ−1

j ∼ U [0.1, 0.5] (very short lifetimes, A);
(24b)

θ−1
j µj |µ−1

j ∼ U [0.5, 2.0] (short lifetimes, B); (24c)

θ−1
j µj |µ−1

j ∼ U [2.0, 10.0] (moderate lifetimes, C);
(24d)

θ−1
j µj |µ−1

j ∼ U [10.0, 100.0] (long lifetimes, D); (24e)

Lj ∼ DU [1, 50] (J = 2 cases); (24f)

Lj ∼ DU [1, 6] (J = 5 cases). (24g)

In (24a)–(24g), U [a, b] is a continuous uniform distribution
on the range [a, b] whereas DU [a, b] is a discrete uniform
distribution on [a, b]. Note that in Case A, (24b) indicates
that the ratio of mean lifetime to mean service time lies in
the range [0.1, 0.5] and hence few service completions are
likely. In Case D this ratio lies in the range [10.0, 100.0] and
hence many service completions are likely. We observe that
the myopic nature of heuristic πM suggests that it is likely
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to perform well in Case A where the current decision in any
state need take little account of the future. Furthermore, the
asymptotic optimality of πS in a “no premature job loss” limit
suggests that it should perform well in case D.

For each of J = 2 and J = 5 and each of the cases A, B, C,
and D, 500 problems were generated at random according to
(24a)–(24g). For each problem value iteration was deployed
to compute the mean number of service completions achieved
under the heuristics πSPI, πSF1, πS and πM and under an
optimal policy. In every problem, the percentage subopti-
mality 
(π , opt) of each heuristic π = πSPI, πSF1, πS, πM

was computed. Further, for each collection of 500 problems,
the minimum, mean and maximum values of 
(π , opt) were
recorded for each heuristic. These values may be found in
Table 1 (J = 2) and Table 2 (J = 5).

From Table 1, and as indicated earlier, the performance
of the asymptotically optimal heuristic πS improves steadily
from Case A to Case D while for myopic heuristic πM the
reverse is the case. Serious suboptimalities can occur espe-
cially in those problem instances for which these heuristics
are not designed. The position is similar in Table 2 though the
fact that in the J = 5 cases the values of the generated Lj are
much smaller [see (24g)] means that the maximum subopti-
malities for the myopic heuristic are substantially reduced. In
sharp contrast, the heuristic πSF1 is robust; it performs well
in all scenarios. It outperforms πS and πM in all cases with
the single exception of Case D, J = 5 where the asymptotic
optimality of πS confers on the latter a slight advantage. As
reported in Section 3, πSPI performs outstandingly well and
may be readily computed in exponential cases of modest size.

Table 1. Percentage deviation from optimal performance for
exponential distributed lifetimes and service times when J = 2.

Case 
(πSPI, opt) 
(πSF1, opt) 
(πS, opt) 
(πM, opt)

A (very short
lifetimes)

Min 0.00 0.00 0.00 0.00
Mean 0.00 0.01 3.01 0.02
Max 0.00 0.55 23.79 1.94

B (short
lifetimes)

Min 0.00 0.00 0.00 0.00
Mean 0.00 0.02 2.52 0.14
Max 0.00 0.18 24.33 4.29

C (moderate
lifetimes)

Min 0.00 0.00 0.00 0.00
Mean 0.00 0.00 1.23 0.90
Max 0.00 0.12 16.52 9.32

D (long
lifetimes)

Min 0.00 0.00 0.00 0.00
Mean 0.00 0.02 0.12 2.23
Max 0.00 0.71 5.17 18.86

Table 2. Percentage deviation from optimal performance for
exponential distributed life times and service times when J = 5.

Case 
(πSPI, opt) 
(πSF1, opt) 
(πS, opt) 
(πM, opt)

A (very short
lifetimes)

Min 0.00 0.00 0.00 0.00
Mean 0.00 0.01 1.36 0.04
Max 0.48 1.10 15.95 2.42

B (short
lifetimes)

Min 0.00 0.00 0.00 0.00
Mean 0.01 0.02 0.84 0.03
Max 0.88 1.02 11.86 1.80

C (moderate
lifetimes)

Min 0.00 0.00 0.00 0.00
Mean 0.01 0.02 0.13 0.34
Max 1.04 1.27 3.87 4.39

D (long
lifetimes)

Min 0.00 0.00 0.00 0.00
Mean 0.00 0.02 0.00 0.49
Max 0.05 0.46 0.33 4.36

4.2. Scenario (II): Weibull Lifetimes and Deterministic
Service Times

In cases in which class j service times are deterministic of
value µ−1

j the value iteration procedure need only compute
value functions V , Vπ at states (n, t) for t-values of the form
t = ∑J

j=1 mjµ
−1
j where the mj are non-negative integers.

The optimality equation (4) now takes the form

V (n, t) =

1 + max
j∈A(n)

{∑
n′

p
(
n′|n, t , j , µ−1

j

)
V

(
n′, t + µ−1

j

)}
, n �= 0,

V (0, t) = 0. (25)

The effective discretisation of the time axis which results
radically simplifies value iteration procedures.

The Weibull family of distributions yields a flexible way
of modeling lifetimes. We adopt the parameterization to be
found in (16) where the form of the Weibull hazard rate is
given. In order for the class j hazard to be increasing, which
is a natural assumption in many applications, we require that
αj > 1. The mean of the Weibull random variable with hazard
rate (16) is βj�(1 + α−1

j ).
In our numerical study, problems were generated at ran-

dom for two class (J = 2) and five class problems (J = 5)

under each of four distinct assumptions (A′, B ′, C ′, D′) about
the relative lengths of lifetimes and service times. We sample
the key problem features µ−1

j , αj , βj , Lj as follows:

Naval Research Logistics DOI 10.1002/nav



234 Naval Research Logistics, Vol. 57 (2010)

µ−1
j ∼ U [1, 10] (all cases); (26a)

αj ∼ U [1.0, 2.0] (all cases); (26b)

βj�
(
1 + α−1

j

)
µj |µ−1

j , (very short lifetimes, A′); (26c)

αj ∼ U [0.1, 0.5]
βj�

(
1 + α−1

j

)
µj |µ−1

j , (short lifetimes, B ′); (26d)

αj ∼ U [0.5, 2.0]
βj�

(
1 + α−1

j

)
µj |µ−1

j , (moderate lifetimes, C ′); (26e)

αj ∼ U [2.0, 10.0]
βj�

(
1 + α−1

j

)
µj |µ−1

j , (long lifetimes, D′); (26f)

αj ∼ U [10.0, 100.0]
Lj ∼ DU [1, 20] (J = 2 cases); (26g)

Lj ∼ DU [1, 5] (J = 5 cases). (26h)

Note that values of βj are derived from the values of µ−1
j and

αj obtained from the draws in (26a) and (26b) and the value
of βj�(1 + α−1

j ) obtained from whichever is appropriate of
the draws in (26c)–(26f). Note also that the values of the Lj

drawn from (26g)–(26h) will tend to be smaller than those in
(24f)–(24g). This is forced upon us by the added complex-
ity of the recursion (25) in comparison with (22). As with
scenario (I) comparisons between the heuristics are based on
500 problems randomly generated as in (26a)–(26h) above
for each of J = 2 and J = 5 and each of the cases A′, B ′, C ′,
and D′. Note that development of policy πSPI is possible for
the J = 2 cases, though computationally expensive. Hence
this heuristic has been included in the J = 2 study but not

Table 3. Percentage deviation from optimal performance for
Weibull lifetimes and deterministic service times when J = 2.

Case 
(πSPI, opt) 
(πSF1, opt) 
(πS, opt) 
(πM, opt)

A′ (very short
lifetimes)

Min 0.00 0.00 0.00 0.00
Mean 0.00 0.00 4.27 0.06
Max 0.00 0.00 36.34 2.80

B ′ (short
lifetimes)

Min 0.00 0.00 0.00 0.00
Mean 0.00 0.01 2.53 0.20
Max 0.24 0.94 26.16 6.14

C ′ (moderate
lifetimes)

Min 0.00 0.00 0.00 0.00
Mean 0.02 0.03 0.71 1.30
Max 1.46 1.81 20.21 16.29

D′ (long
lifetimes)

Min 0.00 0.00 0.00 0.00
Mean 0.00 0.00 0.22 2.31
Max 0.20 0.38 4.13 21.36

Table 4. Percentage deviation from optimal performance for
Weibull lifetimes and deterministic service times when J = 5.

Case 
(πSF1, opt) 
(πS, opt) 
(πM, opt)

A′ (very short lifetimes)
Min 0.00 0.00 0.00
Mean 0.00 2.63 0.11
Max 0.02 33.42 5.39

B ′ (short lifetimes)
Min 0.00 0.00 0.00
Mean 0.02 0.88 0.07
Max 1.79 10.57 2.13

C ′ (moderate lifetimes)
Min 0.00 0.00 0.00
Mean 0.02 0.17 0.65
Max 0.84 4.53 6.25

D′ (long lifetimes)
Min 0.00 0.00 0.00
Mean 0.03 0.22 0.67
Max 0.63 2.48 5.66

in the J = 5 study since it was not possible to get results for
the latter in reasonable computational time. The results are
presented in Tables 3 and 4.

The evidence provided by Tables 3 and 4 yields similar con-
clusions to those drawn from Tables 1 and 2. The heuristics
πS and πM continue to have poor worst case performance
in settings for which they were not designed. The uniform
excellence of the performance of πSF1 is in clear contrast.

4.3. Scenario (III): Weibull Lifetimes and Exponential
Service Times

In both scenarios (I) and (II) it was possible to exploit
model features to develop exact analyses based on DP value
iteration for problems of modest size. In this way, it was
possible (though expensive) to develop optimal policies and
calculate the expected number of service completions for the
heuristics of interest and for the optimal policy. While this
is no longer possible in scenario (III), it is still straightfor-
ward to develop on-line applications of the three heuristics
πSF1, πS, and πM (though not of πSPI). By this we mean that
it is straightforward to perform the computations required to
determine the action prescribed by each heuristic in any given
state.

With this in mind, the natural approach here is to use Monte
Carlo simulation to conduct a comparative study of the per-
formance of πSF1, πS, and πM. Problem parameters were
chosen as in scenario (I) (service times) and scenario (II)
(lifetimes) though time constraints have limited the study
to the J = 2 case, with 100 problems generated in each
category. In Table 5 find information on the estimated val-
ues of 
(πS, πSF1) and 
(πM, πSF1), the percentage excess
expected number of successes achieved by πSF1 over πS and
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Table 5. Percentage difference between the performance of
heuristics πS, πM, and that of heuristic πSF1 for Weibull lifetimes
and exponential service times when J = 2.

Case 
(πS, πSF1) 
(πM, πSF1)

A′ (very short lifetimes)
Min −0.57 −0.57
Mean 2.18 0.07
Max 14.47 1.16

B ′ (short lifetimes)
Min −0.60 −2.07
Mean 1.43 0.15
Max 19.63 8.86

C ′ (moderate lifetimes)
Min −0.41 −0.56
Mean 0.25 1.02
Max 5.74 10.47

D′ (long lifetimes)
Min −0.01 0.00
Mean 0.16 0.94
Max 3.39 8.24

πM, respectively. Hence positive values indicate stronger per-
formance by πSF1 while negative values indicate stronger
performance by the competitor heuristic.

While we encountered occasional problem instances in
which the estimated expected number of successes achieved
by the competitor heuristic exceeded that of πSF1 these were
rare and the differences usually very small. In all categories
the average performance of πSF1 was superior. There contin-
ued to be problem instances in which πS, πM performed very
poorly in comparison with πSF1.

APPENDIX

PROOF OF PROPOSITION 1: From (11), we have that when R({s +
kµ−1}+) > 0 it then follows that

R′(τ ) = −θ(τ )R(τ), s + kµ−1 < τ < s + (k + 1)µ−1,

and hence that

R(s + (k + 1)µ−1) = R({s + kµ−1}+) exp

{
−

∫ (k+1)µ−1

kµ−1
θ(s + v)dv

}
.

(A1)

We now develop the sequence {R̂(k), k ∈ N} as follows:

R̂(0) = m,

R̂(k + 1) = {R̂(k) − 1} exp

{
−

∫ (k+1)µ−1

kµ−1
θ(s + v)dv

}
, k ∈ N. (A2)

Substituting m into the sequence we have for k ∈ N that

R̂(k) = m exp

{
−

∫ kµ−1

0
θ(s + v)dv

}
−

k−1∑
u=0

exp

{
−

∫ kµ−1

uµ−1
θ(s + v)dv

}
.

(A3)

In (A3) and elsewhere we use the convention that an empty sum is zero.
From (11) and (A1) it is straightforward that if R̂(l) > 0, 0 ≤ l ≤ k, then

R̂(k) = R(s + kµ−1). (A4)

Now consider m in range mr−1(s) < m ≤ mr(s) where r ∈ Z
+. We write

m in the form

m = 1 +
r−2∑
u=0

exp

{∫ (u+1)µ−1

0
θ(s + v)dv

}
+ γ exp

{∫ rµ−1

0
θ(s + v)dv

}

(A5)

where γ ∈ (0, 1]. It is straightforward from (A3), (A5) and an induction
argument that R̂(k) decreases as k increases from 0 to r with

R̂(k) = 1 +
r−2∑
u=k

exp

{∫ (u+1)µ−1

kµ−1
θ(s + v)dv

}

+ γ exp

{∫ rµ−1

kµ−1
θ(s + v)dv

}
, 0 ≤ k ≤ r − 1. (A6)

It now follows from (A4) and (A6) that

R̂(k) = R(s + kµ−1), 0 ≤ k ≤ r − 1,

and in particular that

R̂(r − 1) = R(s + (r − 1)µ−1) = 1 + γ exp

{∫ rµ−1

(r−1)µ−1
θ(s + v)dv

}
.

(A7)

It follows from (A2), (A4) and (A7) that

R̂(r) = R(s + rµ−1) = γ . (A8)

From (11) to (13) we now infer that

N(1)(m, s) = r + γ

= r + {m − mr−1(s)} exp

{
−

∫ rµ−1

0
θ(s + v)dv

}
. (A9)

Equation (A9) is recovered from (A5) by solving for γ and using the
expression for mr(s) in the article. This completes the proof of Proposition
1(a). Proposition 1(b) follows trivially from the definition of the quantities
concerned. �
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