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Abstract Combinatorial optimization games form an important subclass of coop-
erative games. In recent years, increased attention has been given to the issue of
finding good cost shares for such games. In this paper, we define a very general
class of games, called integer minimization games, which includes the combinato-
rial optimization games in the literature as special cases. We then present new tech-
niques, based on row and column generation, for computing good cost shares for
these games. To illustrate the power of these techniques, we apply them to travel-
ing salesman and vehicle routing games. Our results generalize and unify several
results in the literature. The main underlying idea is that suitable valid inequalities for
the associated combinatorial optimization problems can be used to derive improved
cost shares.
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1 Introduction

Cooperative game theory is concerned with situations in which, rather than competing,
the players are able to cooperate by forming independent coalitions (see, for example,
[28,32,37]). In this paper, we are concerned with cost sharing games with Transfer-
able Utilities (TU cost sharing games). In such games, a group of players is willing to
pay for some kind of service. The cost of serving all players, or any subset of players,
is known. The task is to share costs among the players in a ‘fair’ way, which means
that there is no incentive for any subgroup of players to break away from the group
and form their own coalition.

More formally, let V be the player set, with |V | = n. The set of potential coalitions
is denoted by S . (Usually, S = 2V \{∅}.) For any S ∈ S, let c(S) denote the cost of
serving the players in S. (The cost of serving all players is then c(V ).) Notice that,
for a given coalition S, we do not need to know how much each player in S would
actually contribute to the cost c(S). In other words, the cost c(S) is ‘transferrable’
from one player to another within S. In non-TU games this is not the case. For more
details about non-TU games, see [32].

A cost share is a set of weights wi for i ∈ V that satisfies the following core
property:

∑

i∈S

wi ≤ c(S), S ∈ S. (1)

Ideally, one would like to find a cost share that is budget balanced, i.e., such that:
∑

i∈V

wi = c(V ). (2)

Unfortunately, such a cost share may not exist.
A key concept in the literature is that of the core [12], which is the set of budget

balanced cost shares, viewed as a polyhedron in R
n . If no budget balanced cost share

exists, the core is empty. To address games with empty core, various cost shares have
been defined which are ‘good’ in various senses, such as the nucleolus, the kernel, the
ε-core, and so on (see [32]). An idea of relevance here is that of γ -budget balanced
cost shares, i.e., cost shares that satisfy

∑

i∈V

wi ≥ γ c(V )

for some γ ∈ [0, 1]. Recently, researchers have devoted some attention to the problem
of finding a cost share that is γ -budget balanced for the maximum possible γ (see the
survey [23]). This problem, which we call the Optimal Cost Share Problem (OCSP),
amounts to solving the following Linear Program (LP):

max

{
∑

i∈V

wi :
∑

i∈S

wi ≤ c(S), S ∈ S
}

. (3)
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New techniques for cost sharing 95

There are several motives for wishing to solve the OCSP, either exactly or approx-
imately. First, the framework models the situation where a public institution, such
as local government, is subsidising a public service. Given a cost share w, the insti-
tution can charge player i the quantity wi , leaving the quantity c(V ) − ∑

i∈V wi

to be paid by the institution. Then, clearly, the institution has an incentive to find
an optimal (or near-optimal) cost share. Second, if a cost share w is γ -budget bal-
anced, then by charging each player i the quantity wi/γ we can ensure that, for
any coalition S ∈ S, we are charging no more than c(S)/γ . If γ is close to 1,
then w/γ may be acceptable in practice. Third, there exist natural TU cost shar-
ing games for which the OCSP can be solved efficiently even though testing whether
the core is non-empty is NP-hard. (An example is given in Sect. 5.) Fourth, the
dual of Eq. 3 arises naturally in the computation of bounds for cutting, packing, rout-
ing, scheduling and clustering problems, and many other combinatorial optimization
problems.

Several important TU cost sharing games arising in MS/OR are combinatorial
optimization games, in which c(S) can be computed by solving a combinatorial opti-
mization problem. These include, for example, the assignment game [36], the spanning
tree game [16], the traveling salesman game [38], the vehicle routing game [15], the
packing and covering games [7] and the facility location game [14].

In recent years, researchers have established the existence of approximation algo-
rithms for several TU combinatorial optimization games. That is, they have shown
that there is a constant γ > 0 such that one can find a γ -budget balanced cost share in
polynomial time (see, e.g., [2,9,14,23]). Researchers have also examined approximate
cost sharing mechanisms for non-TU variants (see the survey [23]).

In this paper, we take a somewhat different approach to the OCSP. We begin by
defining a very general class of games, called Integer Minimization (IM) games, which
includes as special cases all TU combinatorial optimization games of which we are
aware. We then take two highly successful existing techniques for solving combi-
natorial optimization problems—namely the cutting plane and column generation
techniques—and show how to use them to compute ‘good’ (though not necessarily
optimal) cost shares for IM games. We also illustrate the power of these new tech-
niques by applying them to various games. Our results generalize and unify several
results in the literature. The main underlying idea is that suitable valid inequalities for
the associated combinatorial optimization problems can be used to derive improved
cost shares.

The remainder of the paper is structured as follows. In Sect. 2, we formally define
the IM games and show how various TU combinatorial optimization games fall in this
class. Our new methods for computing good cost shares are presented in Sect. 3. The
methods are then illustrated on the covering and facility location games in Sect. 4, on
the two-matching and unrooted traveling salesman games in Sect. 5, and on the travel-
ing salesman and vehicle routing games in Sect. 6. Finally, we give some concluding
remarks in Sect. 7.

We remark that the methods we propose in this paper can easily be adapted to the
‘dual’ case in which revenues rather than costs have to be shared among players, and
we wish to obtain a revenue share which is as small as possible. For brevity, however,
we concentrate on the case of costs.
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96 A. Caprara, A. N. Letchford

2 Integer minimization games

As mentioned in the introduction, the results in this paper apply to a class of games
that we call IM games. In this section, we define the IM games and show how various
combinatorial optimization games fall in this class.

2.1 Definition and basic properties

In order to define the IM games, we need the following notation. Recall that S ⊆
2V \{∅} denotes the family of potential coalitions (where V ∈ S). Although tradi-
tionally S = 2V \{∅}, we permit some coalitions to be forbidden, as explained below.
Furthermore, for any S ⊆ V, y(S) denotes the incidence vector of S, i.e., the vector in
{0, 1}n defined by yi (S) = 1 if i ∈ S, yi (S) = 0 otherwise. The integer minimization
games are then defined as follows.

Definition 1 A game with player set V and coalition family S is called an Integer
Minimization (IM) game if there exist:

– positive integers p and m,
– a matrix A ∈ Z

p×m ,
– a matrix B ∈ Z

p×n ,
– a right hand side vector d ∈ Z

p,
– an objective function vector c ∈ Z

m ,

such that, for all S ∈ S, the cost c(S) is equal to the solution value of the following
Integer Linear Program (ILP):

c(S) = min
{
cx : Ax ≥ By(S) + d, x ∈ Z

m+
}
. (4)

We assume that ILP (Eq. 4) is feasible and bounded for all S ∈ S.
Note that c(V ) = min

{
cx : Ax ≥ B1 + d, x ∈ Z

m+
}
, where 1 denotes the all-ones

vector of dimension n. Note also that every combinatorial optimization game can be
formulated as an IM game by letting m := |S|, i.e., by introducing one variable for
every coalition. (This is analogous to the fact that every combinatorial optimization
problem can be formulated as an ILP by introducing one variable for each feasible
solution.) Of course, in cases of practical interest, m is much smaller, typically poly-
nomial in |V |.

A class of games analogous to IM games was defined in [13], who considered the
games for which c(S) is given by the optimal solution of an LP in which the feasible
region depends on S but the objective function does not.

To close this subsection, we present two general results concerned with IM games.

Observation 1 Every IM game with d non-negative is subadditive; that is, satisfies
c(S ∪ T ) ≤ c(S) + c(T ) for all S, T ∈ S such that S ∪ T ∈ S and S ∩ T = ∅.

Proof Consider S, T ∈ S such that S ∪ T ∈ S and S ∩ T = ∅, letting x S and xT be
optimal solutions of ILP (Eq. 4) for S and T , respectively. It is easy to verify that x S+xT

is a feasible solution of Eq. 4 for S∪T , implying c(S∪T ) ≤ c(x S+xT ) = c(S)+c(T ).
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New techniques for cost sharing 97

Observation 2 Every IM game with B non-negative is monotonic; that is, satisfies
c(S ∪ {i}) ≥ c(S) for all S ∈ S and i ∈ V \S such that S ∪ {i} ∈ S.

Proof Consider S ∈ S and i ∈ V \S such that S ∪{i} ∈ S, letting x S∪{i} be an optimal
solution of ILP (Eq. 4) for S ∪ {i}. It is easy to check that the non-negativity of B
implies that x S∪{i} is a feasible solution of Eq. 4 for S, implying c(S) ≤ c(S ∪ {i}).

Many of the IM games we consider in this paper satisfy d = 0. We call such IM
games homogeneous. Note that homogenous IM games are subadditive, but need not
be monotonic.

2.2 Some specific IM games

We now show that several specific TU combinatorial optimization games in the lit-
erature can be easily formulated as IM games. We refer the reader to the references
in which these games are introduced for their interpretation in terms of players and
strategies.

Packing and covering games are examined in [7]. Their covering games are nothing
but the IM games in which S = 2V \{∅}, B is the identity matrix, A is binary and
d = 0. As shown in [7], many well-known games on graphs fall into this special case.

The so-called facility location games are considered in [14,31]. In our terminology,
these are games in which S = 2V \{∅}, d = 0, and c(S) has the following form:

c(S) = min

⎧
⎨

⎩

q∑

j=1

f jv j +
∑

i∈V

q∑

j=1

ci j ui j :
q∑

j=1

ui j = yi (S), i ∈ V,

(v j , u1 j , . . . , unj ) ∈ Fj , j = 1, . . . , q

⎫
⎬

⎭ , (5)

where, for j = 1, . . . , q, Fj = {(0, . . . , 0)} ∪ {(1, y(R)) : R ∈ R j }, with R j ⊆
2V \{∅} and y(R) incidence vector of set R ∈ R j . Here, {1, . . . , q} represents the
set of potential facilities and R j the family of the player subsets that can be served
by facility j . Note that Eq. 5 is not an ILP. On the other hand, such an ILP, leading
to an IM game formulation, can easily be obtained from the specific structure of R j

for the cases of practical interest. For instance, in the basic uncapacitated case, in
which R j = 2V \{∅} for j = 1, . . . , q, the constraint (v j , u1 j , . . . , unj ) ∈ Fj can be
expressed by ui j ≤ v j ≤ 1, ui j , v j ∈ Z+ for i ∈ V .

Next, we consider the traveling salesman game, considered for example in [9,29,
33,38]. In this game, one is given a complete undirected graph G = (V ∪ {0}, E),
with edge costs ce ≥ 0 for all e ∈ E . The vertex 0 represents a depot. For a given
set S of players, c(S) is the minimum cost of a Hamiltonian circuit on S ∪ {0}, i.e.,
of a circuit passing through S ∪ {0} and not passing through any vertex in V \S. This
game can be formulated as an IM game with S = 2V \{∅}. Indeed, for any S ∈ S, the
following holds:
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c(S) = min

{
cx : ∑

e∈δ(0)

xe = 2,

∑
e∈δ(i)

xe = 2yi (S), i ∈ V,

∑
e∈δ(R)

xe ≥ 2yi (S), R ⊆ V, i ∈ R,

x ∈ Z
|E |
+

}
.

(6)

Here, as usual in the literature, δ(R) denotes the set of edges with one endpoint in R
and the other in V \R, and we write δ(i) rather than δ({i}) for brevity.

The vehicle routing game, studied in [15], is similar to the traveling salesman game.
However, we are also given a vehicle capacity Q > 0 and, for each i ∈ V , a demand
qi > 0. For a given set S of players, c(S) is the minimum cost of a set of circuits, each
of which visits the depot vertex 0 and a set of players whose total demand does not
exceed Q, such that each player in S is visited by exactly one circuit (and no player
in V \S is visited). This game can be formulated as an IM game with S = 2V \{∅} and
d = 0 because, for any S ∈ S, the following holds:

c(S) = min

{
cx : ∑

e∈δ(i)
xe = 2yi (S), i ∈ V,

∑
e∈δ(R)

xe ≥ 2
∑

i∈R qi yi (S)

Q , R ⊆ V,

x ∈ Z
|E |
+

}
.

(7)

In [10], a variant of the traveling salesman game is considered in which there is
no depot, and c(S) is simply the minimum cost of a Hamiltonian circuit on S. For
this game, coalitions with |S| < 3 are forbidden, i.e., S = {S ⊆ V : |S| ≥ 3}. This
is because this game is used here to introduce the analysis of the two more complex
games above: by allowing coalitions with |S| = 2 the game would have a too simple
structure. In [10], this variant is called the traveling preacher game, but here we will
call it the unrooted traveling salesman game, to emphasize the connection with the
standard traveling salesman game. When |S| ≥ 3, we have:

c(S) = min

{
cx : ∑

e∈δ(i)
xe = 2yi (S), i ∈ V,

∑
e∈δ(R)

xe ≥ 2(yi (S) + y j (S) − 1), R ⊆ V, i ∈ R, j ∈ V \R,

x(i, j) ≤ yi (S), (i, j)∈ E,

x ∈ Z
|E |
+

}
.

(8)
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New techniques for cost sharing 99

In order to derive results for the unrooted traveling salesman game, it will prove
useful to consider the following closely related game, which is new to the best of our
knowledge and which we call the two-matching game. We have a complete undirected
graph G = (V, E), with edge costs ce for all e ∈ E . Coalitions with |S| < 3 are again
forbidden, whereas for coalitions with |S| ≥ 3, c(S) is the minimum cost of a set of
circuits visiting all vertices of S. That is,

c(S) = min

{
cx : ∑

e∈δ(i)
xe = 2yi (S), i ∈ V,

x(i, j) ≤ yi (S), (i, j) ∈ E,

x ∈ Z
|E |
+

}
.

(9)

Note that the covering, facility location, vehicle routing and two-matching games
have been formulated as homogeneous IM games, and are therefore subadditive. (The
covering and facility location games are also monotonic.) On the other hand, it is pos-
sible to show that neither of the two traveling salesman games can be formulated as a
homogeneous IM game. Indeed, the traveling salesman games are neither monotonic
nor subadditive in general, and therefore (by Observation 1) cannot be formulated as
IM games in which d ≥ 0.

However, we can consider the metric versions of the traveling salesman games, aris-
ing when the edge or arc costs satisfy the triangle inequality, i.e., c(i,k) ≥ c(i, j) +c( j,k)

for each triple of distinct vertices i, j, k of G. These metric games are both subadditive
and monotonic. Indeed, it is not hard to see that, for the metric version of all routing
games considered, c(S1) + c(S2) ≥ c(S1 ∪ S2) for all sets S1, S2 ∈ S.

3 Three methods for computing good allocations

Given that the OCSP is NP-hard for many important games, we are led to consider
algorithms for computing ‘good’, though not necessarily optimal, cost shares. In this
section, we explain how cost shares can be computed using column generation, row
generation, or both. In each case, we show that there is a strong connection with
methods for computing lower bounds for c(V ) itself, i.e., with lower bounds for

min{cx : Ax ≥ B1 + d, x ∈ Z
m+}. (10)

We will need the following concepts. The dual of the LP (Eq. 3) is:

min

{
∑

S∈S
c(S)zS :

∑

S	i

zS = 1, i ∈ V, zS ≥ 0, S ∈ S
}

. (11)

It can be interpreted as the LP relaxation of a set partitioning problem in which players
correspond to constraints and coalitions to variables. The classical Bondareva–Shapley
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100 A. Caprara, A. N. Letchford

theorem [3,35] states that the core is non-empty if and only if the optimal solution
value of Eq. 11 is at least c(V ).

We use the concepts of convex hulls and conic hulls in what follows. The convex
hull of a set of vectors v1, . . . , vr ∈ R

m , denoted by conv{v1, . . . , vr }, is given by:

conv{v1, . . . , vr } :=
{

x ∈ R
m : x =

r∑

i=1

λivi for some λ ∈ R
r+ such that

r∑

i=1

λi = 1

}
.

The conic hull, denoted by cone{v1, . . . , vr }, is given by:

cone{v1, . . . , vr } :=
{

x ∈ R
m : x =

r∑

i=1

λivi for some λ ∈ R
r+

}
.

3.1 Column generation

The first method, based on column generation, is derived in a straightforward way.
Note that c(V ) is given by the solution of the following ILP:

c(V ) := min{cx : Ax ≥ By + d, y = 1, x ∈ Z
m+}.

We will apply Dantzig–Wolfe decomposition [5] to this ILP, keeping the equations
y = 1 in the master. To this end, we denote by Qxy the overall set of solutions of ILPs
(Eq. 4) for S ∈ S, that is,

Qxy := {x ∈ Z
m+, y ∈ {0, 1}n : Ax ≥ By + d, y = y(S) for some S ∈ S}.

We now define, for each (x̄, ȳ) ∈ Qxy , the variable z(x̄,ȳ) of cost cx̄ . The resulting
master LP is:

min

⎧
⎨

⎩
∑

(x̄,ȳ)∈Qxy

(cx̄)z(x̄,ȳ) :
∑

(x̄,ȳ)∈Qxy

ȳi z(x̄,ȳ) = 1, i ∈ V, z(x̄,ȳ) ≥ 0, (x̄, ȳ) ∈ Qxy

⎫
⎬

⎭ .

(12)

This is easily seen to be equivalent to the LP (Eq. 11), since deleting for all S ∈ S
the z(x̄,ȳ) variables with ȳ = y(S) and cost cx̄ > c(S) has no effect on the optimal
solution. Thus:

Observation 3 For an IM game, the set of cost shares and the set of dual solutions to
LP (Eq. 12) coincide.

The pricing (column generation) problem for the LP (Eq. 12) amounts to optimizing
over Qxy . By the well-known equivalence between separation and optimization (see,
e.g., [17]), this is strongly NP-hard for many IM games of interest since the OCSP is
NP-hard, as we will see in the following. It is well-known (see, e.g., [4]) that pricing
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New techniques for cost sharing 101

can sometimes be made more tractable by enlarging the set of variables in an appropri-
ate way, without changing the set of constraints. This is clearly a relaxation, and, since
it amounts to adding extra constraints in the primal problem (Eq. 3), it means that we
may get a suboptimal cost share. The advantage, however, is that the pricing problem
may become polynomially solvable, or at least solvable in pseudo-polynomial time.
We give examples of this method in Sect. 6.

3.2 Row generation

The next method is based on the use of (strong) valid inequalities as cutting planes. The
key is to interpret the Dantzig–Wolfe reformulation given in the previous subsection
in terms of polyhedra and valid linear inequalities. To do this, it is helpful to define
the following polyhedra.

The convex hull of integer solutions to the ILP (Eq. 10) is the polyhedron:

Px
I := conv{x ∈ Z

m+ : Ax ≥ B1 + d}.

The set of feasible solutions to the LP relaxation of Eq. 10 is the polyhedron:

Px := {x ∈ R
m+ : Ax ≥ B1 + d}.

We also define an associated ‘master’ polyhedron in (x, y)-space:

Pxy
I := conv Qxy .

Note that Px
I can be obtained by intersecting Pxy

I with the hyperplanes defined by
yi = 1 for all i ∈ V , and then projecting the result onto x-space. That is:

Px
I = projx (Pxy

I ∩ {(x, y) ∈ R
m+n : y = 1}).

For instance, in the case of the traveling salesman game, Px
I is the convex hull of

the incidence vectors of the solutions of the traveling salesman problem on G, i.e., of
the Hamiltonian circuits on V ∪ {0}, Px is the set of the feasible solutions of the LP
relaxation of the (customary) ILP formulation of traveling salesman given by Eq. 6
with S = V , and Pxy

I is the convex hull of the vectors (x, y), with y incidence vector
of a coalition S ∈ S and x incidence vector of a Hamiltonian circuit on S ∩ {0}.

Finally, we introduce the cone

Cxy := cone Qxy,

and its projection onto x-space:

Cx := projx (C
xy ∩ {(x, y) ∈ R

m+n : y = 1}).

Note that Pxy
I ⊆ Cxy and therefore Px

I ⊆ Cx . Cxy and Cx do not have the same
intuitive interpretation as Pxy

I and Px
I , but they play a crucial role in our context,
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102 A. Caprara, A. N. Letchford

as shown below. In particular, Cxy contains not only all vectors in Pxy
I , but also all

vectors that can be written as (λx, λy) for some (x, y) ∈ Pxy
I and some λ ∈ R+.

Then, Cx is obtained by intersecting Cxy with the n hyperplanes yi = 1 for i ∈ V
and then projecting onto x-space.

We have the following lemma:

Lemma 1 The value of the optimal cost share is equal to min{cx : x ∈ Cx }.
Proof Each variable zS in LP (Eq. 11) corresponds to a vector (x̄, ȳ) ∈ Qxy with
ȳ = y(S) and x̄ optimal solution of Eq. 4, i.e., cx̄ = c(S). We observed above that
the enlarged LP (Eq. 12) has the same value. Interpreting the z(x̄,ȳ) variables as coeffi-
cients in a conic combination of the points in Qxy , there is a one-to-one correspondence
between the set of solutions of LP (Eq. 12) and the set of points in the intersection
of Cxy with the hyperplanes yi = 1 for i = 1, . . . , n. Accordingly, since Cx is the
projection onto x-space of this intersection, the optimal value of Eq. 11 coincides with
min{cx : x ∈ Cx }.

Since Px
I ⊆ Cx ⊆ Px when d ≥ 0, for such games the value of the optimal cost

share is no smaller than the lower bound obtained by solving the LP relaxation of
Eq. 10.

The above result can be stated in a rather different way using the idea of what we
call assignable inequalities.

Definition 2 An inequality αx ≥ β which is valid for Px
I is said to be assignable if

there exists an inequality αx ≥ γ y which is valid for Pxy
I , and such that

∑
i∈V γi = β.

In other words, an inequality valid for Px
I is assignable if it corresponds to a homoge-

neous inequality which is valid for Pxy
I .

Lemma 2 Cx is the set of points in R
m that satisfy all assignable inequalities.

Proof Clearly, a homogeneous inequality αx ≥ γ y is valid for Pxy
I if and only if it

is valid for Cxy . Moreover, an inequality αx ≥ β is valid for Cx if and only if there
exists an inequality αx ≥ γ y which is valid for Cxy such that

∑
i∈V γi = β.

The immediate implication of Lemmas 1 and 2 is:

Theorem 1 For an IM game, the value of the optimal cost share is equal to the mini-
mum of cx subject to all assignable inequalities.

Corollary 1 For an IM game, the core is non-empty if and only if the optimal value
of ILP (Eq. 4) for S = V coincides with the lower bound obtained by minimizing cx
subject to all assignable inequalities.

A proof of a result analogous to Theorem 1 was obtained independently in [13]
for the class of games considered therein. Note that this theorem is not constructive,
i.e., it does not provide a direct way to define a cost share given a set of assignable
inequalities and the solution of the corresponding LP relaxation. This is achieved by
the following method, which is the main practical contribution of the paper.
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New techniques for cost sharing 103

Theorem 2 Consider an IM game, along with a set of assignable inequalities Dx ≥ f
corresponding to a collection Dx ≥ Ey of homogeneous inequalities valid for Pxy

I ,
with f = E1. Suppose there is a separation algorithm for inequalities Dx ≥ f that
runs in time polynomial in m, n and log |emax|, where emax is the largest entry in
(D, E) (in absolute value). Then a cost share with value

min{cx : Dx ≥ f } (13)

can be found in time polynomial in m, n and log |emax|.
Proof If we can separate in polynomial time over Dx ≥ f , then by the equivalence
between optimization and separation (see, e.g., [17]) we can solve LP (Eq. 13) in
polynomial time, finding a basic solution π∗ of the dual of Eq. 13, given by:

max{ f π : DT π = c, π ≥ 0}. (14)

Since π∗ is basic, at most p ≤ m of its components are strictly positive. Assuming
for notational convenience that the first p components of π∗ are strictly positive, we
define the following solution of Eq. 3:

w∗
i :=

p∑

h=1

ehiπ
∗
h , i ∈ V .

The value of w∗ is

∑

i∈V

w∗
i =

∑

i∈V

p∑

h=1

ehiπ
∗
h =

p∑

h=1

(
∑

i∈V

ehi

)
π∗

h = f π∗,

equal to the optimal value of Eqs. 13 and 14. In order to show that w∗ is a cost share,
note that, for any S ∈ S, π∗ is a feasible solution of

max{(Ey(S))π : DT π = c, π ≥ 0},

which is the dual of

min{cx : Dx ≥ Ey(S)},

whose value is not larger than c(S) since all inequalities are valid for ILP (Eq. 4). This
implies

∑

i∈S

w∗
i =

∑

i∈S

p∑

h=1

ehiπ
∗
h =

p∑

h=1

(
∑

i∈S

ehi

)
π∗

h ≤ c(S),

i.e., w∗ is a cost share.
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The proof of the above result is based on the ellipsoid method, but in practice one
can use a standard simplex-based cutting plane method.

We conclude the section by showing the following result:

Theorem 3 If d ≥ 0, then Cx ⊆ Px , and therefore the value of the optimal cost share
is at least as large as the value of the LP relaxation of Eq. 4 for S = V .

Proof We show that every inequality valid for Px is valid also for Cx . If an inequality
αx ≥ β is valid for Px , then there exists λ ∈ R

p
+ such that α ≥ λA and β = λ(B1+d).

This implies that the inequality αx ≥ γ y + ρ with γ = λB and ρ = λd is implied
by the original system Ax ≥ By + d (and by non-negativity) and therefore valid for
Pxy

I . Since ρ ≥ 0, we can weaken the inequality αx ≥ γ y + ρ to αx ≥ γ y + ρyi for
some arbitrary i ∈ V . Recalling the arguments in the proof of Lemma 2, this weaker
inequality is valid for Pxy

I and therefore, being homogeneous, is also valid for Cxy .
Then, since ρ + ∑

i∈V γi = β, inequality αx ≥ β is valid for Cx .

3.3 Combined column and row generation

In some cases, it may pay to combine both of the above ideas. Let Dx ≥ f be, as
before, a family of assignable inequalities for which efficient separation algorithms
are known. Consider the following LP, obtained by linking together the variables and
constraints of this linear system with those of the column generation approach:

min

⎧
⎨

⎩
∑

(x̄,ȳ)∈Qxy

(cx̄)z(x̄,ȳ) :
∑

(x̄,ȳ)∈Qxy

ȳi z(x̄,ȳ) =1, i ∈V,

∑

(x̄,ȳ)∈Qxy

x̄ j z(x̄,ȳ) = x j , j = 1, . . . , m, Dx ≥ f, z(x̄,ȳ) ≥ 0, (x̄, ȳ) ∈ Qxy

⎫
⎬

⎭ . (15)

An LP of this type is called an ‘explicit master’ in [6]. It can be solved by a combina-
tion of row and column generation, i.e., cut-and-price. The resulting lower bound is at
least as strong as the bound obtained by either cutting or pricing alone. The following
theorem demonstrates that such a cut-and-price algorithm can again be used to derive
cost shares.

Theorem 4 Consider an IM game and a set of assignable inequalities Dx ≥ f as in
the statement of Theorem 2. Given a dual solution of LP (Eq. 15), a cost share with at
least the same value can be found in time polynomial in m, n and log |emax|.
Proof The dual of Eq. 15 reads:

max

⎧
⎨

⎩
∑

i∈V

wi + f π :
∑

i∈V

ȳiwi +
m∑

j=1

x̄ jρ j ≤cx̄, (x̄, ȳ)∈ Qxy, DT π =ρ, π ≥0

⎫
⎬

⎭ .

(16)

Given a feasible solution (w∗, ρ∗, π∗) of Eq. 16, we first define a solution
(w∗, ρ∗, π∗∗) which is at least as good and in which at most p ≤ m of π∗∗ are
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strictly positive by finding a basic solution of the following LP:

max
{

f π : DT π = ρ∗, π ≥ 0
}

.

This can be obtained in time polynomial in m (see again, e.g., [17]) without reading the
original π∗ vector, whose number of nonzero components may be exponential in m.

Assuming again that the first p components of π∗∗ are strictly positive, we define
the following solution of Eq. 3 of the same value as (w∗, ρ∗, π∗∗):

w∗∗
i := w∗

i +
p∑

h=1

ehiπ
∗∗
h , i ∈ V .

In order to verify that w∗∗ is feasible for Eq. 3, it is enough to observe that, for each
S ∈ S, letting x̄ be an optimal solution of ILP (Eq. 4) for S, with cx̄ = c(S) and
Dx̄ ≥ Ey(S),

∑

i∈S

w∗∗
i =

∑

i∈S

w∗
i +

∑

i∈S

p∑

h=1

ehiπ
∗∗
h

≤
∑

i∈S

w∗
i +

p∑

h=1

(
∑

i∈S

ehi

)
π∗∗

h ≤
∑

i∈S

w∗
i +

p∑

h=1

⎛

⎝
m∑

j=1

dhj x̄ j

⎞

⎠ π∗∗
h

=
∑

i∈S

w∗
i +

m∑

j=1

( p∑

h=1

dhjπ
∗∗
h

)
x̄ j

=
∑

i∈S

w∗
i +

m∑

j=1

ρ∗
j x̄ j ≤ cx̄,

where the last equation and inequality follow from the constraints in Eq. 16.

3.4 Handling non-negative weights

So far, we have concentrated on the case in which the weights wi are allowed to be
negative. The methods that we have introduced above can be easily adjusted to handle
the case in which weights are required to be non-negative.

If weights must be non-negative, this is the LP whose solution yields an optimal
cost share:

max

{
∑

i∈V

wi :
∑

i∈S

wi ≤ c(S), S ∈ S, wi ≥ 0, i ∈ V

}
. (17)

The difference is that now in the dual we have covering rather than partitioning con-
straints:

min

{
∑

S∈S
c(S)zS :

∑

S	i

zS ≥ 1, i ∈ V, zS ≥ 0, S ∈ S
}

. (18)
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We call an IM game for which weights must be non-negative a non-negative IM game.
All the results in Sect. 3 can easily be adapted to this case. In particular, a charac-
terization of the value of an optimal cost share is given in the following. Let Cxy be
defined as before and

C̃ x := projx (C
xy ∩ {(x, y) ∈ R

m+n : y ≥ 1}).

An assignable inequality αx ≥ β associated with a valid inequality αx ≥ γ y for Pxy
I

is said to be non-negative if γ ≥ 0.

Lemma 3 For a non-negative IM game, the value of the optimal cost share is equal
to min{cx : x ∈ C̃ x }.
Lemma 4 C̃ x is the set of points in R

m that satisfy all non-negative assignable
inequalities.

Proof Letting G, H be such that Cxy = {(x, y) ∈ R
m+n : Gx ≥ H y}, an inequality

αx ≥ β is valid for C̃ x if and only if it can be obtained as a conic combination of the
inequalities Gx − H y ≥ 0, y ≥ 1, 0 ≥ −1, i.e., there exist non-negative multiplier
vectors λ, γ ≥ 0 such that λG = α, λH = γ , and β ≤ γ 1. Accordingly, αx ≥ β

is valid for C̃ x if and only if it corresponds to a valid inequality for Pxy
I of the form

αx ≥ γ y with γ ≥ 0.

Theorem 5 For a non-negative IM game, the value of the optimal cost share is equal
to the minimum of cx subject to all non-negative assignable inequalities.

Theorem 6 Consider a non-negative IM game, along with a set of non-negative
assignable inequalities Dx ≥ f as in the statement of Theorem 2. A cost share
with value

min{cx : Dx ≥ f } (19)

can be found in time polynomial in m, n and log |emax|.
Proof Identical to the proof of Theorem 2, noting that non-negativity of E and π∗
implies non-negativity of w∗.

Although in general the optimal value of Eq. 17 is smaller than that of LP (Eq. 3),
there is a wide class of games for which the two values coincide.

Observation 4 For a monotonic game with S = 2V \{∅}, given a feasible solution
w∗ of Eq. 3, the solution wi := max{w∗

i , 0} for i ∈ V is also feasible.

Proof Consider a feasible solution w∗ of Eq. 3 with w∗
i < 0 for some i ∈ V . The proof

follows by showing that setting w∗
i := 0 yields another feasible solution. If there exists

no S ∈ S such that i ∈ S and
∑

j∈S w∗
j = c(S), we can set w∗

i := minS∈S:i∈S c(S) −∑
j∈S\{i} w∗

j maintaining feasibility (and increasing the solution value). If this yields
w∗

i ≥ 0 we are done. Otherwise, consider S ∈ S such that i ∈ S and
∑

j∈S w∗
j = c(S).

Since w∗
i < 0 and c(S\{i}) ≤ c(S), we have

∑
j∈S\{i} w∗

j > c(S\{i}), a contradiction
to the initial assumption on the feasibility of w∗.
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Corollary 2 For a monotonic game with S = 2V \{∅}, the values of Eqs. 3 and 17
coincide, and every optimal cost share w∗ satisfies w∗

i ≥ 0 for i ∈ V .

In particular, given a feasible solution of Eq. 3, Observation 4 shows how to con-
struct immediately a feasible solution of Eq. 17 whose value is not smaller.

Corollary 2 applies to the covering and facility location games, as well as to the met-
ric traveling salesman and vehicle routing games. As for the metric two-matching and
unrooted traveling salesman games, it is possible to show that imposing non-negativity
makes no difference, but this requires an ad-hoc proof that is not given here.

4 Application to covering and facility location games

We show how the results concerning the OCSP in [7] for covering games, and in [14]
for facility location games, arise as fairly simple corollaries of the above results on
Px , Px

I and Cx .
Indeed, [7] proves that, for an IM game in which S = 2V \{∅}, B is the identity

matrix, A is binary and d = 0, the value of the optimal cost share coincides with
that of the LP relaxation of Eq. 4 for S = V . This can be seen as a special case of
the above results, combined with the following observation, whose proof (using ideas
analogous to those in [7]) also suggests why the result does not hold if any of the
above conditions is relaxed.

Observation 5 For an IM game in which S = 2V \{∅}, B is the identity matrix, A is
binary and d = 0, Cxy = {(x, y) ∈ R

m+n+ : Ax ≥ y}.

Proof Let D := {(x, y) ∈ R
m+n : Ax ≥ y}. Clearly, Cxy ⊆ D. In order to show

D ⊆ Cxy , we consider (x, y)′ ∈ D and express it as a conic combination of the
points in Qxy . Consider j such that x ′

j > 0 and let S := {i ∈ V : ai j = 1 and
y′

i > 0}. Take the vector (x, y)′ ∈ Qxy , whose components at 1 are x ′
j and y′

i for
i ∈ S, let λ := min{x ′

j , mini∈S y′
i } and define (x, y)′′ := (x, y)′ − λ(x, y)′. We claim

(x, y)′′ ∈ D. Indeed, if this was false we would have
∑m

k=1 aik x ′′
k < y′′

i , which is eas-
ily seen to imply

∑m
k=1 aik x ′

k < y′
i , a contradiction to (x, y)′ ∈ D. Therefore, (x, y)′′

is in D and has at least one additional zero component with respect to (x, y)′. Iterating
the procedure until the null vector is obtained yields the desired conic combination.

For the facility location games mentioned in Sect. 2.2, the authors of [14] showed
that the value of the optimal cost share is given by the LP relaxation of Eq. 5 for S = V
in which constraints (v j , u1 j , . . . , unj ) ∈ Fj are replaced by (v j , u1 j , . . . , unj ) ∈
cone Fj for j = 1, . . . , q. Also this result can be seen as a special case of ours by
combining the results of Sect. 3.2 with the following observation:

Observation 6 For an IM game with S = 2V \{∅} and d = 0 defined by Eq. 5, Cxy =
{(v, u, y) ∈ R

q+nq+n : ∑q
j=1 ui j = yi (i ∈ V ), (v j , u1 j , . . . , unj ) ∈ cone Fj ( j =

1, . . . , q)}.
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Proof Let D := {(v, u, y)∈R
q+nq+n : ∑q

j=1 ui j = yi (i ∈ V ), (v j , u1 j , . . . , unj )∈
cone Fj ( j = 1, . . . , q)} and note that, in this case,

Qxy =
⎧
⎨

⎩(v, u) ∈ Z
q+nq
+ , y ∈ {0, 1}n :

q∑

j=1

ui j = yi , i ∈ V,

(v j , u1 j , . . . , unj ) ∈ Fj , j = 1, . . . , q

⎫
⎬

⎭ .

In order to see that cone Qxy = D, note first that cone Qxy ⊆ D is obvious. Con-
versely, given a point (v, u, y)′ ∈ D with (v′

j , u′
1 j , . . . , u′

nj ) = ∑
R∈R j

λ′
R(1, y(R))

for j = 1, . . . , q, we have (v, u, y)′ = ∑q
j=1

∑
R∈R j

λR(v, u, y)R , where, for j =
1, . . . , q and R ∈ R j , the vector (v, u, y)R ∈ Qxy has components at 1 given by v j

and ui j , yi for i ∈ R.

5 Application to the unrooted traveling salesman game

In this section, we apply the results of Sect. 3 to the two-matching and unrooted travel-
ing salesman games. The results are fairly straightforward, but they serve to illustrate
the techniques and provide a good basis for the analysis of the more complex games
in Sect. 6.

A simple and well-known property that turns out to be useful in the study of these
games is:

Observation 7 A constraint in Eq. 3 for a given set S is redundant if there exists a
partition of S into two sets S1, S2 ∈ S such that c(S1) + c(S2) ≤ c(S).

Proof Summing together the constraints (Eq. 3) for S1 and S2 yields:

∑

i∈S

wi ≤ c(S1) + c(S2),

that dominates the inequality in Eq. 3 associated with S.

This yields the following corollary:

Corollary 3 A cost share is feasible for the unrooted traveling salesman game if and
only if it is feasible for the two-matching game (and the two cost shares have the same
value).

Proof In the case of the two-matching game, c(S) is the minimum cost of a two-match-
ing on the vertices in S. If this two-matching consists of two or more disjoint circuits,
then the associated constraint is redundant by Observation 7. Since the minimum cost
two-matching on S costs no more than the minimum cost Hamiltonian circuit on S,
the LP (Eq. 3) is unchanged if, for every set S, we replace c(S) with the cost of the
minimum cost Hamiltonian circuit on S.
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As already observed in [10], the OCSP for the unrooted traveling salesman game
(and therefore, by Corollary 3, for the two-matching game) can be solved in polynomial
time. Moreover, it is easy to see that for the two-matching game testing non-emptyness
of the core as well as if a given vector is in the core can be done in polynomial time.
On the other hand, the following holds for the unrooted traveling salesman game:

Observation 8 Testing non-emptyness of the core for the unrooted traveling salesman
game is strongly NP-complete, even in the metric case.

Proof Since the OCSP can be solved in polynomial time, the problem is in NP .
We show NP-completeness by a reduction from the problem of testing if a graph
H = (V, F) with V = {1, . . . , n} is Hamiltonian. Consider the unrooted traveling
salesman game associated with the complete graph G with vertex set V and where
the cost of each edge (i, j) is given by 1 if (i, j) ∈ F and 2 if (i, j) �∈ F , noting
that these costs satisfy the triangle inequality. We have that H is Hamiltonian if and
only if c(V ) = n. This can be tested as follows. First of all, we compute the optimal
two-matching value for G. If it is larger than n, then clearly c(V ) > n. Otherwise, the
optimal two-matching value is n, and, by Corollary 3, wi = 1 for i ∈ V is an optimal
cost share of value n for both the two-matching and the unrooted traveling salesman
game. Then, c(V ) = n if and only if the core of the unrooted traveling salesman game
is non-empty. Therefore, by testing non-emptyness of the core in polynomial time we
could test if H is Hamiltonian in polynomial time.

For the two-matching game, we have

Px =
⎧
⎨

⎩x ∈ [0, 1]|E | :
∑

e∈δ(i)

xe = 2, i ∈ V

⎫
⎬

⎭ ,

and

Px
I = conv

⎧
⎨

⎩x ∈ {0, 1}|E | :
∑

e∈δ(i)

xe = 2, i ∈ V

⎫
⎬

⎭ .

It is well known that Px �= Px
I in this case. A complete description of Px

I was given
in [8]. Together with the bound constraints and the degree equations, the following
blossom inequalities describe the convex hull Px

I :

∑

e∈δ(R)\F

xe ≥
∑

e∈F

xe − |F | + 1, R ⊂ V, F ⊂ δ(R), |F | odd. (20)

Moreover, a necessary and sufficient condition for a blossom inequality to induce
a facet of Px

I is that the edges in F are vertex disjoint [19].
It turns out that Px

I ⊂ Cx ⊂ Px , i.e., only a subset of the blossom inequalities are
assignable:

Theorem 7 For the two-matching and unrooted traveling salesman games, a facet-
inducing blossom inequality (Eq. 20) is assignable if and only if |F | = 1.
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Proof Restricting to the case |F | = 1, the inequalities read

∑

e∈δ(R)\{ f }
xe − x f ≥ 0, R ⊂ V, f ∈ δ(R), (21)

and are easily checked to be valid for Pxy
I . Now, suppose q = |F | > 1 and odd. With-

out loss of generality suppose that R contains vertices 1, . . . , q but not q + 1, . . . , 2q,
and that the edges in F are {(i, q+i) : i = 1, . . . , q}. The inequality (Eq. 20) is assign-
able if and only if there exists a vector γ ∈ R

n such that
∑

e∈δ(R)\F xe − ∑
e∈F xe ≥∑

i∈V γi yi is valid for Pxy
I and

∑
i∈V γi = 1−q. We show that this cannot be the case.

For any j = 1, . . . , q −2, consider the circuit visiting vertices j, j +1, q + j +1 and
q+ j in that order. Since each of these circuits satisfies

∑
e∈δ(R)\F xe−∑

e∈F xe = −2,
we must have:

γ j + γ j+1 + γq+ j + γq+ j+1 ≤ −2, j = 1, . . . , q − 2. (22)

Similarly, a consideration of any circuit which passes through vertices q − 1, q and
2q − 1, . . . , n, but which only crosses δ(R) in edges (q − 1, 2q − 1) and (q, 2q),
shows that:

γq−1 + γq +
n∑

j=2q−1

γ j ≤ −2. (23)

Finally, a consideration of any circuit which passes through vertices 1, q, q + 1, and
2q, . . . , n, but which only crosses δ(R) in edges (1, q + 1) and (q, 2q), shows that:

γ1 + γq + γq+1 +
n∑

j=2q

γ j ≤ −2. (24)

Summing together the q−2 inequalities (Eq. 22) and the inequalities (Eqs. 23, 24), and
dividing by two gives

∑
i∈V γi ≤ −q, which is a contradiction to

∑
i∈V γi = 1 − q.

This gives the following corollary:

Corollary 4 For the two-matching and unrooted traveling salesman games, the value
of the optimal cost share is equal to the value of the LP relaxation of ILP (Eq. 9) for
S = V augmented by constraints (Eq. 21).

This corollary can also be proved in a rather different way by using a result of
[34], which states that x is a conic combination of circuits in C if and only if x is
non-negative and satisfies (Eq. 21).

Since the separation problem for the inequalities (Eq. 21) can be easily solved in
polynomial time via maximum flow methods, the LP mentioned in Corollary 4 can
be solved in polynomial time. This gives an alternative way to efficiently compute an
optimal cost share for the two games considered, though still based on the ellipsoid
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method. On the other hand, we do not know if there is a combinatorial algorithm that
does the job.

In conclusion, then, the optimal cost share for the two-matching game (and there-
fore the unrooted traveling salesman game) has a value which lies between the cost
of an optimal two-matching and the cost of an optimal fractional two-matching. It is
easy to show that these three values can all be different even in the metric case.

6 Application to traveling salesman and vehicle routing games

In this section, we examine the traveling salesman and vehicle routing games. These
are considerably more complicated than the preceding games. Recall that in this case
0 �∈ V is the depot. We have the following counterpart of Corollary 3, implied by
Lemma 7 as well:

Corollary 5 If Q ≥ ∑
i∈V qi , a cost share is feasible for the traveling salesman game

if and only if it is feasible for the vehicle routing game (and the two cost shares have
the same value).

Proof For the vehicle routing game, the constraint for a coalition S is non-redundant
if and only if c(S) does not correspond to the union of two or more circuits, but to a
single circuit passing through the depot. Since the minimum cost vehicle routing solu-
tion on S ∪ {0} costs no more than the minimum cost Hamiltonian circuit on S ∪ {0},
the LP (Eq. 3) is unchanged if, for every set S, we replace c(S) with the cost of the
minimum cost Hamiltonian circuit on S.

For these games, [13] proved that the OCSP is strongly NP-hard, even in the metric
case. Moreover, [29] proved that testing non-emptyness of the core is also strongly
NP-hard (noting that, to the best of our knowledge, the problem is not known to be
in NP), and [2] extended this result to the metric case. In [9] it is shown that, for the
traveling salesman game, the OCSP value is at least equal to the well-known Held–
Karp lower bound in the metric case (the paper only mentions Euclidean distances,
but the proof only requires distances to satisfy the triangle inequality).

6.1 The traveling salesman game

Since computing the optimal cost share is strongly NP-hard for the traveling sales-
man game, we propose the use of the column or row generation methods to compute
good cost shares.

In the column generation approach, there is one column for every circuit which
passes through the depot vertex. We could enlarge the set of columns to allow one
column for every circuit, whether or not it included the depot. We would then have
the same LP as for the two-matching and unrooted traveling salesman games, and
therefore the pricing subproblem would become polynomially solvable. Another pos-
sibility would be to have one column for every closed walk containing the depot, as in
the so-called n-path relaxation of the TSP [22]. The resulting pricing problem could
then be solved by dynamic programming.
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However, we believe that the row generation approach is more promising, because
we can exploit the considerable research which has been done into polyhedra associ-
ated with the TSP. Indeed, we have:

Px=
⎧
⎨

⎩x ∈ [0, 1]|E | :
∑

e∈δ(i)

xe = 2, i ∈ V ∪ {0},
∑

e∈δ(R)

xe ≥ 2, R ⊆ V, R �= ∅
⎫
⎬

⎭ .

Px is the well-known subtour elimination polytope, whereas Px
I is the symmetric

traveling salesman polytope (see, e.g., [26]).
From formulation (Eq. 6), it is obvious that:

Observation 9 For the traveling salesman game, the degree equations
∑

e∈δ(i) xe = 2
are assignable for every i ∈ V (equivalently, the inequalities

∑
e∈δ(i) xe ≥ 2 and∑

e∈δ(i) xe ≤ 2 are assignable).

Observation 10 For the traveling salesman game, the subtour elimination constraints∑
e∈δ(R) xe ≥ 2 are assignable for every R ⊆ V, R �= ∅.

It is possible to show that the degree equation for vertex 0 is not assignable (specifi-
cally, the inequality

∑
e∈δ(0) xe ≤ 2 is not assignable). Since this degree equation is

valid for Px but not for Cx , for the traveling salesman game we do not have Cx ⊆ Px .
This is to be expected, recalling Theorem 3, since d �≥ 0.

We now consider another well-known class of facet-inducing inequalities for the
TSP, the so-called clique tree inequalities of [20]. A clique-tree consists of a family of
vertex sets H1, . . . , Hr , called handles, and another family of vertex sets T1, . . . , Ts ,
called teeth, such that:

– no two handles intersect,
– no two teeth intersect,
– the intersection graph (i.e., the graph with a vertex for each handle, a vertex for

each tooth, and an edge between two vertices if and only if the corresponding
handle and tooth intersect) is a tree,

– for each handle Hi , the number of teeth ti intersecting it is odd and at least three,
– each tooth contains at least one vertex which also lies in a handle, and at least one

vertex which does not lie in any handle.

The associated clique tree inequality can be written as:

r∑

i=1

∑

e∈δ(Hi )

xe +
s∑

j=1

∑

e∈δ(Tj )

xe ≥ 2
r∑

i=1

ti + s + 1. (25)

In the special case where we have only one handle, the clique tree inequalities reduce
to the comb inequalities [18]:

∑

e∈δ(H)

xe +
s∑

j=1

∑

e∈δ(Tj )

xe ≥ 3s + 1. (26)
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Moreover, the comb inequalities for which |Tj | = 2 for all j are equivalent to the
blossom inequalities discussed in the previous section.

In general, the clique tree inequalities are not assignable. However, if we weaken
them by adding a suitable multiple of the degree inequality

∑
e∈δ(0) xe ≥ 2, they

become assignable. This is shown in the following theorem.

Theorem 8 For the traveling salesman game, the following weakened clique tree
inequalities are assignable:

r∑

i=1

∑

e∈δ(Hi )

xe +
s∑

j=1

∑

e∈δ(Tj )

xe +
⌊ s

2

⌋ ∑

e∈δ(0)

xe ≥ 2
r∑

i=1

ti + 2s (27)

if the root does not lie in a tooth, and

r∑

i=1

∑

e∈δ(Hi )

xe +
s∑

j=1

∑

e∈δ(Tj )

xe +
(⌊ s

2

⌋
− 1

) ∑

e∈δ(0)

xe ≥ 2
r∑

i=1

ti + 2s − 2 (28)

if the root lies in a tooth.

Proof Let W be an arbitrary set of vertices containing exactly one vertex from each
non-empty intersection Hi ∩ Tj and, for each tooth, exactly one vertex which does
not lie in any handle. Note that there are

∑r
i=1 ti vertices of the first type and s of the

second type, so |W | = ∑r
i=1 ti + s. In [1] it is shown that the following inequality is

satisfied by the incidence vector of any circuit (not necessarily one passing through
the root):

r∑

i=1

∑

e∈δ(Hi )

xe +
s∑

j=1

∑

e∈δ(Tj )

xe ≥
∑

i∈W

∑

e∈δ(i)

xe − s + 1. (29)

(Actually, [1] presented these inequalities in a different form, but her inequalities
can easily be shown to be equivalent to ours, using the identity

∑
v∈S

∑
e∈δ(v) xe =

2
∑

e∈E(S) xe + ∑
e∈δ(S) xe.)

The inequalities (Eq. 29) are clearly valid for Pxy
I , but are not homogeneous. To

make them homogeneous, we add a suitable multiple of the inequality
∑

e∈δ(0) xe ≥ 2
(which is clearly valid for Pxy

I ). This gives:

r∑

i=1

∑

e∈δ(Hi )

xe +
s∑

j=1

∑

e∈δ(Tj )

xe +
⌊ s

2

⌋ ∑

e∈δ(0)

xe ≥
∑

i∈W

∑

e∈δ(i)

xe.

Since
∑

e∈δ(i) xe = 2yi holds for all i ∈ V and for all points in Pxy
I , we have:

r∑

i=1

∑

e∈δ(Hi )

xe +
s∑

j=1

∑

e∈δ(Tj )

xe +
⌊ s

2

⌋ ∑

e∈δ(0)

xe ≥ 2
∑

i∈W

yi
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when the root does not lie in W and

r∑

i=1

∑

e∈δ(Hi )

xe +
s∑

j=1

∑

e∈δ(Tj )

xe +
(⌊ s

2

⌋
− 1

) ∑

e∈δ(0)

xe ≥ 2
∑

i∈W\{0}
yi

when the root lies in W . The result follows from the fact that |W | = ∑r
i=1 ti + s.

In the special case of comb inequalities we get:

Corollary 6 For the traveling salesman game, the weakened comb inequalities

∑

e∈δ(H)

xe +
s∑

j=1

∑

e∈δ(Tj )

xe +
⌊ s

2

⌋ ∑

e∈δ(0)

xe ≥ 4s, (30)

and

∑

e∈δ(H)

xe +
s∑

j=1

∑

e∈δ(Tj )

xe +
(⌊ s

2

⌋
− 1

) ∑

e∈δ(0)

xe ≥ 4s − 2, (31)

are assignable if the root does not lie and lies in a tooth, respectively.

Note that the comb inequality with three teeth does not have to be weakened if the
root lies in a tooth. Thus, these special comb inequalities are facet-inducing as well as
assignable, like the subtour elimination inequalities.

Corollary 7 For the traveling salesman game, a cost share exists whose value is at
least the value of the LP relaxation of the traveling salesman problem with non-neg-
ativity constraints, degree equations for i ∈ V , subtour elimination constraints, and
weakened clique tree inequalities.

However, the complexity of separation of the weakened clique tree inequalities is
unknown. Therefore, Corollary 7 does not yield a constructive algorithm to find the
desired cost share. However, heuristics for separation are not difficult to construct.
Moreover, in the special case where there is only one handle and |Tj | = 2 for all j ,
the weakened comb inequalities become similar to blossom inequalities, and it is not
difficult to show that they can be separated in polynomial time [30]. Thus, we obtain
the following result:

Corollary 8 For the traveling salesman game, we can find in polynomial time a cost
share whose value is at least equal to the value of the LP relaxation of the travel-
ing salesman problem with non-negativity constraints, degree equations for i ∈ V ,
subtour elimination constraints, and weakened blossom inequalities (i.e., inequalities
(Eq. 31) with |Tj | = 2 for all j and 0 ∈ ⋃

j Tj and inequalities (Eq. 30) with |Tj | = 2
for all j and 0 �∈ ⋃

j Tj ).

We remark that some other facet-inducing and assignable inequalities were pre-
sented in [13]: they belong to the class of so-called 2-brush inequalities of [27].
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6.2 The vehicle routing game

The column generation approach is most naturally applied to the vehicle routing game.
Note that, for this game, Observation 7 implies that we can disregard all coalitions S
apart from those with

∑
i∈S qi ≤ Q. That is, we only need one column for each fea-

sible route for a single vehicle. The resulting set partitioning LP is well known in the
vehicle routing literature (see, e.g., [4]). As mentioned above, the pricing problem is
strongly NP-hard. Hence, if we want to use the column generation to compute a cost
share, we must enlarge the set of columns. The standard way to do this in the literature
is to add columns representing infeasible routes in which customers are permitted to
be visited more than once. It is well known that the pricing problem then becomes a
capacitated shortest path problem, which can be solved in pseudo-polynomial time by
dynamic programming (see again, e.g., [4]).

If, on the other hand, we want to compute a cost share in polynomial time, we can
use the cutting plane approach based on assignable inequalities. It is easy to show
that all of the inequalities which are assignable for the traveling salesman game are
also assignable for the vehicle routing game. Moreover, further assignable inequalities
were presented in [25]. (They were called decomposable inequalities in that paper.)
These include the following Generalized Large Multistar (GLM) inequalities [21,24]:

∑

e∈δ(R)

xe ≥ 2

Q

∑

i∈R

⎛

⎝qi +
∑

j∈V \R

q j x(i, j)

⎞

⎠ , R ⊆ V . (32)

To make the present paper self-contained, we give a proof here:

Theorem 9 For the vehicle routing game, the GLM inequalities (Eq. 32) are assign-
able.

Proof It suffices to show that the (homogeneous) inequalities

∑

e∈δ(R)

xe ≥ 2

Q

⎛

⎝
∑

i∈R

(qi yi +
∑

j∈V \R

q j x(i, j))

⎞

⎠ , R ⊆ V, (33)

are valid for Pxy
I . So let (x̄, ȳ) be an extreme point of Pxy

I . Note that we can assume,
without loss of generality, that there is no vertex j ∈ V \R with

∑
i∈R x̄(i, j) = 2, since,

if there was, we could decrease the slack (or increase the violation) of the inequality
(Eq. 33) by inserting j into R.

Now, it is clear that the set of vehicles entering and leaving R has to visit not only
the vertices in R with ȳi = 1, but also any vertex j ∈ V \R such that x̄(i, j) = 1 for
some i ∈ R. Under the above assumption, the total demand of these vertices is equal
to:

∑

i∈R

⎛

⎝qi ȳi +
∑

j∈V \R

q j x̄(i, j)

⎞

⎠ ,
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and therefore at least

1

Q

∑

i∈R

⎛

⎝qi ȳi +
∑

j∈V \R

q j x̄(i, j)

⎞

⎠

vehicles must enter and leave R. The validity of Eq. 33 follows.

Theorem 10 For the vehicle routing game, a cost share exists whose value is at least
the value of the LP relaxation of the vehicle routing problem with non-negativity con-
straints, degree equations for i ∈ V , subtour elimination constraints, weakened clique
tree inequalities, and GLM inequalities.

As the GLM inequalities (Eq. 32) can be separated efficiently by max-flow tech-
niques [21,24], we have:

Corollary 9 For the vehicle routing game, we can find in polynomial time a cost
share whose value is at least equal to the value of the LP relaxation of the vehicle
routing problem with non-negativity constraints, degree equations for i ∈ V , subtour
elimination constraints, weakened blossom inequalities, and GLM inequalities.

Other assignable inequalities discussed in [25] include the Knapsack Large Mul-
tistar (KLM) inequalities [24], which are a generalization of the GLM inequalities,
and the so-called hypotour-like inequalities. While the complexity of the separation
problem for the KLM inequalities is unknown, a generalization of the hypotour-like
inequalities can be separated efficiently [25].

Finally, we briefly consider the combination of both row and column generation.
As shown in [25], the GLM inequalities are already implied by the set partitioning
formulation, even when non-elementary routes are permitted. Thus, there is no advan-
tage to including a separation algorithm for the GLM inequalities in the cut-and-price
approach. However, there usually is a benefit to be obtained by including a separation
algorithm for the SECs. The resulting lower bound on c(V ) is typically fairly close to
c(V ) itself [11].

7 Conclusions

We have defined a very general class of TU games, the IM games, and given a general
framework for computing good cost shares. This framework allows one to apply two
highly successful optimization techniques—cutting planes and column generation—
to a broad class of combinatorial optimization games. We have also analysed some
particular IM games in detail. We remark that the same methods can be applied also
to the Mixed-Integer variant of IM games, in which only a subset of the components
of x are required to be integer in Eq. 4.

There are several interesting topics for future research. In the first place, one could
search for classes of assignable inequalities for polyhedra associated with particular
IM games of interest. Secondly, one could try to analyze the worst-case ratios between
c(V ) (the optimal value of the underlying combinatorial optimization problem), the
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value of the optimal cost share, and the value of the cost shares that can be computed
efficiently by the methods described in this paper. Thirdly, a practical implementation
of these methods would be of interest, possibly for IM games in general. Finally, one
could attempt to extend our approach to the case of non-TU games.

Acknowledgments We are grateful to Michel Goemans for illuminating discussions on the subject, and
to two anonymous referees for their helpful comments.
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