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Introduction

The basic vehicle routing problem (VRP) calls for the
determination of a set of minimum-cost routes to be performed
by a fleet of vehicles to serve a given set of customers with
known demands, where each route originates and terminates
at a single depot. The total cost consists of two parts, which
are the objectives to be minimized: (1) the total number of
routes (vehicles) required to serve all customers and (2) the
total vehicle travel distance of all routes. It is assumed that
the capital cost of an additional vehicle will always exceed
any travelling cost that could be saved by its use. Therefore,
the priority is given to the first objective. Each customer must
be assigned to only one vehicle and the total demand of all
customers assigned to a vehicle does not exceed its capacity.

The vehicle routing problem with time windows (VRPTW)
is an extension of the basic VRP in which vehicle capacity
constraints are imposed and each customer i is associated
with a time interval [ai , bi ], called a time window, during
which service must begin. In any vehicle route, the vehicle
may not arrive at customer i after bi to begin service. If a
vehicle arrives before ai , it waits. When the time window
requirements are strictly enforced, the problem is also called a
VRP with hard time windows (VRPHTW). The problem may
arise in a variety of applications, including retail distribution,
school bus routing, bank deliveries, mail and newspaper deliv-
eries, municipal waste collection, fuel oil deliveries, and more.
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The time windows are designed to handle issues such as
availability of personnel to load or unload the vehicle, traffic
regulations, and customer preferences. For example, a store
may only accept deliveries before it opens for business at 9:00
a.m. For VRPHTW, research has flourished over the last two
decades. The interested reader will find excellent surveys in
Cordeau et al (2002).

The vehicle routing problem with soft time windows
(VRPSTW) is an extension of VRPHTW in which some or all
customer time window requirements are not strictly enforced
and can be violated by paying appropriate penalties. For each
customer i, we can define penalty functions to calculate the
penalty payable if the vehicle arrives before ai or after bi .
If a certain customer’s time window cannot be violated, that
is, it is hard, the penalty payable to that customer for any
violation is set to infinity. In that respect, the VRPHTW is
a special case of the VRPSTW in which no violations are
allowed. There are many good reasons for allowing the time
windows to be soft, as stated in Koskosidis et al (1992),
Balakrishnan (1993), Taillard et al (1997), Fagerholt (2001),
and Chiang and Russell (2004), including:

(1) Many applications do not require a time window that is
precise to exact points of time. Therefore, time windows
are usually soft by nature.

(2) It is usually impossible to determine accurate vehicle
travel times in practice.

(3) Setting the time windows to be soft may allow significant
savings in the number of vehicles required and/or the total
vehicle travel distance of all routes to be achieved.

(4) The VRPSTW model is more general and includes
the VRPHTW. An algorithm for the VRPSTW can be
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extended to solve the VRPHTW by appropriately raising
the penalty coefficients.

(5) VRPSTW can always generate feasible solutions in
instances where a hard time window approach would have
failed. Problems with hard time windows and a small
fleet might not have a solution satisfying all customers.
In this case, the VRPSTW model would yield usable
solutions where some of the customers would not be
serviced within the desired time windows.

(6) The VRPSTW model can be used to find a good trade-off
between fleet size and service quality to customers.

Note that the objectives to be minimized for the VRPSTW
become three: (1) the total number of routes (vehicles)
required to serve all customers, (2) the total penalty of time
window violations, and (3) the total vehicle travel distance
of all routes.

The VRPSTW has received some attention over the last
decade. Koskosidis et al (1992) presented an optimization-
based heuristic to solve the problem. Balakrishnan (1993)
described three simple heuristics for the VRPSTW, which
were based on nearest neighbour, Clarke–Wright savings, and
space-time rules, respectively. Besides these classical heuris-
tics, Taillard et al (1997) designed a tabu search (TS) heuristic
for a special case of the VRPSTW, in which the total number
of vehicles required was given and fixed. This meant that the
fleet size was not a decision variable. Therefore, the objective
(1) mentioned above did not need to be minimized. Fagerholt
(2001) described a real ship scheduling problem with soft
time windows and proposed an optimization-based approach
based on a set partitioning formulation to solve the problem.
Recently, Chiang and Russell (2004) developed a TS solution
method for the type of VRPSTW that Balakrishnan (1993)
studied.

In this paper, we present a unified penalty function and
a unified TS algorithm for the different types of VRPSTW.
Experimental results are reported and compared with other
approaches.

Notation and problem representation

Let G = (V, E) be a given undirected network,
where V = {0, . . . , n} is the vertex set and E is the edge set.
Vertices i = 1, . . . , n correspond to the customers, whereas
vertex 0 corresponds to the depot.

A non-negative cost, ci j , is associated with each edge
(i, j) ∈ E and represents the travel time (distance) spent
from vertex i to vertex j. If vehicle k travels directly from
vertex i to vertex j, then xi jk = 1, otherwise xi jk = 0. A
complete network is assumed. If any edges between vertices
are missing in the original graph, then they are replaced by
edges with an artificially high cost.

Each customer i (i = 1, . . . , n) is associated with a known
non-negative demand, di , to be delivered or picked up. A set
of identical vehicles, each with capacity C, is available at the

depot. To ensure feasibility, we assume that di �C for each
i = 1, . . . , n. Each vehicle may serve at most one route. Each
vehicle route must start and end at the depot.

Furthermore, each customer i (i = 1, . . . , n) is associated
with a time window [ai , bi ] during which service should
ideally begin and a service time si for unloading or loading the
goods. The depot has a service time s0=0, and a time window
[a0, b0]. Normally, a0 = 0. The start time of each vehicle
route is greater than or equal to a0. Moreover, observe that
the time window requirements induce an implicit orientation
of each route even if the original matrices are symmetric, and
an implicit route length constraint (ie a latest time instant to
complete the route) where the maximum route length L =b0.
Each route length consists of the vehicle travel time, waiting
time at some customers, and time to serve all customers on
the route. Therefore, the length of route k is

n∑
i=0

n∑
j=0

ci j xi jk +
∑
i∈Nk

wi +
∑
i∈Nk

si

where wi is the waiting time at customer i and Nk is the set
of customers assigned to route k.

In the hard time window case, a vehicle is not allowed
to arrive at customer i after bi to begin service. If a vehicle
arrives before ai , it waits. However, in the soft time window
case, each customer time window can be violated by paying
an appropriate penalty. Let ti denote the arrival time instant
at customer i ; the penalty payable P(ti ) can be represented
as a linear function of the amount of time window violation.
For customer i, penalty coefficients �i and �i are defined to
denote the penalty payable for each time unit of service begin-
ning before ai and after bi , respectively. In practice, these
coefficients could represent the costs of lost sales, goodwill,
etc, due to the customer inconvenience for not meeting the
time windows, and are therefore often called inconvenience
costs. It is not necessary for �i and �i to be equal, or for
these penalty coefficients to be equal across customers. For
some important customers or customers whose time window
requirements are very strict, the value of �i and �i can be
greater, even set to infinity which, in effect, converts this time
window to a hard time window.

The different ways of allowing time window violations lead
to different types of VRPSTW.

Type 1: If a vehicle arrives before ai , it waits, as in the hard
time window case. But a vehicle is allowed to arrive
at customer i after bi to begin service by paying
an appropriate penalty, see Figure 1(a). Taillard et
al (1997) proposed a TS heuristic for this type of
problem.

Type 2: Both early and late service at customer locations
are allowed by paying appropriate penalties, see
Figure 1(b). Koskosidis et al (1992) presented
an optimization-based heuristic for this type of
problem.
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Figure 1 Main types of VRPSTW. In each diagram, the horizontal axis represents time and the vertical axis represents the penalty cost.

Type 3: Assume the maximum allowable violation of the time
windows to be Pmax. Then the outer time window of
each customer i may be enlarged to [ai − Pmax, bi +
Pmax]. Furthermore, assume that the maximum
waiting time allowed before the outer time window is
Wmax (see Figure 1(c)). This is the type of the prob-
lem that Balakrishnan (1993) and Chiang and Russell
(2004) studied. Balakrishnan (1993) described three
simple heuristics for it. Chiang and Russell (2004)
developed a TS solution method for the problem.

Type 4: Based on Type 1, define Pmax as the maximum allow-
able lateness at customer locations, see Figure 1(d).

Type 5: Based on Type 2, define Pmax as the maximum allow-
able violation of the time windows. Then the outer
time window of each customer i may be enlarged to
[ai − Pmax, bi + Pmax], see Figure 1(e). The time for
the start of service at customer i must be within the
outer time window [ai − Pmax, bi + Pmax] and prefer-
ably within the inner time window [ai , bi ]. The case
study by Fagerholt (2001) belongs to this type of
problem, in which an optimization-based approach
based on a set partitioning formulation was proposed
to solve the problem.

Type 6: Based on Type 3, remove the limitation of the max-
imum allowable waiting time Wmax, see Figure 1(f).

Some other variants can be defined on the base of the above
main types of VRPSTW. If we let Emax and Lmax represent
the maximum allowable violation of time windows before
ai and after bi , respectively, instead of Pmax, then a unified
penalty function for the above main types of VRPSTW can
be defined as

P(ti ) =




∞(infeasible) if ti < ai − Emax − Wmax

�i Emax if ai − Emax − Wmax� ti
< ai − Emax

�i (ai − ti ) if ai − Emax� ti < ai
0 if ai � ti �bi
�i (ti − bi ) if bi < ti �bi + Lmax

∞(infeasible) if ti > bi + Lmax

where �i and �i are the penalty coefficients. P(ti ) can repre-
sent the penalty function for different types of VRPSTW

as different values are assigned to Wmax, Emax, and Lmax.
When Wmax = ∞, Emax = 0, and Lmax = ∞, it is for Type 1.
When Wmax = 0, Emax = ∞, and Lmax = ∞, it is for Type 2.
When 0<Wmax and Emax, Lmax < ∞, it is for Type 3. When
Wmax = ∞, Emax = 0, and 0< Lmax < ∞, it is for Type 4.
When Wmax = 0, 0< Emax, and Lmax < ∞, it is for Type 5.
When Wmax = ∞, 0< Emax, and Lmax < ∞, it is for Type 6.
Furthermore, when Wmax = ∞ and Emax = Lmax = 0, it is for
the VRPHTW.

As mentioned in the Introduction, the VRPSTW has
three objectives to be minimized. Wishing to find a good
trade-off between cost and service quality to customers, like
Balakrishnan (1993), we judge the quality of the solution
obtained using the following criteria in decreasing order of
importance: (1) the total number of vehicles used, (2) the
total deviation of time window to start service, and (3) the
total vehicle travel distance. Therefore, a feasible solution
with a certain number of vehicles always dominates over any
other feasible solutions requiring more vehicles. This in fact
introduces a hierarchical objective function: first, minimize
objective (1) and then, for the same number of vehicles,
minimize objectives (2) and (3). The objective function can
be expressed in pre-emptive goal-programming notation
as

Min z = P1K + P2


 n∑

i=1

P(ti ) +
n∑

i=0

n∑
j=0

K∑
k=1

ci j xi jk




where K represents the total number of vehicles used, and
P1 and P2 denote priority levels (P1 > > P2). Since objective
(2), as stated above, is more important than objective (3), then
the level of the importance can be adjusted by the penalty
(weight) coefficients �i and �i .

The tabu search algorithm

Our algorithm is based on tabu search, a local search meta-
heuristic introduced first by Fred Glover in 1986, and since
then has been used to solve many practical applications. It is
designed to guide the solution process to escape local optima.
A thorough discussion may be found in Glover and Laguna
(1997).



666 Journal of the Operational Research Society Vol. 59, No. 5

We developed an effective TS heuristic for the open vehicle
routing problem (OVRP) in a previous work (Fu et al, 2005,
2006). The full details of the algorithm were given in the
referenced paper and so only the outline of the algorithm and
the changes that have been made to apply it to the VRPSTW
are described here.

Initial solution

An initial solution is required for any TS algorithm to start
the local search process. With respect to the TS metaheuristic
for the VRP, some researchers, such as Van Breedam (2001)
and Brandão (2004), claimed that the performance of the TS
heuristic was highly dependent on the quality of the initial
solutions. However, in our previous work (Fu et al, 2005),
it was shown that the initial solution did not have a large
influence on the final solutions in the proposed TS heuristic.
In this paper, therefore, the initial solution is generated by
building up successive routes where the next customer is
chosen at random and added to the end of the route unless
this violates the capacity or route length constraints; in that
case the route is completed back to the depot and a new route
starts.

Neighbourhood structure

Some discussion of different neighbourhood structures for
VRP was presented in Fu et al (2005), including proposals
from Pureza and França (1991), Osman (1993), Gendreau et al
(1994), Duhamel et al (1997), Cordeau et al (2001), Brandão
(2004) and Taillard et al (1997).

The TS algorithm presented in this paper uses the same
mixed neighbourhood structure as was introduced in Fu et al
(2005), but some necessary modification is made for the
VRPSTW where each vehicle route must start and end at
the depot. There are four different types of move that may
be used in this mixed neighbourhood structure, and the algo-
rithm selects a type of move randomly at each iteration. The
four different types of move are based on the 2-interchange
mechanism, but differ in the details of the moves that are
implemented. The four different types of move are referred to
as vertex reassignment, vertex swap, 2-opt and ‘tails’ swap.
Some of the possible transformations are described in the
following paragraphs.

A solution of the problem can be denoted by a permuta-
tion (0, i1, i2, i3, 0, i4, . . . , 0, in−1, in, 0) of (0, . . . , n). Only
0 is allowed to appear more than once, each time for a new
route. The first 0 and the following vertices before the second
0 consist of the first delivery route, the second 0 and the
following vertices before the third 0 consist of the second
delivery route, and so on. In consideration of feasibility, the
first as well as the last item of a solution must be 0. If one
0 is adjacent to another, that means one route contains no
customer, so it can be eliminated.

Select two different vertices (customer or depot, within the
same route or different ones) randomly. Examples are shown

underlined below. Perform one of the following four moves
randomly.

(a) Vertex reassignment: Remove the first selected vertex
from its current position on the route and insert it into
the position after the second selected vertex, that is,
X1 = (0135604790280) → X2 = (0156047902830),
X1 = (0135064709280) → X2 = (0135647092800).

(b) Vertex swap: Exchange the positions of two
selected vertices, that is, X1 = (0135064790280) →
X2 = (0135460790280), X1 = (0135604790280) →
X2 = (0135004796280).

(c) 2-opt: Reverse the order of all elements between two
selected vertices like the standard 2-opt move in TSP,
if two selected vertices are within the same route, that
is, X1 = (0135640790280) → X2 = (0146530790280),
X1 = (0135604790280) → X2 = (0135697400280).

(d) ‘Tails’ swap: Exchange the ‘tails’ after two selected
vertices (from the selected vertex to the end of the route;
both vertices must be customers), if two selected vertices
are in different routes, that is, X1 = (0135604790280) →
X2 = (0137904560280).

The first and the last 0 of a solution are not allowed to
be selected and removed during this 2-interchange process.
Note that some moves only make small changes to the current
solution and carry on the search within a restricted part of the
solution space, facilitating the algorithm to converge; some
moves make larger changes to the current solution and guide
the search to different areas of the solution space.

(a)–(c) are the moves that can possibly reduce the number
of routes. The ‘tails’ swap or move (d) was originally intro-
duced because of the structure of the OVRP, where we wished
to preserve the ‘tails’ or final parts of routes which would
typically include customers far from the depot, while allowing
the set of customers included in the early part of the route to
be changed. However, this type of move has been retained for
the VRPSTW since it allows changes while preserving the
sequence of customers in the earlier and later parts of routes,
a feature that may be beneficial when time window require-
ments are an important feature.

To test the influence of the neighbourhood structure and
the search strategy on the performance of the algorithm, we
compared the following three cases:

(a) Single type of neighbourhood structure (that is, with only
one type of move).

(b) Mixed neighbourhood structure with the above four types
of move, and perform all of the four moves one by one
for the selected two different vertices.

(c) Mixed neighbourhood structure with the above four types
of move, but perform one of the four moves randomly for
the selected two different vertices.

It showed that case (3) usually produced better solutions
than the other cases did. Therefore, the mixed neighbourhood
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structure and the search strategy in which the current move is
randomly selected among the four moves are adopted in this
TS algorithm.

Evaluation of solutions

To facilitate the exploration of the search space, a move is
allowed even if it results in an infeasible solution in terms of
the vehicle capacity or route length. The extent of infeasibility
can be measured by incorporating the vehicle capacity and
maximum route length constraints into the objective func-
tion by adding a penalty if the constraints are broken. So a
solution can be evaluated by the following objective function

Min z = P1K + P2

{
n∑

i=1

P(ti ) +
K∑

k=1
 n∑

i=0

n∑
j=0

ci j xi jk + p(Ec(k) + Et (k))







where Ec(k) and Et (k) are the excess of load and dura-
tion in route k, respectively, and p is the infeasible penalty
coefficient. Ec(k) and Et (k) are equal to zero for all routes
if a solution is feasible. p ∈ [0.00001, 200000] is initially
equal to 1 and weighted by a self-adjusting parameter: every
10 iterations, it is divided by 2 if all 10 previous solutions
were feasible or multiplied by 2 if all were infeasible. This
mechanism was also used in Fu et al (2005), and is based on
the method used by Gendreau et al (1994) in the Tabu route
algorithm for the VRP.

Tabu list and stopping criterion

The tabu list and stopping criterion also follow the method
described in Fu et al (2005). The tabu list contains the
move attributes of solutions during the last 5–10 (selected
randomly) iterations. The search is terminated if either a
specified number of iterations have elapsed in total or since
the last best solution was found.

TS algorithm

The following variables are used in the description of the TS
algorithm:

iter current number of iterations;
max iter maximum number of iterations;
cons iter current number of consecutive iterations

without any improvement to the best solu-
tion so far;

max cons iter maximum number of consecutive iterations
without any improvement to the best solu-
tion so far;

cand list current number of candidate moves on the
list;

max cand list maximum number of candidate moves on
the list.

The unified TS algorithm for VRPSTW is described below.
Set Wmax, Emax, Lmax, �i and �i to the corresponding value

according to the type of VRPSTW to be solved and the level
of importance between objectives (2) and (3).

Generate an initial feasible solution randomly, and set this
solution as the current solution and the best solution so far;

Set iter and cons iter to 0;
While (iter � max iter) and (cons iter � max cons iter)
do
Begin
While (cand list � max cand list) do
begin
Select two vertices randomly;
Perform one of the four types of neighbourhood move
randomly;
Add the solution produced by the selected move to the
candidate list;

end;
Select the best solution in the candidate list if it is not tabu,
or it produces a solution strictly
better than the best solution so far;
Set the new solution as the current solution, update the
tabu list and increment iter;
If the new solution improves the best solution so far, update
the best solution so far, and set
cons iter to 0; Otherwise, increment cons iter;
End.

This style of TS algorithm was found to be effective for the
OVRP in Fu et al (2005), which is why it has been used as the
basis for solving the VRPSTW in this paper. Its simple but
powerful mixed neighbourhood structure and the stochastic
elements in the method allow effective diversification within
a local search framework.

Computational results and comparison

This unified TS algorithm was coded in Delphi 7.0 and
implemented on a Pentium-II PC running on 600MHz with
184MB RAM. To show the computational performance of
the algorithm, it was tested on the 56 benchmark prob-
lems generated by Solomon (1987) (can be downloaded
from: http://w.cba.neu.edu/∼msolomon/problems.htm) and
the results were compared with others in the literature.

These test problems were extensively used to test algo-
rithms both for the VRPHTW and for the VRPSTW. In these
100-customer Euclidean problems, the travel times are equiv-
alent to the corresponding Euclidean distances. Six different
sets of problems are defined, namely R1, C1, RC1, R2, C2,
and RC2. In problem sets R1 and R2, customers are randomly
distributed, whereas in sets C1 and C2, they are clustered;
and a mix of random and clustered structure is contained
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in problem sets RC1 and RC2. In problem sets R1, C1 and
RC1, the time window is narrow at the central depot so that
only a few customers can be served on each route. The time
window is wider for problem sets R2, C2, and RC2 so that
many customers can be visited on each route and only a few
vehicles are required.

Our unified TS algorithm for three of the six main types of
VRPSTW that were previously defined (Type 1, Type 2, and
Type 3) was tested on the benchmark problems in the liter-
ature. The best solutions produced by the algorithm during
the course of multiple experiments were compared with those
produced by other approaches in the literature, using the
criteria of judging the quality of the solution in decreasing
order of importance: (1) the total number of vehicles used,
(2) the total deviation of time window to start service, and (3)
the total vehicle travel distance.

The results were produced with the following bounds:
max cand list= 350, max cons iter = 5000, and max iter
= 15000.

Comparison of the results on Type 1 of VRPSTW

Taillard et al (1997) designed a TS heuristic for Type 1
of VRPSTW and tested it on the 56 benchmark problems.
The results reported were feasible solutions to the VRPHTW
in each case, that is, the percentage of non-violated time
windows was 100%, and the number of routes was set to the
best solution reported in the literature for each problem, not
minimized by the algorithm.

As in Taillard et al (1997), we suppose that �i =0, �i =100
for all i. The real Euclidean distances between customers are
used during the computations, whereas the final results are
rounded to the second decimal. The best solutions produced
by our unified TS algorithm during the course of multiple
experiments are reported in Table 1 for all 56 test prob-
lems, using the format: number of routes/total travel distance,
percentage of non-violated time windows. In the table, our
best solutions are compared with those produced by Taillard
et al (1997) for the VRPSTW and other algorithms reported in
the literature for the VRPHTW, respectively, using the format:
number of routes/total travel distance. In the table, a double
asterisk ∗∗ indicates that our algorithm has improved the best
known solution (lower number of routes required or shorter
total travel distance) and a single asterisk ∗ means a tie with
the best solution produced by Taillard et al (1997). When the
percentage of non-violated time windows is 100%, they are
compared with those for the VRPHTW as well. An ‘H’ after ∗∗
indicates that our algorithm has improved the best published
solution and after ∗ means a tie with the best published solu-
tion for the VRPHTW. Overall, our algorithm has improved
25 solutions (12 cases with lower number of routes required,
13 cases with shorter total distance for the same number of
routes required and non-violated time windows) and tied 16
solutions on the 56 test problems produced by Taillard et al
(1997) for the VRPSTW, and improved three solutions and

tied 16 best known solutions for the VRPHTW. Note that the
method used by Taillard et al (1997) used the best known
solution at that time for the number of vehicle routes and did
not attempt to minimize the number of routes. The results
from our algorithm also show that setting the time windows
to be soft does obtain significant savings in the number of
vehicles required and/or the total vehicle travelling distance
for some routes.

The computation time in seconds for different sets of prob-
lems is shown in Table 2.

Comparison of the results on Type 2 of VRPSTW

Koskosidis et al (1992) developed an optimization-based
heuristic for Type 2 of VRPSTW and tested it on the five
sets of randomly generated problems and 21 instances of 56
Solomon’s benchmark problems. The heuristic started with
low penalty coefficients, which were gradually increased.
In our algorithm, we suppose the penalty coefficients
�i = �i = 100 for all i and run it for the 21 instances listed.
The comparison of the results is shown in Table 3, using
the format: number of routes/total travel distance, percentage
of non-violated time windows. The comparison of the CPU
time in seconds is in Table 4.

Our algorithm has improved 12 and tied seven solutions
on the 21 instances listed, indicated by ∗∗ and ∗, respectively.
Among the 12 improved solutions, eight of them require a
lower number of vehicle routes and four are of shorter total
travel distance (for the same number of routes required and
non-violated time windows). For the problem sets of C1,
comparing with the heuristic of Koskosidis et al (1992) as
well as our algorithm for Type 1 of VRPSTW, our algorithm
for Type 2 of VRPSTW takes much more CPU time to find
the same best known solutions, and cannot obtain the best
known solutions in two instances.

Comparison of the results on Type 3 of VRPSTW

For Type 3 of VRPSTW, Balakrishnan (1993) described three
simple heuristics, Chiang and Russell (2004) developed a TS
solution method. The eight problems based on the R1 and
RC1 sets of the Solomon benchmark problems were used
to test the algorithms. The hard time windows in the orig-
inal benchmark data were converted to soft time windows
by allowing a certain percentage of time window violation,
Emax = Lmax, that is, Pmax, as in Balakrishnan (1993) and
Chiang and Russell (2004). Pmax (Emax and Lmax) and Wmax

were expressed as a percentage of the maximum allowable
route time duration. Wmax had the interesting effect of making
some of the soft time window problems more difficult to solve
than the original hard time window problems which specify
no limit on wait time. To be consistent with Balakrishnan
(1993) and Chiang and Russell (2004), the Pmax (Emax and
Lmax) and Wmax values varied in combinations of 0, 5, and
10% of the maximum allowable route time duration, and the
penalty coefficients �i and �i were set equal to 1.
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Table 1 Comparison of the results on Type 1 of VRPSTW

VRPHTW VRPSTW

Problem Best published solution Reference Taillard et al Fu et al

R101 19/1650.80 Rochat and Taillard (1995) 19/1650.79 14/1535.24 75% ∗∗
R102 17/1486.12 Rochat and Taillard (1995) 17/1487.60 13/1416.84 89% ∗∗
R103 13/1292.85 Homberger and Gehring (1999) 13/1294.24 11/1267.28 96% ∗∗
R104 9/1013.32 Homberger and Gehring (1999) 10/982.72 9/983.50 99% ∗∗
R105 14/1377.11 Rochat and Taillard (1995) 14/1377.11 13/1441.24 98% ∗∗
R106 12/1252.03 Rochat and Taillard (1995) 12/1259.71 11/1355.25 97% ∗∗
R107 10/1112.16 Chiang and Russell (2004) 10/1126.69 10/1147.59 100%
R108 9/964.38 Cordeau et al (2001) 9/968.59 9/978.69 100%
R109 11/1194.73 Homberger and Gehring (1999) 11/1214.54 11/1264.22 100%
R110 10/1125.04 Cordeau et al (2001) 11/1080.36 11/1083.99 100%
R111 10/1096.72 Rousseau et al (2002) 10/1104.83 10/1138.47 100%
R112 9/982.14 Gambardella et al (1999) 10/964.01 10/963.22 100% ∗∗

C101 10/828.94 Rochat and Taillard (1995) 10/828.94 10/828.94 100% ∗H
C102 10/828.94 Rochat and Taillard (1995) 10/828.94 10/828.94 100% ∗H
C103 10/828.06 Rochat and Taillard (1995) 10/828.06 10/831.03 100%
C104 10/824.78 Rochat and Taillard (1995) 10/824.78 10/824.78 100% ∗H
C105 10/828.94 Rochat and Taillard (1995) 10/828.94 10/828.94 100% ∗H
C106 10/828.94 Rochat and Taillard (1995) 10/828.94 10/828.94 100% ∗H
C107 10/828.94 Rochat and Taillard (1995) 10/828.94 10/828.94 100% ∗H
C108 10/828.94 Rochat and Taillard (1995) 10/828.94 10/828.94 100% ∗H
C109 10/828.94 Rochat and Taillard (1995) 10/828.94 10/828.94 100% ∗H
RC101 14/1697.43 Homberger and Gehring (1999) 14/1696.94 13/1654.30 92% ∗∗
RC102 12/1558.07 Homberger and Gehring (1999) 12/1554.75 12/1593.71 100%
RC103 11/1261.67 Shaw (1998) 11/1264.27 11/1321.71 100%
RC104 10/1135.48 Cordeau et al (2001) 10/1135.83 10/1175.23 100%
RC105 13/1637.15 Homberger and Gehring (1999) 13/1643.38 12/1654.07 92% ∗∗
RC106 11/1427.13 Cordeau et al (2001) 11/1448.26 11/1422.72 99%
RC107 11/1230.95 Rochat and Taillard (1995) 11/1230.54 11/1237.64 100%
RC108 10/1147.26 Homberger and Gehring (1999) 10/1139.82 10/1184.55 100%

R201 4/1252.37 Homberger and Gehring (1999) 4/1254.80 3/1500.36 89% ∗∗
R202 3/1191.70 Rousseau et al (2002) 3/1214.28 3/1205.79 100% ∗∗
R203 3/942.64 Homberger and Gehring (1999) 3/951.59 3/950.36 100% ∗∗
R204 2/838.36 Chiang and Russell (2004) 2/941.76 2/854.30 100% ∗∗
R205 3/994.42 Rousseau et al (2002) 3/1038.72 3/1001.75 100% ∗∗
R206 3/906.14 Schrimpf et al (2000) 3/932.47 3/917.94 100% ∗∗
R207 2/906.37 Chiang and Russell (2004) 3/837.20 2/903.01 100% ∗∗H
R208 2/731.23 Homberger and Gehring (1999) 2/748.01 2/738.27 100% ∗∗
R209 3/910.55 Homberger and Gehring (1999) 3/959.47 3/909.89 100% ∗∗H
R210 3/955.39 Homberger and Gehring (1999) 3/980.90 3/948.20 100% ∗∗H
R211 2/909.29 Chiang and Russell (2004) 2/923.80 2/953.18 100%

C201 3/591.56 Rochat and Taillard (1995) 3/591.56 3/591.56 100% ∗H
C202 3/591.56 Rochat and Taillard (1995) 3/591.56 3/591.56 100% ∗H
C203 3/591.17 Rochat and Taillard (1995) 3/591.17 3/591.17 100% ∗H
C204 3/590.60 Rochat and Taillard (1995) 3/590.60 3/590.60 100% ∗H
C205 3/588.88 Rochat and Taillard (1995) 3/588.88 3/588.88 100% ∗H
C206 3/588.49 Rochat and Taillard (1995) 3/588.49 3/588.49 100% ∗H
C207 3/588.29 Rochat and Taillard (1995) 3/588.29 3/588.29 100% ∗H
C208 3/588.32 Rochat and Taillard (1995) 3/588.32 3/588.32 100% ∗H
RC201 4/1406.94 Cordeau et al (2001) 4/1413.79 4/1409.88 100% ∗∗
RC202 3/1389.57 Homberger and Gehring (1999) 4/1164.25 3/1435.56 100% ∗∗
RC203 3/1060.45 Homberger and Gehring (1999) 3/1112.55 3/1062.38 100% ∗∗
RC204 3/799.32 Homberger and Gehring (1999) 3/831.69 3/799.98 100% ∗∗
RC205 4/1302.42 Homberger and Gehring (1999) 4/1328.21 3/1656.80 93% ∗∗
RC206 3/1160.91 Cordeau et al (2001) 3/1158.81 3/1186.80 100%
RC207 3/1062.05 Cordeau et al (2001) 3/1082.32 3/1127.83 100%
RC208 3/832.36 Cordeau et al (2001) 3/847.90 3/846.10 100% ∗∗
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The computational results of our unified TS algorithm
(UTS) and the comparison with the best solution found
by Balakrishnan’s simple heuristics (SIM) and Chiang and
Russell’s TS with advanced recovery (AR) are presented in
Tables 5 and 6. Our algorithm solved all problem instances

Table 2 CPU time on Type 1 of VRPSTW

Problem sets CPU time in second Average

R1 313.08–1203.26 786.34
C1 18.68–238.92 68.41
RC1 190.65–1130.75 697.25
R2 140.77–897.37 528.3
C2 25.37–133.47 56.97
RC2 295.66–882.21 548.73

Table 3 Comparison of the results on Type 2 of VRPSTW

Problem Koskosidis et al Fu et al

K/distance Non-violated K/distance Non-violated
windows (%) windows (%)

R101 21/1856 100 14/1872.94 56 ∗∗
R102 19/1628 100 13/1732.54 71 ∗∗
R103 14/1428 100 12/1542.79 91 ∗∗
R104 10/1114 100 10/1107.18 100 ∗∗
R108 10/975 100 10/968.34 100 ∗∗
R109 13/1244 98 11/1379.87 96 ∗∗

C101 10/829 100 10/828.94 100 ∗
C102 10/829 100 10/828.94 100 ∗
C103 10/829 100 10/918.08 100
C104 10/829 100 10/899.00 100
C105 10/829 100 10/828.94 100 ∗
C106 10/829 100 10/828.94 100 ∗
C107 10/829 100 10/828.94 100 ∗
C108 10/829 100 10/828.94 100 ∗
C109 10/829 100 10/828.94 100 ∗

RC101 16/1815 95 13/1851.22 74 ∗∗
RC102 14/1605 94 13/1772.42 99 ∗∗
RC103 13/1390 100 11/1416.81 100 ∗∗
RC104 10/1353 100 10/1262.55 100 ∗∗
RC106 13/1541 92 12/1531.57 99 ∗∗
RC108 11/1315 99 11/1224.72 100 ∗∗

Table 4 Comparison of CPU time on Type 2 of VRPSTW

Algorithm Problem sets CPU time in seconds Average Computer

Koskosidis et al R1 209.1–903.3 560.9
C1 2.9–3.3 3.0 IBM3081/VM370
RC1 570.0–834.7 689.4

Fu et al R1 634.8–1357.3 993.1 600MHz Pentium-II
C1 188.5–472.1 315.1 PC with 184MB RAM
RC1 453.8–1224.5 810.5

listed but one, while the simple heuristics left several
problem instances unsolved. From the information given in
the tables, our unified TS algorithm generally outperforms
Balakrishnan’s simple heuristics. Comparing the final solu-
tions found by our TS algorithm with those by Chiang and
Russell’s TS, there are seven cases where our unified TS
algorithm clearly gives a better solution with less total route
distance travelled for the same number of vehicles used
and 100% non-violated windows (denoted by ∗∗ in Table
5); also there are 30 cases where our unified TS algorithm
produces more non-violated windows for the same number
of vehicles used (denoted by ∗ in Tables 5 and 6). In these
30 cases denoted by ∗, the improvement in the percentage of
non-violated windows is generally at the expense of greater
distance travelled; the best solution depends on the weight-
ings used for these elements of the objective function.



Z
Fu

et
al—

Tabu
search

algorithm
671

Table 5 Comparison of the results on Type 3 of VRPSTW

Problem Wmax: 0 5 10 0 5
Pmax (Emax, Lmax): 0 0 0 5 5

SIM AR UTS SIM AR UTS SIM AR UTS SIM AR UTS SIM AR UTS

R101 Number of vehicles used 22 19 19 20 19 19 19 16 14 15 17 14 14
Total route distance 2439 2043 1808 1757 1915 1692 1695 1917 1483 1628 1903 1392 1456
% Non-violated windows 100 100 100 100 100 100 100 55 25 42 72 29 37∗

R102 Number of vehicles used 19 19 19 17 17 19 17 17 14 12 12 15 12 12
Total route distance 1958 1685∗∗ 1877 1600 1470∗∗ 1890 1511 1490∗∗ 1754 1364 1389 1693 1259 1348
% Non-violated windows 100 100 100 100 100 100 100 100 69 39 61∗ 80 44 60∗

R103 Number of vehicles used 14 14 13 14 13 14 13 11 11 13 10 11
Total route distance 1475 1381∗∗ 1370 1234 1304 1109 1436 1126 1189 1530 1134 1232
% Non-violated windows 100 100 100 100 100 100 77 60 78∗ 84 60 81

R109 Number of vehicles used 13 12 12 13 12 12 13 12 12 12 11 11 12 11 11
Total route distance 1567 1219 1206∗∗ 1482 1172 1159∗∗ 1492 1165 1158∗∗ 1383 1123 1158 1363 1093 1140
% Non-violated windows 100 100 100 100 100 100 100 100 100 73 62 82∗ 80 58 82∗

Problem Wmax: 10 0 5 10
Pmax (Emax, Lmax): 5 10 10 10

SIM AR UTS SIM AR UTS SIM AR UTS SIM AR UTS

R101 Number of vehicles used 17 14 14 14 12 12 15 12 12 15 12 12
Total route distance 1885 1370 1438 1737 1266 1399 1832 1216 1364 1832 1212 1376
% Non-violated windows 72 24 45∗ 44 14 33∗ 62 11 37∗ 62 8 31∗

R102 Number of vehicles used 15 12 12 13 11 11 14 11 11 14 10 11
Total route distance 1636 1265 1339 1507 1167 1324 1790 1147 1272 1569 1173 1287
% Non-violated windows 83 47 61∗ 63 35 55∗ 78 39 56∗ 81 33 51

R103 Number of vehicles used 13 11 11 12 10 10 13 10 10 13 10 10
Total route distance 1452 1066 1168 1363 1028 1209 1575 1008 1197 1657 1013 1185
% Non-violated windows 86 59 73∗ 68 57 76∗ 82 56 75∗ 83 58 76∗

R109 Number of vehicles used 13 11 11 11 10 11 12 10 11 12 10 11
Total route distance 1445 1084 1168 1311 1017 1161 1431 1019 1176 1431 1005 1183
% Non-violated windows 95 60 75∗ 67 54 85∗ 90 47 82 90 47 82
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Table 6 Comparison of the results on Type 3 of VRPSTW

Problem Wmax: 0 5 10 0 5
Pmax (Emax, Lmax): 0 0 0 5 5

SIM AR UTS SIM AR UTS SIM AR UTS SIM AR UTS SIM AR UTS

RC101 Number of vehicles used 16 5 16 16 15 15 16 15 15 14 12 13 15 13 13
Total route distance 2200 1764 1913 2012 1643 1704 2012 1651 1685 1835 1522 1594 1972 1425 1554
% Non-violated windows 100 100 100 100 100 100 100 100 100 68 47 72 94 44 72∗

RC102 Number of vehicles used 14 14 14 13 14 14 13 14 13 12 12 14 11 11
Total route distance 1627 1675 1807 1560 1617 1808 1530 1502 1679 1368 1523 1776 1357 1475
% Non-violated windows 100 100 100 100 100 100 100 100 84 60 79∗ 93 61 74∗

RC103 Number of vehicles used 13 11 12 12 11 12 12 11 12 12 10 11 13 10 11
Total route distance 1885 1362 1428 1676 1296 1358 1679 1284 1331 1605 1229 1265 1680 1186 1251
% Non-violated windows 100 100 100 100 100 100 100 100 100 88 79 90 97 69 89

RC106 Number of vehicles used 13 12 13 12 12 12 12 13 11 11 13 11 11
Total route distance 1664 1424 1492 1409 1420 1409 1414 1620 1269 1329 1699 1233 1325

% Non-violated windows 100 100 100 100 100 100 100 95 71 82∗ 98 58 77∗

Problem Wmax: 10 0 5 10
Pmax (Emax, Lmax): 5 10 10 10

SIM AR UTS SIM AR UTS SIM AR UTS SIM AR UTS

RC101 Number of vehicles used 14 13 13 14 11 12 14 11 12 15 11 12
Total route distance 1839 1424 1529 1784 1305 1502 1795 1288 1474 1832 1275 1457
% Non-violated windows 56 39 64∗ 60 25 59 61 36 59 62 27 54

RC102 Number of vehicles used 13 11 12 14 11 11 13 11 11 14 11 11
Total route distance 1850 1375 1413 2060 1249 1503 1719 1218 1458 1569 1222 1367
% Non-violated windows 88 58 81 97 55 69∗ 83 56 78∗ 81 56 74∗

RC103 Number of vehicles used 12 10 11 12 10 10 12 10 11 13 10 11
Total route distance 1469 1183 1254 1571 1137 1258 1530 1123 1266 1657 1119 1275
% Non-violated windows 82 69 86 92 65 86∗ 92 63 87 83 65 90

RC106 Number of vehicles used 12 11 11 13 10 11 13 10 11 12 10 11
Total route distance 1496 1223 1336 1620 1191 1301 1620 1158 1303 1431 1160 1337
% Non-violated windows 71 61 81∗ 97 47 77 97 50 73 90 49 81
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Table 7 Comparison of CPU time on Type 3 of VRPSTW

Algorithm Problem CPU time in Computer
sets seconds

SIM R1 18.9–79.1
RC1 17.6–55.1 25MHz 80386/387

AR R1 448.2–692.4
RC1 595.8–844.8 2.25 to GHz Athlon

UTS RI 170.0–1586.3 600MHz Pentium-II PC
RCI 193.1–1899.7 with 184MB RAM

The computational requirements for TS are greater than the
simple heuristics, as shown in Table 7.

Conclusions

The VRPSTW is an extension of the basic VRP and may
arise in a variety of applications. The different forms of time
window violation allowed lead to different types of VRPSTW.
The existing approaches in the literature are usually designed
for a special type of VRPSTW. In this paper, the differences
and relationships between six main types of VRPSTW are
discussed. Then a unified penalty function and a unified TS
algorithm for these main types of VRPSTW is proposed, with
which a given type of VRPSTW can be solved by simply
setting appropriate values for the corresponding parameters in
the penalty function. The distinctive features of this TS algo-
rithm are the use of a mixed neighbourhood structure based
on the 2-interchange generation mechanism, the allowance of
the search process to examine solutions that may be infea-
sible with respect to the capacity and duration constraints,
and the use of stochastic diversification in the selection of
the neighbourhood moves and the tabu length. Finally, to test
the computational performance of the algorithm, we ran it
on the benchmark problems and compared the results with
other methods for three types of VRPSTW in the literature.
It showed that our algorithm has improved many best known
solutions for the benchmark problems.
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