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Abstract: A recent paper by Gaver et al. [6] argued the importance of studying service control problems in which the usual
assumptions (i) that tasks will wait indefinitely for service and (ii) that successful service completions can be observed instanta-
neously are relaxed. Military and other applications were cited. They proposed a model in which arriving tasks are available for
service for a period whose duration is unknown to the system’s controller. The allocation of a large amount of processing to a
task may make more likely its own successful completion but may also result in the loss of many unserved tasks from the system.
Gaver et al. [6] called for the design of dynamic policies for the allocation of service which maximizes the rate of successful task
completions achieved, or which come close to doing so. This is the theme of the paper. We utilize dynamic programming policy
improvement approaches to design heuristic dynamic policies for service allocation which may be easily computed. In all cases
studied, these policies achieve throughputs close to optimal. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 55: 142–155, 2008
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1. INTRODUCTION

The paper considers a simple scenario in which tasks arrive
and seek service which is provided by a single server. In
most standard models of such systems, strong assumptions
are made about (i) all tasks’ limitless availability for service,
namely their preparedness to wait in the system until service
is delivered, and (ii) the server’s capacity to deliver success-
ful processing of all tasks and to know when this has been
achieved. In a recent paper, Gaver et al. [6] argued that in
many situations in which service is offered, one or both of
these assumptions may not hold.

As an example Gaver et al. [7] consider a Homeland
Security scenario in which hostile Red vessels arrive at and
move through a maritime domain toward a vulnerable target,
protected by Blue. The domain is also visited by nonhos-
tile vessels (Whites) of interest. In this context service by
Blue consists of an attempted classification (into nonhostile
White or hostile Red) of suspicious vessels encountered in
the domain by an overhead sensor. The Blue sensor will track
any vessel it classifies as Red, until it is relieved by another
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platform, perhaps a destroyer pair. While correct classifica-
tion by the sensor is never certain in finite time, the longer the
sensor spends on classification the more likely it is to be cor-
rect. However, long services by Blue increase the chance that
hostile Reds will traverse the domain to the target (i.e. be lost
from the system) unclassified. The question naturally arises as
to how the sensor should be deployed (i.e., how long allocated
times spent on classification should be) to achieve a maxi-
mized correct classification rate among all vessels arriving at
the domain.

Gaver et al. [6] mention other scenarios in which Red
agents seek to penetrate Blue defenses. In one such, a Red
will leave once his offensive task has been completed while
Blue’s service of Red seeks his destruction, with longer ser-
vices more likely to achieve this. In such a scenario, Blue
may not be able to establish with certainty whether any
attempt to destroy Red has been successful. Gaver et al. [6]
also cite examples from the delivery of emergency medical
treatment.

We shall consider a scenario in which tasks arrive at a
single server according to a Poisson process. Each task has
a limited availability for useful service which is unknown
to the controller of the system. Once this time has expired,
the task is lost. The case of tasks with known deadlines
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is important and (relatively) well studied [4, 8, 12, 14–16].
We shall further suppose that the server has limited infor-
mation concerning the efficacy of each service. In light of
this, the server adopts an approach to processing in which
a period of allocated time for the service of a given task is
determined in advance to its processing. In choosing such
allocated service times there is a clear trade-off to be con-
sidered. Large allocated times are more likely to lead to a
successful service, but may also lead to more waiting tasks
being lost from the system. How this trade-off is resolved
will plainly depend upon the number of currently waiting
tasks at risk of loss. We would expect shorter allocated times
to be appropriate when the task queue is long. Gaver et al.
[6] studied the static problem of determining the constant
allocated service time which, when applied to all served
tasks, maximizes throughput (the time average rate of tasks
served successfully) and found that even this simple ver-
sion of the service allocation problem is extremely challeng-
ing. They further made a simple myopic proposal for the
dynamic problem in which service allocations take account
of queue length, but argued that the development of approx-
imately optimal policies remained an important outstanding
issue. It is this issue which is the concern of the current
paper.

The authors know of no previous work on their model,
save that of Gaver et al. [6], cited above. In earlier work,
Glazebrook and Punton [10] considered a simpler set up
in which the penalty imposed upon waiting tasks for large
allocated service times is expressed through a discounted
reward structure. Further, Glazebrook et al. [9] and Har-
rison and Zeevi [11] have explored the optimal dynamic
allocation of service in the face of customer loss through
impatience in contexts where the successful completion of
service is observed immediately. There is also a develop-
ing literature concerning how the phenomenon of customer
impatience should impact the design and operation of call
centers [2, 5].

The paper is structured as follows: our service control
model is introduced in Section 2, while in Section 3 a tractable
class of Markovian policies is introduced. These were first
discussed by Gaver et al. [6] and permit calculation of key
performance measures, including throughput, via explicit
formulae. In Section 4 we develop a class of dynamic heuris-
tics (Heuristic I) by a dynamic programming (DP) policy
improvement approach which applies a single DP step to
the value function associated with the optimal Markovian
policy. In Section 5, a second class of dynamic heuristics
(Heuristic II) is developed by application of a single policy
improvement step to a strongly performing static policy. The
paper concludes in Section 6 with an account of a numerical
investigation which testifies to the very strong performance
of Heuristic II throughout. A carefully designed static pol-
icy, while certainly inferior to Heuristic II, is seen to perform

remarkably well in the dynamic class quite widely, but does
less well for problems where the achievable throughput from
any policy is low.

2. THE MODEL

Tasks seeking service arrive in a Poisson stream with rate
λ. Once in the system, each task has an exponentially dis-
tributed amount of time (with mean θ−1) during which it is
available for service. These times are independent for dis-
tinct tasks. If a task’s exp(θ) availability time expires before
successful service has been achieved, it leaves the system
unprocessed. We shall suppose throughout that θ > 0.

A single server is available to serve tasks. Decision epochs
for the server are the times at which periods of allocated
service expire (and the system is nonempty) together with
the times at which tasks arrive at an empty system. At each
decision epoch, the server observes the number of tasks
currently present (n) and chooses a period of allocated ser-
vice (t(n)) for one of them. The server is then committed
to this task for this allocated period. Each task is assumed
to have a service requirement, which is an unobservable
positive-valued random variable with distribution function
F . Service requirements for distinct tasks are independent
and identically distributed. The probability that an allo-
cated service of time t sees a task successfully completed is
given by

γ (t) ≡
∫ t

0
e−θsdF (s), (1)

namely the probability that the task’s service requirement is
less than min(t , S), where S ∼ exp(θ). Moreover, if n tasks
are present at the beginning of this allocated service of length
t (including the one about to be served) then it is easy to show
that the number of tasks remaining at its conclusion is

X(t |n) + Y (t), (2)

where X(t |n) and Y (t) are independent random variables tak-
ing values in the non-negative integers. The random variable
X(t |n) has a binomial distribution Bin(n − 1, e−θt ) and is
the number of those tasks present in the system at the start
of the allocated service (excepting the one chosen for ser-
vice) which remain at its conclusion. The random variable
Y (t) has a Poisson distribution Poisson{λθ−1(1 − e−θt )} and
is the number of tasks which arrive in the system during the
allocated service and which remain at its conclusion. The ran-
dom variable X(t |n) decreases stochastically in t for each n

while Y (t) increases stochastically in t . Whether the system
is likely to experience a net gain or a net loss of tasks dur-
ing the allocated service of length t depends critically upon
the relative sizes of n − 1 and λθ−1. Each task is deemed
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to be unavailable for further service at the conclusion of its
allocated service time.

A stationary policy is given by a map t(·) : Z
+ → R

+
which determines service times as a function of the num-
ber of tasks present. The goal of analysis is the determina-
tion of a stationary policy which maximizes throughput, or
which comes close to doing so. However, this is a stochas-
tic dynamic optimization problem which is challenging in
several respects. First, its state space is countably infinite
(the natural numbers N) while its action space is uncount-
able (the positive reals R

+). Second, actions taken relate
directly to the expiration of time which means that many
standard approaches require modification. A conventional
proposal would apply stochastic DP to a series of finite
state/finite action/discrete time approximations to the sys-
tem. Each would involve truncating the state space (replacing
N by {0, 1, . . . , N} for some suitably large N ) and intro-
ducing a positive discrete time quantum δ along with a
truncated finite action space ({δ, 2δ, . . . , Mδ} for some suit-
ably large M). The existence of an optimal stationary pol-
icy t(·; N , M , δ) is guaranteed for any choice of (N , M , δ).
However, its determination by conventional DP is computa-
tionally expensive for large N , M , and small δ. Moreover,
the need to demonstrate convergence of the solution (in rela-
tion to throughputs achieved), namely that suitably increas-
ing N , M while reducing δ will have negligible benefits, is
exacting.

The paper presents two classes of effective dynamic heuris-
tics for this service control problem, whose design avoids the
aforementioned complex and cumbersome solution proce-
dures. These policies are easy to compute. Moreover, numer-
ical evidence suggests that they achieve throughputs which
are close to optimal in all cases studied. Both policy classes
emerge from a simple Markovian policy class which is dis-
cussed in Gaver et al. [6] and which is described briefly in
the next section.

2.1. Comment

For simplicity and clarity we shall focus exclusively on
the scenario described in the opening two paragraphs of
this section. However, the methods of analysis we describe
in the upcoming sections are readily extended to situations
in which (a) tasks are guaranteed not to depart the system
during service, and/or (b) a delivered service of length t

achieves service quality or customer satisfaction s(t) ∈ R
+,

with s(t) increasing in t . In the latter case, the goal of
analysis is the determination of a stationary policy which
maximizes the time average level of customer satisfaction
achieved over an infinite horizon, or which comes close to
doing so.

Regarding (b) mentioned earlier, please note that
Deshmukh and Jain [3] consider a finite capacity queueing

model in which the objective is maximization of customer sat-
isfaction net of (linear) waiting costs. There are no losses from
queue or from service. In their simple finite state scenario they
are able to obtain characterizations of optimal policies. They
do not discuss the computation of optimal or near optimal
policies.

3. A STATIC MARKOVIAN POLICY CLASS

Suppose that, in the context of the problem described in
Section 2, every allocated service is drawn independently
from an exponential distribution with mean µ−1. It then fol-
lows that, in advance of sampling, each allocated service
results in a successful service completion with probability

γ̄ (µ) ≡
∫ ∞

0
e−(θ+µ)tdF (t). (3)

Moreover, the number of tasks present in the system (namely
the task currently being served together with any waiting for
service) follows a state-dependent birth–death process with
birth (arrival) rate λ in all states and death (completion or
loss) rate µ + θ(n − 1) in state n ≥ 1.

Standard theory indicates that the throughput achieved
under the aforementioned policy is given by

ω̄(µ) = µγ̄ (µ)

[ ∞∑
n=1

{
n−1∏
k=0

λ(µ + θk)−1

}]

×
[

1 +
∞∑

n=1

{
n−1∏
k=0

λ(µ + θk)−1

}]−1

. (4)

Gaver et al. [6] argue that ω̄(µ) is maximized by some finite
µ, µ∗ say. Numerical evidence is given in Gaver et al. [6] that
the policy of giving each served task an allocation fixed in
size and equal to (µ∗)−1 is close to optimal in the static class
of policies in which all allocated services are equal.

3.1. Comment

All of the numerical examples considered in the paper
suppose that service times are drawn independently from a
gamma distribution �(r , ν) with mean r/ν and probability
density function

f (t |r , ν) = νr t r−1e−νt {�(r)}−1, t ≥ 0. (5)

In this case the quantity γ̄ in (3) is given by

γ̄ (µ) = {ν/(ν + θ + µ)}r . (6)
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It is standard that such service times are stochastically
increasing in r (with ν fixed) and stochastically decreas-
ing in ν (with r fixed). It is straightforward to show that,
for any fixed µ, the throughput ω̄(µ) is increasing in ν and
λ, while decreasing in r and θ . In all cases, the nonspec-
ified parameters are assumed to be held constant. Further,
the quantity ω̄(µ)/λ, namely the proportion of arriving tasks
which are successfully served, is decreasing in λ for any
fixed µ.

To facilitate the analysis of Section 4 we shall require the
bias function associated with the Markov policy µ, written
b(·, µ) : N → R and which measures the relative transient
effect of commencing processing in general state n rather than
0. To develop this, we require the following quantities:

• for T , µ ∈ R
+ and n ∈ N we write C(n, T ; µ) for

the expected number of successful task completions
during the period [0, T ) under Markov policy µ when
n is the system state at time 0;

• for µ ∈ R
+ and n ∈ Z

+ we write C̄(n, µ) for
the expected number of successful task completions
under Markov policy µ from time 0 up to the time at
which the system empties for the first time when n is
the initial system state;

• for µ ∈ R
+ and n ∈ Z

+ we write T̄ (n, µ) for the
expected time it takes the system to empty for the first
time from initial state n under Markov policy µ.

We pause to note that the system evolving under Markov
policy µ is trivially ergodic, from which we deduce that the
quantities T̄ (n, µ) and C̄(n, µ) are guaranteed to be finite for
any n ∈ N. We now define the bias function b(·, µ), which is
also guaranteed to be finite by the aforementioned ergodicity
and standard theory [17].

DEFINITION 1: The bias function b(·, µ) : N → R is
defined by

b(n, µ) = lim
T →∞{C(n, T ; µ) − C(0, T ; µ)}, (7)

where the limit in (7) is guaranteed to exist and be finite for
any n ∈ N.

LEMMA 1: The bias b(n, µ) is given by

b(n, µ) = µγ̄ (µ)

λ

[
n∑

m=1

∞∑
r=1

{
r−1∏
k=0

λ(µ + θ(m − 1) + θk)−1

}]

×
[

1 +
∞∑

r=1

{
r−1∏
k=0

λ(µ + θk)−1

}]−1

, n ∈ Z
+,

and is zero when n = 0.

PROOF: By deployment of the ergodicity of the system
under Markov policy µ and utilizing the fact that the sys-
tem regenerates upon entry into the empty state, standard
theory [17] yields that

b(n, µ) = C̄(n, µ) − ω̄(µ)T̄ (n, µ), n ∈ Z
+. (8)

Plainly from (7) we have that b(0, µ) = 0. The quantity ω̄(µ)

is given by the expression in (4).
In order to compute C̄(n, µ) and T̄ (n, µ), we first consider

the quantity T̄ (m, µ) − T̄ (m − 1, µ) for m ≥ 1. To com-
pute this, we consider a state-dependent birth–death process
defined on the state space {m − 1, m, m + 1, . . .}. The birth
rate in all states is λ, while the death rate in state m − 1 is
zero and in all other states is µ + θ(n − 1), n ≥ m. By direct
comparison with our service system evolving under Markov
policy µ we see that the stationary probability that the afore-
mentioned birth–death process is in its lowest state (m − 1)

may be expressed as

λ−1{λ−1 + T̄ (m, µ) − T̄ (m − 1, µ)}−1. (9)

However, by standard theory, this probability may also be
expressed as

[
1 +

∞∑
r=1

{
r−1∏
k=0

λ(µ + θ(m − 1) + θk)−1

}]−1

. (10)

Equating the expressions in (9) and (10) yields the relation

T̄ (m, µ) − T̄ (m − 1, µ) = λ−1

×
∞∑

r=1

{
r−1∏
k=0

λ(µ + θ(m − 1) + θk)−1

}
, m ∈ Z

+. (11)

It is straightforward to establish that

C̄(m, µ)− C̄(m− 1, µ) = µγ̄ (µ){T̄ (m, µ)− T̄ (m− 1, µ)},
m ∈ Z

+. (12)

We now obtain the expression for b(n, µ) in the lemma by
writing

b(n, µ) = C̄(n, µ) − ω̄(µ)T̄ (n, µ)

=
n∑

m=1

[C̄(m, µ) − C̄(m − 1, µ)

− ω̄(µ){T̄ (m, µ) − T̄ (m − 1, µ)}]

= {µγ̄ (µ) − ω̄(µ)}
n∑

m=1

{T̄ (m, µ) − T̄ (m − 1, µ)}

and using (4) and (11). This concludes the proof. �
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4. HEURISTIC I—DYNAMIC POLICY
DEVELOPMENT FROM THE MARKOVIAN CLASS

We use the notation {t(·), µ∗} to denote a policy which
chooses its first allocated service according to the map
t(·) : Z

+ → R
+ and which makes all subsequent deci-

sions according to optimal Markovian policy µ∗. In a sense
to be made precise below our first heuristic is given by a
map t̄ (·) : Z

+ → R
+ enjoying the property that {t̄ (·), µ∗}

achieves the maximum expected number of successful task
completions over an infinite horizon among the class of poli-
cies {t(·), µ∗}, uniformly over all initial states of the system.
We may assume without loss of generality in what follows
that the system is nonempty at time zero.

Developing the notation of Section 3 we write C(n, T ; t , µ)

for the expected number of successful task completions dur-
ing the period [0, T ) under the policy (t , µ) whose first allo-
cated service is t and which makes all subsequent decisions
according to Markov policy µ when n is the system state
at time 0. For definiteness, we suppose here and hereafter
that T ≥ t .

LEMMA 2: The difference between the expected number
of successful task completions achieved over an infinite hori-
zon by policies (t , µ) and µ from initial state n ∈ Z

+ is
given by

lim
T →∞{C(n, T ; t , µ) − C(n, T ; µ)} = γ (t)

+ E[b{X(t |n) + Y (t), µ}] − b(n, µ) − tω̄(µ), (13)

where in (13), X(t |n) ∼ Bin(n − 1, e−θt ) and Y (t) ∼
Poisson{λθ−1(1 − e−θt )} are independent random variables.

PROOF: If the first allocated service is t and the initial
system state is n ∈ Z

+ then by conditioning on the system
state at time t we obtain

C(n, T ; t , µ) = γ (t) + E[C{X(t |n) + Y (t), T − t ; µ}],
(14)

where X(t |n) and Y (t) are as in the statement of the lemma.
We now expand (14) by writing

C(n, T ; t , µ) − C(n, T ; µ) = γ (t)

+ E[C{X(t |n) + Y (t), T − t ; µ} − C(0, T − t ; µ)]
− {C(0, T ; µ) − C(0, T − t ; µ)}
− {C(n, T ; µ) − C(0, T ; µ)}. (15)

We now take the limit T → ∞ on both sides of (15). First
note that it is easily deduced from Lemma 1 that the bias
function satisfies

0 ≤ b(n, µ) ≤ nγ̄ (µ), n ∈ N. (16)

Further, it is straightforward that

C(n, T ; µ) − C(0, T ; µ) ≤ C̄(n, µ) =
{

1 − ω̄(µ)

µγ̄ (µ)

}−1

× b(n, µ), T ∈ R
+, n ∈ N. (17)

By utilizing (16) and (17) together with Definition 1, we
infer that

lim
T →∞ E[C{X(t |n) + Y (t), T − t ; µ} − C(0, T − t ; µ)]

= E[b{X(t |n) + Y (t), µ}]. (18)

By application of Blackwell’s Theorem to the renewal
process consisting of successive entries of the system (evolv-
ing under Markov policy µ) into the empty state, we conclude
that

lim
T →∞{C(0, T ; µ) − C(0, T − t ; µ)} = tω̄(µ). (19)

The result now follows from (14), (15), (18), (19) and
Definition 1. This concludes the proof. �

We now develop the map t̄ (·) : Z
+ → R

+ by choosing

t̄ (n) = arg max
t≥0

(γ (t) + E[b{X(t |n) + Y (t); µ∗}]
− tω̄(µ∗)), (20)

where X(t |n) and Y (t) are as in the statement of Lemma 2.
If we suppose that the service requirement is absolutely con-
tinuous then the expression on the r.h.s. of (20) is certainly
continuous. Moreover, since both γ (t) and E[b{X(t |n) +
Y (t); µ∗}] can easily be shown to converge to finite limits as
t → ∞, this expression must be decreasing in t beyond some
finite value Tn, say. Hence maxima must occur in [0, Tn].
It now follows from standard real analysis that the maxi-
mum in (20) must be achieved. For definiteness choose t̄ (n)

to be the largest value achieving the maximum. The fol-
lowing is an immediate consequence of Lemma 2 and the
construction of t̄ (·).

THEOREM 1: The map t̄ (·) : Z
+ → R

+ is such that

lim
T →∞[C{n, T ; t̄ (n), µ∗} − C{n, T ; t(n), µ∗}] ≥ 0, n ∈ Z

+,

for any choice of t(·) : Z
+ → R

+.

Theorem 1 substantiates the claim made in the open-
ing paragraph of this section, namely that {t̄ (·), µ∗} maxi-
mizes the expected number of successful task completions
among the policy class {t(·), µ∗} uniformly over all initial
states. Heuristic I is given by the map t̄ (·) : Z

+ → R
+,

namely it chooses allocated service t̄ (n) when the queue
length is n.
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4.1. Numerical Examples

Table 1 shows values of the allocated service times under
Heuristic I, namely t̄ (n), for a range of problems in which
service times are assumed to be drawn independently from a
gamma distribution �(r , ν) with probability density function
given in (5) earlier. For the time being, expand the notation
to t̄ (n, λ, θ , r , ν) to express dependence upon the key model

parameters. We would expect these allocated service times to
decrease in (i) n, the number of waiting tasks (more tasks at
risk of loss from the system); (ii) λ, the rate of arriving tasks
(more alternative tasks to service); and (iii) θ , the loss rate
(long allocated services risk more severe losses). However,
we would expect the allocated service times to increase as
the times for successful service increase stochastically. Reas-
suringly, the results in Table 1 confirm these expectations.

Table 1. Values of the allocated service t̄ (n) determined by Heuristic I for n = 1–6, 8, 10 for a range of problems with gamma �(r , ν)
service times.

t̄ (n)

(λ, ν) θ n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 8 n = 10

r = 2

(0.25, 0.3) 0.1 7.98 7.37 6.95 6.68 6.51 6.39 6.26 6.19
0.2 6.59 6.10 5.71 5.44 5.26 5.15 5.03 4.99
0.3 5.67 5.26 4.90 4.63 4.43 4.31 4.19 4.15

(0.9, 0.3) 0.1 5.78 5.67 5.59 5.54 5.50 5.48 5.45 5.43
0.2 4.86 4.74 4.65 4.58 4.53 4.50 4.45 4.43
0.3 4.21 4.10 4.00 3.93 3.88 3.83 3.78 3.75

(0.9, 0.8) 0.1 3.23 3.03 2.89 2.79 2.73 2.68 2.65 2.62
0.2 2.93 2.74 2.62 2.53 2.48 2.44 2.41 2.39
0.3 2.70 2.53 2.41 2.33 2.28 2.24 2.19 2.17

r = 1

(0.25, 0.3) 0.1 4.73 3.78 3.23 2.92 2.73 2.61 2.47 2.39
0.2 3.85 2.97 2.47 2.23 2.10 2.03 1.96 1.92
0.3 3.32 2.51 2.03 1.82 1.73 1.69 1.65 1.63

(0.9, 0.3) 0.1 2.72 2.33 2.04 1.84 1.69 1.58 1.45 1.37
0.2 2.30 1.94 1.68 1.51 1.40 1.32 1.23 1.18
0.3 2.03 1.70 1.46 1.31 1.21 1.15 1.08 1.05

(0.9, 0.8) 0.1 1.95 1.64 1.44 1.30 1.20 1.14 1.04 0.99
0.2 1.70 1.40 1.21 1.09 1.02 0.97 0.90 0.86
0.3 1.54 1.25 1.07 0.97 0.90 0.86 0.81 0.78

r = 0.5

(0.25, 0.3) 0.1 3.13 2.09 1.60 1.36 1.22 1.13 1.03 0.97
0.2 2.49 1.49 1.11 0.95 0.87 0.82 0.77 0.74
0.3 2.13 1.18 0.87 0.76 0.70 0.68 0.64 0.63

(0.9, 0.3) 0.1 1.68 1.27 0.99 0.82 0.71 0.64 0.55 0.50
0.2 1.38 0.97 0.74 0.61 0.53 0.48 0.43 0.40
0.3 1.20 0.81 0.61 0.50 0.44 0.41 0.37 0.34

(0.9, 0.8) 0.1 1.33 1.01 0.81 0.69 0.61 0.56 0.49 0.44
0.2 1.12 0.80 0.62 0.53 0.47 0.43 0.38 0.35
0.3 1.00 0.68 0.52 0.44 0.39 0.36 0.32 0.30

r = 0.25

(0.25, 0.3) 0.1 2.22 1.21 0.85 0.68 0.59 0.53 0.47 0.43
0.2 1.73 0.79 0.54 0.44 0.39 0.36 0.33 0.31
0.3 1.47 0.60 0.41 0.34 0.31 0.29 0.27 0.26

(0.9, 0.3) 0.1 1.17 0.78 0.56 0.44 0.37 0.32 0.27 0.24
0.2 0.93 0.55 0.38 0.30 0.25 0.22 0.19 0.17
0.3 0.80 0.44 0.30 0.23 0.20 0.18 0.16 0.14

(0.9, 0.8) 0.1 0.97 0.66 0.49 0.40 0.34 0.30 0.25 0.22
0.2 0.80 0.49 0.35 0.28 0.24 0.21 0.18 0.16
0.3 0.70 0.39 0.27 0.22 0.19 0.17 0.15 0.13
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Formally, we conjecture that t̄ (n, λ, θ , r , ν) is decreasing in
n, λ, θ and ν but is increasing in r . In all cases, the nonspec-
ified parameters are assumed to be held constant. Sadly, the
complexity of the r.h.s. of (20) has rendered it impossible to
confirm any of these conjectures mathematically.

One case where we can get a partial result and some insight
concerns the nature of the n-dependence of t̄ (n, λ, θ , r , ν)

when the loss rate θ is small. The only term on the r.h.s.
of (20) which depends upon n is the second one involv-
ing the bias function. It is straightforward to show that
for n ≥ 1,

∂

∂t
E[b{X(t |n) + Y (t); µ∗}] = λE[b{n + Ȳ (t); µ∗}

− b{n − 1 + Ȳ (t); µ∗}] + O(θ), (21)

where Ȳ (t) ∼ Poisson(λt) and O(θ) denotes a quantity
which, when divided by θ , remains bounded in the limit
θ → 0. From the expression for the bias given in Lemma 1, it
is straightforward to show that b(n, µ) is increasing and con-
cave in n, for fixed µ. It follows that the first term on the r.h.s.
of (21) is both decreasing in t (for fixed n) and decreasing in n

(for fixed t). This in turn suggests via straightforward analy-
sis that we have t̄ (n + 1, λ, θ , r , ν) ≤ t̄ (n, λ, θ , r , ν) when θ

is small enough.
Contracting the notation again, we finally note from Table 1

that t̄ (n) appears to be convex in n, with significant reduc-
tions in allocated service as the queue length increases
through small values (1,2,3) but with fairly rapid subsequent
convergence to a limit.

5. HEURISTIC II—POLICY IMPROVEMENT
FROM THE STATIC CLASS

By extension of the notation established in Section 4, we
use {t(·), [τ ]} to denote a policy which chooses its first allo-
cated service according to the map t(·) : Z

+ → R
+, with all

subsequent allocated services equal to τ ∈ R
+. In a sense to

be made precise, our second heuristic will be given by a map
t̂ (·) : Z

+ → R
+ enjoying the property that {t̂ (·), [(µ∗)−1]}

achieves the maximum expected number of successful task
completions over an infinite horizon among the class of
policies {t(·), [(µ∗)−1]}.

5.1. Comments

1. Gaver et al. [6] gave numerical evidence that a pol-
icy which gives an allocated service of (µ∗)−1 to each
task comes close to achieving maximum throughput
in the static class of policies.

2. What we are in fact achieving in this section is the
development of a strongly performing dynamic policy

for service allocation by the application of a single DP
policy improvement step applied to a strongly per-
forming static policy. This is broadly in the spirit of
Krishnan [12] who discussed the optimal routing of
incoming customers to parallel queues.

To develop our analysis, we shall require the following
notations:

• for T , t , τ ∈ R
+ and n ∈ N we write C(n, T ; t , [τ ])

for the expected number of successful task comple-
tions during the period [0, T ) under the policy (t , [τ ])
when n is the system state at time 0;

• for T , τ ∈ R
+ and n ∈ N we write C(n, T ; [τ ]) for

the expected number of successful task completions
during [0, T ) under the static policy [τ ] which gives
allocated service τ to all tasks when n is the system
state at time 0;

• for τ ∈ R
+ and n ∈ Z

+ we write C̄(n, [τ ]) for
the expected number of successful task completions
under static policy [τ ] from 0 up to the time at which
the system empties for the first time when n is the
initial system state;

• for τ ∈ R
+ and n ∈ Z

+ we write T̄ (n, [τ ]) for the
expected time it takes the system to empty for the first
time from initial state n under static policy [τ ];

• for τ ∈ R
+ we write ω̄([τ ]) for the throughput

achieved under static policy [τ ]. Utilizing results of
Baccelli et al. [1] we have that

ω̄([τ ]) = λγ (τ)

( ∞∑
n=0

(λτ)n

×
[

n∏
k=1

{(1 − e−kθτ )(kθτ)−1}
]) (

1 +
∞∑

n=0

(λτ)n

×
[

n∏
k=1

{(1 − e−kθτ )(kθτ)−1}
])−1

. (22)

5.2. Comment

For the gamma service time examples of (5), we find that,
for any fixed τ , the throughput ω̄([τ ]) is increasing in ν,
λ and decreasing in r , θ . Further, the quantity ω̄([τ ])/λ is
decreasing in λ. In all cases, the nonspecified parameters are
assumed to be held constant. Note that these properties cor-
respond exactly with those of throughput ω̄(µ) described in
Section 2.

As with the class of Markov policies, we are able to define
a bias function b(·, [τ ]) for the static class, guaranteed finite
whenever θ > 0.
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DEFINITION 2: The bias function b(·, [τ ]) : N → R is
defined by

b(n, [τ ]) = lim
T →∞{C(n, T ; [τ ]) − C(0, T ; [τ ])}, (23)

where the limit in (23) is guaranteed to exist and be finite for
any n ∈ N.

The following result makes use of the fact that the system
regenerates upon every entry into the empty state [17].

LEMMA 3: The bias b(n, [τ ]) is given by

b(n, [τ ]) = C̄(n, [τ ]) − ω̄([τ ])T̄ (n, [τ ]), n ∈ Z
+,

and is zero when n = 0.

In contrast to the account in Section 3, a closed form
expression is not available for the bias function of a static
policy. We shall now develop a numerical approach to its
computation. First, we state a preparatory lemma.

LEMMA 4: The quantities C̄(n, [τ ]) and T̄ (n, [τ ]) are
such that

C̄(n, [τ ]) = τ−1γ (τ)T̄ (n, [τ ]) ≤ γ (τ){n + λθ−1eλθ−1},
n ∈ Z

+. (24)

PROOF: The equality in (24) is trivial. Hence it is enough
to show that

T̄ (n, [τ ]) ≤ τ {n + λθ−1eλθ−1}, n ∈ Z
+. (25)

Consider the system evolving under policy [τ ] from initial
state n ∈ Z

+. Write T̃ (n, [τ ]) for the time at which the sys-
tem empties for the first time. This is a random variable whose
expectation is T̄ (n, [τ ]). It is not difficult to see that

T̃ (n, [τ ]) ≤ST τ

(
n +

∞∑
m=1

YmI

[
m−1⋂
r=1

{Yr > 0}
])

, n ∈ Z
+,

(26)

where in (26), ≤ST denotes stochastic ordering, I [·] is the
indicator function and {Ym, m ∈ Z

+} is a collection of inde-
pendent and identically distributed Poisson random variables
with mean λθ−1.

To understand (26), we develop stochastic bounds on the
times taken for successive attempts to empty the system under
policy [τ ]. The first attempt processes the n tasks present ini-
tially, and is of duration no greater than nτ . This attempt will
be successful if the number of tasks present at its conclu-
sion is zero. However, this number is stochastically bounded
above by Y1 ∼ Poisson(λθ−1) as is clear from comments
in the paragraph following (2). Repeat the above with Y1 the

number of tasks present initially, and so on. The interpretation
of Ym is as a stochastic bound on the number of tasks present
following the mth attempt to empty the system. Plainly

T̃ (n, [τ ]) ≤ST τ

(
n +

N∑
m=1

Ym

)
, n ∈ Z

+, (27)

where

N = min(r; Yr = 0). (28)

Clearly (26) and (27) are equivalent. It is trivial to show that
(25) is obtained by taking expectations on both sides of (26)
while exploiting the independence of the Yms. This concludes
the proof. �

In order to develop our numerical approach to the deter-
mination of key quantities, we write

Pnm(t) = P {X(t |n) + Y (t) = m}

=
min(n−1,m)∑

r=0

(n − 1)!
r!(n − 1 − r)!(m − r)!λ

m−rθ r−me−rθt

× (1 − e−θt )n+m−1−2r exp{λθ−1(1 − e−θt )},
(29)

where t ∈ R
+, n ∈ Z

+ and m ∈ N in (27). Utilization of a
simple conditioning argument yields the recursion

C̄(n, [τ ]) = γ (τ) +
∞∑

m=1

Pnm(τ)C̄(m, [τ ]), n ∈ Z
+. (30)

To compute the function C̄(·, [τ ]) : Z
+ → R

+, we develop
the sequence of functions {f (r)(·) : Z

+ → R
+, r ∈ Z

+}
defined recursively by

f (1)(n) = 0, n ∈ Z
+, (31)

and

f (r+1)(n) = γ (τ)+
∞∑

m=1

Pnm(τ)f (r)(m), n, r ∈ Z
+. (32)

LEMMA 5: The function sequence {f (r)(·) : Z
+ →

R
+, r ∈ Z

+} satisfies

lim
r→∞ f (r)(n) = C̄(n, [τ ]), n ∈ Z

+. (33)

PROOF: A simple proof by induction uses (31) and
(32) to establish that the sequence {f (r)(n), r ∈ Z

+} is
nondecreasing for each n ∈ Z

+. A further induction, together
with (30) and (31), establishes that

f (r)(n) ≤ C̄(n, [τ ]), n ∈ Z
+. (34)
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It must then follow that the limit on the l.h.s. of (33) must
always exist.

We now define


(r)(n) = C̄(n, [τ ]) − f (r)(n), n, r ∈ Z
+. (35)

By (34) the 
(r)(n) are all non-negative, and by (30)–(32)
satisfy the recursion


(1)(n) = C̄(n, [τ ]), n ∈ Z
+, (36)

and


(r+1)(n) =
∞∑

m=1

Pnm(τ)
(r)(n), n, r ∈ Z
+. (37)

Denote by {X(t), t ∈ N} a Markov chain with state space N

evolving according to the transition matrix P′(τ ) where

P ′
nm(τ ) =

{
δ0m, n = 0, m ∈ N,

Pnm(τ), n ∈ Z
+, m ∈ N,

(38)

with δ in (38) the Kronecker delta. Plainly, 0 is an absorbing
state for the chain, with all other states transient. It is trivial
to show that (36)–(38) together with Lemma 4 yields


(r+1)(n) = E(C{X(r), [τ ]}|X(0) = n)

≤ γ (τ)E{X(r) + λθ−1eλθ−1

× I [X(r) > 0]|X(0) = n}
→ 0, r → ∞, n ∈ Z

+, (39)

where the limit in (39) is established by a simple modifica-
tion of the argument of the proof of Lemma 4. The statement
in (33) is an immediate consequence of (39). This concludes
the proof. �

From Lemmas 3 and 4 we observe that

b(n, [τ ]) = [1 − ω̄([τ ])τ {γ (τ)}−1]C̄(n, [τ ]), n ∈ Z
+.

(40)

Hence the recursive scheme of Lemma 5 together with the
expression in (22) enable the bias function b(·, [τ ]) to be
computed.

We now describe how to deploy the bias function to affect
the DP policy improvement step which is the basis for the
design of Heuristic II. The proof of Lemma 6 is similar to
that of Lemma 2 and is omitted.

LEMMA 6: The difference between the expected num-
ber of successful task completions achieved over an infinite

horizon by policies (t , [τ ]) and [τ ] from initial state n ∈ Z
+

is given by

lim
T →∞{C(n, T ; t , [τ ]) − C(n, T ; [τ ])} = γ (t)

+ E[b{X(t |n) + Y (t)}, [τ ]] − b(n, [τ ]) − tω̄([τ ]), (41)

where in (41), X(t |n) ∼ Bin(n − 1, e−θt ) and Y (t) ∼
Poisson{λθ−1(1 − e−θt )} are independent random variables.

Following Lemma 6, we now develop the map t̂ (·) : Z
+ →

R
+ by choosing

t̂ (n) = arg max
t≥0

(γ (t) + E[b{X(t |n) + Y (t), [(µ∗)−1]]

− tω̄([(µ∗)−1])), (42)

with X(t |n) and Y (t) as mentioned earlier. For reasons sim-
ilar to those following (20), the maximum in (42) must be
achieved when service requirements are absolutely continu-
ous. Theorem 2 is an immediate consequence of Lemma 6
and the construction of the map t̂ (·).

THEOREM 2: The map t̂ (·) : Z
+ → R

+ is such that

lim
T →∞[C{n, T ; t̂ (n), [(µ∗)−1]}

− C{n, T ; t(n), [(µ∗)−1]}] ≥ 0, n ∈ Z
+,

for any choice of t(·) : Z
+ → R

+.

Theorem 2 substantiates the claim made in the opening
paragraph of this section, namely that {t̂ (·), [(µ∗)−1]} max-
imizes the expected number of successful task completions
among the policy class {t(·), [(µ∗)−1]} uniformly over all ini-
tial states. Corollary 1 now follows. In its statement we use
C{n, T ; t̂ (·)} to denote the expected number of successful
task completions during the period [0, T ) under the station-
ary policy t̂ (·) : Z

+ → R
+ when n is the system state

at time 0.

COROLLARY 1: The map t̂ (·) : Z
+ → R

+ is such that

lim
T →∞[C{n, T ; t̂ (·)} − C{n, T ; [(µ∗)−1]}] ≥ 0, n ∈ Z

+.

PROOF: First, by substitution of the map t(n) = (µ∗)−1,
n ∈ Z

+, into the statement of Theorem 2, we have that

lim
T →∞[C{n, T ; t̂ (n), [(µ∗)−1]} − C{n, T ; [(µ∗)−1]}] ≥ 0,

n ∈ Z
+,

and hence that the policy {t̂ (·), [(µ∗)−1]} achieves a higher
expected number of successful task completions than does
the static policy [(µ∗)−1]. We now use standard arguments to
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infer that a policy whose first r decisions are made according
to the map t̂ (·) : Z

+ → R
+, with all remaining decisions

made according to [(µ∗)−1] will outperform [(µ∗)−1] itself.
To obtain the result we now take the limit r → ∞. This
concludes the proof. �

The map t̂ (·) : Z
+ → R

+ determines Heuristic II, namely
that allocated service t̂ (n) is chosen when the queue length

is n. We see from Corollary 1 that Heuristic II’s throughput
is guaranteed to be at least as large as that of the static policy
[(µ∗)−1] from which it was developed.

5.3. Numerical Examples

In Table 2 you find values of the map t̂ (n) for the same
range of problems as is considered in Table 1 at the conclusion

Table 2. Values of the allocated service t̂ (n) determined by Heuristic II for n = 1–6, 8, 10 for a range of problems with gamma �(r , ν)
service times.

t̂ (n)

(λ, ν) θ n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 8 n = 10

r = 2

(0.25, 0.3) 0.1 6.79 5.99 5.52 5.26 5.10 5.00 4.87 4.79
0.2 5.52 4.82 4.38 4.16 4.05 4.00 3.93 3.89
0.3 4.79 4.18 3.73 3.50 3.40 3.37 3.34 3.32

(0.9, 0.3) 0.1 5.07 5.03 5.01 5.00 4.99 4.98 4.98 4.97
0.2 4.04 3.96 3.91 3.88 3.86 3.85 3.83 3.83
0.3 3.40 3.31 3.24 3.20 3.18 3.16 3.14 3.13

(0.9, 0.8) 0.1 2.67 2.41 2.28 2.20 2.16 2.13 2.10 2.08
0.2 2.41 2.18 2.05 1.98 1.94 1.91 1.88 1.86
0.3 2.23 2.00 1.88 1.81 1.77 1.74 1.71 1.70

r = 1

(0.25, 0.3) 0.1 4.01 2.89 2.40 2.15 2.01 1.92 1.81 1.74
0.2 3.29 2.23 1.83 1.68 1.60 1.54 1.47 1.44
0.3 2.86 1.86 1.51 1.42 1.37 1.33 1.28 1.25

(0.9, 0.3) 0.1 2.10 1.62 1.32 1.14 1.03 0.96 0.87 0.82
0.2 1.81 1.36 1.10 0.97 0.89 0.84 0.78 0.75
0.3 1.62 1.19 0.97 0.86 0.80 0.76 0.71 0.68

(0.9, 0.8) 0.1 1.60 1.25 1.04 0.92 0.84 0.79 0.72 0.68
0.2 1.40 1.05 0.87 0.78 0.72 0.68 0.63 0.60
0.3 1.28 0.94 0.77 0.69 0.64 0.61 0.57 0.55

r = 0.5

(0.25, 0.3) 0.1 2.79 1.69 1.28 1.09 0.98 0.92 0.83 0.79
0.2 2.23 1.18 0.90 0.79 0.73 0.69 0.64 0.61
0.3 1.92 0.92 0.72 0.64 0.60 0.57 0.54 0.53

(0.9, 0.3) 0.1 1.41 0.97 0.72 0.59 0.51 0.46 0.40 0.37
0.2 1.17 0.74 0.54 0.45 0.40 0.36 0.32 0.30
0.3 1.03 0.61 0.45 0.38 0.34 0.31 0.28 0.27

(0.9, 0.8) 0.1 1.17 0.83 0.65 0.54 0.48 0.43 0.38 0.35
0.2 0.98 0.64 0.49 0.41 0.36 0.33 0.30 0.28
0.3 0.88 0.54 0.41 0.34 0.31 0.29 0.26 0.24

r = 0.25

(0.25, 0.3) 0.1 2.07 1.06 0.74 0.60 0.52 0.47 0.42 0.38
0.2 1.61 0.68 0.48 0.40 0.35 0.33 0.30 0.28
0.3 1.37 0.51 0.36 0.31 0.28 0.27 0.24 0.23

(0.9, 0.3) 0.1 1.06 0.66 0.47 0.36 0.31 0.27 0.23 0.20
0.2 0.84 0.47 0.32 0.25 0.21 0.19 0.16 0.15
0.3 0.73 0.37 0.25 0.20 0.17 0.16 0.14 0.13

(0.9, 0.8) 0.1 0.90 0.58 0.43 0.34 0.29 0.26 0.22 0.19
0.2 0.74 0.42 0.30 0.24 0.20 0.18 0.16 0.14
0.3 0.65 0.34 0.24 0.19 0.16 0.15 0.13 0.12
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of Section 4. The map t̂ (·) : Z
+ → R

+ has the same monot-
one characteristics as the map t̄ (·) : Z

+ → R
+ described

earlier. In all cases we have t̂ (n) ≤ t̄ (n), namely that Heuris-
tic II allocates smaller service times than does Heuristic I for
any given queue length. To see why this might be so, com-
pare the expressions on the r.h.s. of (20) and (42) for some
fixed n ≥ 1. The first term is γ (t) in both cases. Suppose
now that the bias terms can be assumed to be uniformly close

to each other and hence that the comparison is dominated by
the final linear terms. We have found that in all cases studied
the throughput ω̄([(µ∗)−1]) which is to be found in (42) is
considerably larger than the quantity ω̄(µ∗) found in (20).
Hence a larger negative penalty is paid via the final term for
increasing t in (42) than in (20). It is therefore not surprising
that the (largest) maximum is to be found at a smaller value
in (42) than in (20) and hence that t̂ (n) ≤ t̄ (n).

Table 3. Estimates of the percentage of arriving tasks successfully served under five heuristics for a range of problems with gamma �(r , ν)
service times.

(λ, ν) θ µ∗ HeurI [(µ∗)−1] HeurII DP

r = 2

(0.25, 0.3) 0.1 0.1554 0.2157 (0.0008) 0.2182 (0.0009) 0.2307 (0.0018) 0.2271
0.2 0.1050 0.1505 (0.0016) 0.1508 (0.0016) 0.1552 (0.0017) 0.1560
0.3 0.0772 0.1118 (0.0013) 0.1142 (0.0015) 0.1148 (0.0015) 0.1153

(0.9, 0.3) 0.1 0.0617 0.0735 (0.0006) 0.0678 (0.0006) 0.0738 (0.0006) 0.0753
0.2 0.0469 0.0580 (0.0006) 0.0564 (0.0006) 0.0590 (0.0005) 0.0594
0.3 0.0368 0.0466 (0.0005) 0.0464 (0.0005) 0.0472 (0.0005) 0.0483

(0.9, 0.8) 0.1 0.1775 0.2256 (0.0008) 0.2279 (0.0010) 0.2338 (0.0008) 0.2337
0.2 0.1467 0.1942 (0.0008) 0.1964 (0.0009) 0.2019 (0.0009) 0.2024
0.3 0.1244 0.1687 (0.0008) 0.1703 (0.0009) 0.1748 (0.0009) 0.1757

r = 1

(0.25, 0.3) 0.1 0.3292 0.4493 (0.0025) 0.4521 (0.0024) 0.4582 (0.0028) 0.4584
0.2 0.2679 0.3656 (0.0024) 0.3610 (0.0024) 0.3703 (0.0026) 0.3705
0.3 0.2298 0.3123 (0.0022) 0.3128 (0.0025) 0.3173 (0.0025) 0.3163

(0.9, 0.3) 0.1 0.1904 0.2309 (0.0009) 0.2391 (0.0010) 0.2432 (0.0010) 0.2432
0.2 0.1635 0.2055 (0.0009) 0.2096 (0.0009) 0.2139 (0.0009) 0.2146
0.3 0.1448 0.1873 (0.0009) 0.1891 (0.0010) 0.1924 (0.0009) 0.1930

(0.9, 0.8) 0.1 0.3580 0.4691 (0.0012) 0.4763 (0.0015) 0.4879 (0.0013) 0.4876
0.2 0.3171 0.4254 (0.0011) 0.4267 (0.0014) 0.4344 (0.0012) 0.4361
0.3 0.2887 0.3884 (0.0011) 0.3911 (0.0013) 0.3973 (0.0012) 0.3982

r = 0.5

(0.25, 0.3) 0.1 0.5214 0.6530 (0.0032) 0.6472 (0.0034) 0.6556 (0.0035) 0.6598
0.2 0.4667 0.5823 (0.0034) 0.5794 (0.0034) 0.5842 (0.0034) 0.5869
0.3 0.4315 0.5396 (0.0031) 0.5363 (0.0033) 0.5406 (0.0032) 0.5403

(0.9, 0.3) 0.1 0.3901 0.4848 (0.0014) 0.4806 (0.0015) 0.4924 (0.0015) 0.4924
0.2 0.3558 0.4429 (0.0013) 0.4381 (0.0014) 0.4469 (0.0014) 0.4512
0.3 0.3331 0.4194 (0.0014) 0.4142 (0.0015) 0.4235 (0.0015) 0.4228

(0.9, 0.8) 0.1 0.5515 0.6912 (0.0016) 0.6831 (0.0017) 0.6960 (0.0017) 0.6966
0.2 0.5116 0.6441 (0.0017) 0.6359 (0.0018) 0.6474 (0.0017) 0.6482
0.3 0.4846 0.6112 (0.0018) 0.6037 (0.0019) 0.6136 (0.0018) 0.6139

r = 0.25

(0.25, 0.3) 0.1 0.6859 0.7850 (0.0038) 0.7792 (0.0038) 0.7860 (0.0038) 0.7951
0.2 0.6460 0.7463 (0.0038) 0.7421 (0.0038) 0.7476 (0.0038) 0.7463
0.3 0.6204 0.7123 (0.0039) 0.7079 (0.0039) 0.7120 (0.0039) 0.7155

(0.9, 0.3) 0.1 0.5909 0.6859 (0.0018) 0.6765 (0.0019) 0.6885 (0.0019) 0.6904
0.2 0.5601 0.6543 (0.0020) 0.6448 (0.0021) 0.6557 (0.0021) 0.6555
0.3 0.5402 0.6297 (0.0019) 0.6216 (0.0019) 0.6299 (0.0019) 0.6320

(0.9, 0.8) 0.1 0.7111 0.8200 (0.0019) 0.8108 (0.0020) 0.8208 (0.0019) 0.8242
0.2 0.6800 0.7879 (0.0020) 0.7783 (0.0020) 0.7878 (0.0021) 0.7891
0.3 0.6593 0.7644 (0.0019) 0.7564 (0.0019) 0.7647 (0.0019) 0.7656
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Figure 1. The percentage of arriving tasks successfully served
under three heuristics for the case (λ, ν) = (0.25, 0.3).

6. NUMERICAL STUDY

Table 3 shows estimates of the percentage of arriving tasks
successfully served (namely, the throughput divided by the
arrival rate) under five heuristics for a range of problems with
gamma �(r , ν) service times. The problems studied are the
same as those considered in Sections 4 and 5 and are such that
there is a wide range (from under 5% to more than 80%) in the
percentage of successfully served tasks. The five heuristics
studied are (reading from left to right in the tables):

(i) the optimal Markovian policy µ∗ discussed in Section
3;

(ii) Heuristic I as developed in Section 4;
(iii) the static policy [(µ∗)−1] which allocates time (µ∗)−1

to all served tasks;
(iv) Heuristic II as developed in Section 5;
(v) a heuristic developed by the application of stochastic

DP to a finite state/finite action/discrete time approx-
imation of the problem, with a discrete time quantum
set equal to δ = 0.002.

In the case of (i) the figures quoted in the table were
obtained by application of the formula in (4), while in (v) the

methodology deployed was DP value iteration [17]. Please
note that for the DP policy, a halving of the discrete time
quantum to 0.001 did not improve the achieved throughput
(to the accuracy reported in the tables) but greatly increased
the computing time required. The results for (ii)–(iv) were
obtained by Monte Carlo simulation. For the heuristics con-
cerned, all estimates of the percentage of tasks successfully
served are accompanied in the table by their standard errors
(in brackets). The simulation study was designed to achieve
sufficiently small standard errors to facilitate meaningful per-
formance comparisons between the heuristics. To further
assist the reader, the results for the optimal Markovian policy
µ∗ and for Heuristics I and II are displayed in Figures 1–3.
The policy [(µ∗)−1] and the DP heuristic were omitted from
the figures because of their closeness in performance to
Heuristics I and II, respectively. See comments later.

Before preceding to discussion of the results, please note
that (arbitrarily good approximations to) Heuristics I and II
may be computed efficiently. We observe that under these
(and, indeed, any other stationary) service heuristics, the
number of tasks present in the system and not in receipt of
service is stochastically bounded above in steady state by the
number present in an equivalent system, but for which no ser-
vice at all is offered. However, the steady state distribution of

Figure 2. The percentage of arriving tasks successfully served
under three heuristics for the case (λ, ν) = (0.9, 0.3).
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Figure 3. The percentage of arriving tasks successfully served
under three heuristics for the case (λ, ν) = (0.9, 0.8).

the latter is well known to be Poisson (λθ−1). We infer that
the long run proportion of time for which the queue length is
outside the range 0 ≤ n ≤ N̄ , where

N̄ = max(50, λθ−1) + 3
√

max(50, λθ−1)

is small (at most around 10−3). Hence implementation of the
maximizations in (20) and (42) over the range 1 ≤ n ≤ N̄ is
perfectly adequate. For values of n above N̄ we set the val-
ues of t̄ (n) and t̂ (n) equal to t̄ (N̄) and t̂ (N̄), respectively. In
practice, both t̄ (n) and t̂ (n) achieve limiting values before n

reaches N̄ . The computational ease with which the dynamic
heuristics I and II may be developed (in practice, this takes
just a few seconds on a standard PC) stands in sharp contrast
to the computational burden of a full DP implementation as
outlined in Section 2.

The evidence of Table 3 is that under all heuristics the
percentage of successfully served tasks is decreasing in the
exogenous arrival rate λ, the loss rate θ , and the mean (actual)
service time rν−1. That for given (λ, ν), the percentage of
successfully served tasks is decreasing in r and θ is par-
ticularly clear from Figures 1–3. The optimal Markovian
policy µ∗ performs poorly. An approach to the allocation of
service times which is both static (i.e., state independent)

and, more crucially, random with a high degree of vari-
ability does not work well. Overall, using the performance
measures in Table 3, Heuristic I effects an improvement
of over 26% on the Markovian policy µ∗. This improve-
ment is most marked in the low throughput/high mean ser-
vice time cases. A notable feature of Table 3 is the strong
performance of the static policy [(µ∗)−1], reflecting the fact
that while the allocated services chosen by strongly perform-
ing dynamic policies do vary with the queue length, the
degree of variability is modest. Overall, the performances
of Heuristic I and the static policy [(µ∗)−1] are similar, with
the dynamic heuristic slightly outperforming the static pol-
icy in high throughput instances. Heuristic II outperforms
all of the above. That it should outperform static policy
[(µ∗)−1] is guaranteed by Corollary 1. While the perfor-
mances of Heuristics I and II are fairly comparable in high
throughput instances, Heuristic II is plainly the stronger in
cases (e.g., when r = 2) for which the percentage of suc-
cessfully served tasks is low. Overall, Heuristic II offers an
improvement in performance of around 2% on average over
the static policy [(µ∗)−1], but the degree of improvement is
much greater than this in low throughput instances where it
rises to 9%. In all cases studied, a comparison of the perfor-
mance of Heuristic II with that of the policy developed by
stochastic DP yields the conclusion that the former is likely
very close to optimal. In the cases considered, DP offers an
improvement in performance over Heuristic II of just 0.3%
on average.
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